山东省实验中学2020年高三年级高考数学预测题(图片版含答案解析)

合集下载

山东省实验中学2020届高三高考数学预测卷(含解析)

山东省实验中学2020届高三高考数学预测卷(含解析)

山东省实验中学2020届高三(4月5日)高考数学预测卷第I 卷(选择题共60分)一、单项选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数z=(1+2i)(1+ai)(a ∈R), 若z ∈R,则实数a= ( )1.2A1.2B -C.2D. -22.已知集合M={x|-1<x<2}, N={x|x (x+3) <0},则M∩N= ( ) A.[-3,2)B.(-3,2)C. (-1,0]D. (-1,0)3.在正项等比数列{a n }中,514215,6,a a a a -==-则a 3=( )A.2B.41.2C D.84.函数23ln(44)()(2)x x f x x -+=-的图象可能是( )5.已知函数f(x)= 3x+2 cosx,若a 22(3(2),(log 7),f b f c f ===则a,b,c 的大小关系是( )A.a<b<cB.c<a < bC.b<a<cD.b<c< a6. 已知等边△ABC 内接于圆τ :221,x y +=且P 是圆τ上一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最大值是() .2AB.1.3CD.27.已知函数f 22()sinsin ()3x x x π=++,则f(x)的最小值为( )1.2A1.4B3.4C2.2D 8.已知点P 在椭圆τ:22221(0)x y a b a b+=>>上,点P 在第一象限,点P 关于原点O 的对称点为A,点P 关于x 轴的对称点为Q,设3,4PD PQ =u u u r u u u r直线AD 与椭圆τ的另一个交点为B,若PA ⊥PB,则椭圆τ的离心率e= ( )1.2A2.2B3.2C3.3D 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.由我国引领的5G 时代已经到来,5G 的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP 增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造出更多的经济增加值如图是某单位结合近年数据,对今后几年的5G 经济产出所做的预测.结合下图,下列说法正确的是( )A.5G 的发展带动今后几年的总经济产出逐年增加B.设备制造商的经济产出前期增长较快,后期放缓C.设备制造商在各年的总经济产出中一直处于领先地位D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势10.设等比数列{}n a 的公比为q,其前n 项和为n S ,前n 项积为n T ,并满足条件2019120192020202011,1,01a a a a a ->><-,下列结论正确的是()20192020.A S S <20192021.10B a a -<2020.C T 是数列{}n T 中的最大值D.数列{}n T 无最大值11.在棱长为1的正方体1111ABCD A B C D -中,点M 在棱1CC 上,则下列结论正确的是() A.直线BM 与平面11ADD A 平行B.平面1BMD 截正方体所得的截面为三角形C.异面直线1AD 与11A C 所成的角为3π1.||||D MB MD +512.关于函数2()ln ,f x x x=+下列判断正确的是() A. x=2是f(x)的极大值点B.函数y=f(x)-x 有且只有1个零点C.存在正实数k,使得f(x)> kx 成立D.对任意两个正实数12,,x x 且12,x x >若12()(),f x f x =则124x x +>第II 卷(非选择题共90分)三、填空题:本题共4小题,每小题5分,共20分.13.已知以x±2y =0为渐近线的双曲线经过点(4, 1), 则该双曲线的标准方程为___ 14.已知12,e e 是互相垂直的单位向量,123e e -与12e e λ+的夹角为60°,则实数λ的值是___ 15.从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为_____.(用数字作答)16.已知关于x 的不等式3ln 1xe x a x x--≥对于任意x ∈(1, +∞)恒成立,则实数a 的取值范围为____四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17. (10分)在△ABC 中,角A, B, C 的对边分别为a, b, c,已知a=4,tan tan .tan tan A B c bA B c--=+(1)求A 的余弦值; (2)求△ABC 面积的最大值.18. (12分)已知{}n a 是各项都为正数的数列,其前n 项和为,n S n S 为n a 与1na 的等差中项. (1)求证:数列2{}n S 为等差数列;(2)设(1),nn nb a -=求{}n b 的前n 项和.n T19. (12分)如图,在四棱锥P- ABCD 中,底面ABCD 是边长为2的菱形,∠DAB= 60°∠ADP=90°,平面ADP ⊥平面ABCD,点F 为棱PD 的中点.(I)在棱AB 上是否存在一点E,使得AF ∥平面PCE ,并说明理由; ( II )当二面角D-FC- B 的余弦值为2时,求直线PB 与平面ABCD 所成的角.20. (12 分)已知抛物线2:2(0)y px p τ=>的焦点为F, P 是抛物线τ上一点,且在第一象限,满足(2,FP =u u u r3)(1)求抛物线τ的方程;(2)已知经过点A (3, -2) 的直线交抛物线τ于M, N 两点,经过定点B (3, -6)和M 的直线与抛物线τ交于另一点L,问直线NL 是否恒过定点,如果过定点,求出该定点,否则说明理由.21.(12分)山东省2020年高考将实施新的高考改革方案考生的高考总成绩将由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目,语、数、外三科各占150分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为A 、B+、B 、C+、C 、D+、D 、E 共8个等级。

2020届山东省实验中学高三(4月5日)高考数学预测卷(解析版)

2020届山东省实验中学高三(4月5日)高考数学预测卷(解析版)

故选: D .
【点睛】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.
7.已知函数 f(x)=sin2x+sin2(x ),则 f(x)的最小值为( ) 3
1
A.
2
1
B.
4
C. 3 4
D. 2 2
【答案】A
【解析】
【分析】
先通过降幂公式和辅助角法将函数转化为
f
x
1
1 2
cos
2x

C
1 2
,
3 2
,设
P
cos
θ,
sin
θ

则 PA (PB PC) (1 cos , sin ) (1 2 cos , 2sin )
(1 cos )(1 2 cos ) 2sin 2 2 cos 2 cos 1 2sin 2 1 cos 2 .
当 ,即 P 1, 0 时等号成立.
又因为 z∈R,
所以 a 2 0 ,
解得 a=-2.
故选:D
【点睛】本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题. 2.已知集合 M={x|﹣1<x<2},N={x|x(x+3)≤0},则 M∩N=( )
A. [﹣3,2) 【答案】C
B. (﹣3,2)
C. (﹣1,0]
D. (﹣1,0)
a1q3
a1q
6
,解得
a1 q
1 2

a1 16
q1 2
(舍去).
故 a3 a1q2 4 .
故选: B .
【点睛】本题考查了等比数列的计算,意在考查学生的计算能力.
4.函数 f x ln
x2 4x 4 (x 2)3

山东省2020届高三高三高考模拟数学试题 Word版含解析

山东省2020届高三高三高考模拟数学试题 Word版含解析

山东省2020年高三高考模拟数学试题一、单项选择题:1.已知集合{1,2}A =-,{|1}B x ax ==,若B A ⊆,则由实数a 的所有可能的取值组成的集合为( )A. 11,2⎧⎫⎨⎬⎩⎭B. 11,2⎧⎫-⎨⎬⎩⎭ C. 10,1,2⎧⎫⎨⎬⎩⎭D.11,0,2⎧⎫-⎨⎬⎩⎭【答案】D 【解析】 【分析】分B 为空集和B 不为空集两种情况讨论,分别求出a 的范围,即可得出结果. 【详解】因为集合{1,2}A =-,{|1}B x ax ==,B A ⊆, 若B 为空集,则方程1ax =无解,解得0a =; 若B 不为空集,则0a ≠;由1ax =解得1x a=,所以11a =-或12a =,解得1a =-或12a =,综上,由实数a 的所有可能的取值组成的集合为11,0,2⎧⎫-⎨⎬⎩⎭. 故选D【点睛】本题主要考查由集合间的关系求参数的问题,熟记集合间的关系即可,属于基础题型.2.若1iz i =-+(其中i 是虚数单位),则复数z 的共轭复数在复平面内对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】D 【解析】分析:变形1iz i =-+,利用复数代数形式的乘除运算化简,求出z 的坐标即可得结论. 详解:由i 1i z =-+, 得()()21i i 1i 1i i iz -+--+===+-,1z i =-∴复数z 的共轭复数在复平面内对应的点的坐标为()1,1-,位于第四象限,故选D.点睛:本题主要考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,意在考查学生对基础知识掌握的熟练程度,属于简单题. 3.函数()()22ln x xf x x -=+的图象大致为( )A. B.C. D.【答案】B 【解析】 【分析】根据函数奇偶性的判断可知函数为偶函数,图象关于y 轴对称,排除D ;根据()0,1x ∈时,()0f x <,排除,A C ,从而得到正确选项.【详解】()f x 定义域为{}0x x ≠,且()()()()22ln 22ln xx x x f x x x f x ---=+-=+=()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C . 本题正确选项:B【点睛】本题考查函数图象的辨析,关键是能够通过函数的奇偶性、特殊值的符号来进行排除.4.《九章算术⋅衰分》中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”翻译为“今有甲持钱560,乙持钱350,丙持钱180,甲、乙、丙三个人一起出关,关税共计100钱,要按个人带钱多少的比例交税,问三人各应付多少税?”则下列说法中错误的是( ) A. 甲付的税钱最多 B. 乙、丙两人付的税钱超过甲 C. 乙应出的税钱约为32 D. 丙付的税钱最少【答案】B 【解析】 【分析】通过阅读可以知道,A D 说法的正确性,通过计算可以知道,B C 说法的正确性.【详解】甲付的税钱最多、丙付的税钱最少,可知,A D 正确:乙、丙两人付的税钱占总税钱的3511002<不超过甲。

2020年6月山东省实验中学高考预测押题卷理科数学(原卷版)

2020年6月山东省实验中学高考预测押题卷理科数学(原卷版)
4
A.1 个
B.2 个
C.3 个
D.4 个
12.已知双曲线 C :
x2 a2
y2 b2
1
(a 0,b 0) 的左、右顶点分别为 A,B ,左焦点为 F,P 为 C 上一点,
且 PF x 轴,过点 A 的直线 l 与线段 PF 交于点 M (异于 P,F ),与 y 轴交于点 M ,直线 MB 与 y 轴
A. 1, ln 2 2
B.2 ln 3 3, 2 ln 2 2
C. 2 ln 3 3, 2 ln 2 2
D.2 2 ln 2, 3 2 ln 3
11.已知正方体 ABCD A1B1C1D1 的棱长为 1,P 是空间中任意一点,下列正确命题的个数是( )
①若 P 为棱 CC1 中点,则异面直线 AP 与 CD 所成角的正切值为
2
.已知点
D

ABC

AB
上一点,AC
3,
BC 2 , ACD 45 , tan BCD 8 15 ,则 ABC 的面积为________. 7
15.若曲线 y x2 ln x 在点 1,1 处的切线与直线 x ay 2 0 平行,则实数 a 的值为______.
16.数列 an 满足递推公式 an2 an an1 ,且 a1 a2,a2019 a2020 2020 ,则

A.
B.
C.
D.
6.已知 f x 为奇函数,当 x 0 时, f x ex ex2( e 是自然对数的底数),则曲线 y f x 在 x 1
处的切线方程是( )
A. y ex e
B. y ex e
C. y ex e
D.
y
2e

山东省2020届高三新高考备考原创押题卷(三)数学及答案2020.6

山东省2020届高三新高考备考原创押题卷(三)数学及答案2020.6

" # " # " # " # $
"'+
! "
'( ''! #
')
#'+
! 7
'8 1'!!- '
4+""#)!#"'#6++!'$#'
#"'#6+$'!#'
+
! "
"#+!#"'#6+!'"#'
3.Æ -&4"##&3!# "#+"#"'#6+"''#'
+
! 7
"#+'#"'#6+''##'
4"##&+"4"#)!#'¨#6+$'!#©'4"##&#"'0#6++!'$#©'4"##&+""#)!#"'U"+!'$#WtP\Ig auv'U"$'!#W I t a u v'% & U +"''#I g a u v = <' l t [ ( P \'m P 8 n'3 .(""!'!#'

2020年高考数学押题预测卷03(山东卷)(参考答案)

2020年高考数学押题预测卷03(山东卷)(参考答案)

P( y ) P(43.91 y 73.09) 0.6826 , 所以 P( y„ 43.91) 1 0.6826 0.1587 ,
2
所以这 1000 名被调查者中午休睡眠时间低于 43.91 分钟(含 43.91)的人数估计有
0.1587 1000 159 (人).
(3) X 的可能值为 0,1,2,
~
2020 年高考押题预测卷 03(山东卷)
数学·参考答案
1
2
3
4
5
6
7
8
9 10 11 12
A
DD
D
C
B
D D ABD CD BCD AD
13. 3 5
14. 2 3
17.(本小题满分 10 分)
15. 2020 0
16. 2 6
8 6 729
【解析】(1)在VCAM 中,已知 CAM , sin CMA 3 , AC 2 ,由正弦定理,
所以 f (x) 有极小值 f (1) a ,无极大值; e
②当
a
0
时,令
f
(x)
0
x
1 或
x
ln
2 a

(ⅰ)
a
2e
时,x
,
ln
2 a
时,f
(x)
0
,f
(
x)
单调递减;x
ln
2 a
,
1
时,f
(
x)
0

f (x) 单调递增;
x (1, ) 时, f (x) 0 , f (x) 单调递减;
则 Sk2 k 22 k 2 k 2 5k 6 ,
若 a1 , ak , Sk2 成等比数列,则 ak 2 a1 Sk2 ,

山东省实验中学2020届高三模拟考试数学试题(含答案)2020.6

山东省实验中学2020届高三模拟考试数学试题(含答案)2020.6

绝密食启用井使用完毕前山东省实验中学2020届高三模拟考试数学试题2020. 06注意事项z1.答卷前,先将自己的考生号等信息填写在试卷和答题纸上,并在答题纸规定位置贴条形码.2.本试卷满分150分,分为第I卷(选择题)和第H卷(非选择题)两部分,第I卷为第1页至第3页,第II卷为第4页至第6页.3.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.4.非选择题的作答:用0.5mm黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.第l i卷〈共60分〉一、单项选择题:本题共8小题,每才灌5分v决问to分.在每小题给出的四个选项中,只有-项是符合题目要求的.1.己知集合A={x Ix= 2k, k E Z} , B = {x EN Ix< 4},那么集合A门B=A.(1,4)B.{2} c.{1, 2}2.若z(2-i}2=-i Ci是虚数单位),则复数z的模为A.一B.33.己知叫+α)= cos(�一α),贝Ll cos2α= c.-4D.{1, 2,4}D.-5A.0B.1J2 ../3 2 24.己知平面向量a' b满足(a+b)·b=2,且l a l=l,lbl弓,则l a+bj=A.fjB.Jz c.1 D.2)35.己知f(x)是定义域为R的奇函数,若f(x+ 5)为偶函数,/(1)= 1,则/(2019)+/(2020) =A.-2B.一l c.0 D.12020届高三模拟考试数学试题第l页共6页6己知点F;(-3,的,乓(3,时别是双曲线C:兰-4=1(a>O, b>O)的左、右焦点,M矿矿10.记数列{a n}的前n项和为乱,若存在实数H,使得对任意的nEN+,都有I S n <H,则是C右支上的一点,MF;与Y轴交于点p'/:J,MPJ飞的内切圆在边Pl飞上的切点为Q,若IPQ l=2,则C的离心率为3 5A.%B.3C.2D.27.在二项式(x+�r的展开式中,各项系数的和为1比把展开式中各项重新排列,则有、J X理项都互不相邻的概率为A.一4B.一3 c.一3 D.土35 4 1414称数列{an}为“和布界数列”.下列说法正确的是A.若{a n}是等差数列,且公差d=O,则{a n}是“和有界数列”B.若{a n}是等差数列,且{a n}是“和有界数列”,则公差d=Oc.若{an}是等比数列,且公比q < 1,则{a n}是“和有界数列”D.若{αn}是等比数列,且{an}是“和有界数列”,则{αn}的公比q l<l8.己知函数f(x)=旧2-x-lnx有两个零点,则实数α的取值范围是A.(_!, 1)B.(0,1)C.(-oo,与)e e D.(0,与)e11.《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“莹堵飞底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”:四个面均为直角三角形的四面体称为“鳖二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多脯”.如图在整堵ABC-A1BP1中,AC1-BC,且AA1=AB=2.下列说法正确的是项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.CPI是居民消费价格指数的简称,是一个反映居民家庭一般所购买的消费品和服务项目价 A.四棱锥B-AiACC1为“阳马”格水平变动情况的宏观经济指标.同比一般情况下是今年第n月与去年第n月比;__"环毕?川丁‘表示连续2个统计周期(比如连续两月)内的量的变化比如图是根据国家统计敞布局已?二:�-=-}-c币;咽面体利α为“鳖腐”2019年4月一2则年4月我国C叫跌幅数据绘制的折线图,根据该折线图,则科副普:,L10)1i乙1S-1j,J ll � �I「节’[c.四棱锥B-A I ACC l体积最大为3正确的是A1D.过A点分别作AE1-AiB于点E,AF 1-AiC于点F,则EF1-�B5.0十40 i一一一一…一----�飞言:33.0 � 2.7 2.7 2产z干一二二2.0 -i-一一一一一一一一一一…向一一…叩………………ω叫“.........……………………1.0翻嘈-同比-I←环七tt " \12.己知/(x)=l-2cos2wx+τ(ω>的,下面结论正确的是A.若f(x1)=l.f(x2)=-l,且x1一引|的最小值为饨,m=2c810.0 B.存在ωε(1.3),使得f(x)的图象向右平移主个单位长度后得到的图象关于y轴对称62.0J主半岛念、,.-t,二孙主、,.,t,卦,公卦杰、企、击、r&� -, v 、v -, .... v ..... ..... 哇钮’• -�or ,,<::;",俨铲VA.2020年1月CPI同比涨幅最大B.2019年4月与同年12月相比较,4月CPI环比更大c.2019年7月至12月,CPI一直增长D.2020年1月至4月CPI只跌不涨2020届高三模拟考试数学试题第2页共6页41 47c.若f(x)在[O,2π]上恰有7个零点,则ω的取值范围是[一,一)2424D.若f(x)在[一一,一]上单调递增,则ω的取值范围是仰π6 42020届高三模拟考试数学试题第3页共6页第II卷〈非选择题,共90分〉三、填空题:本题共4小题,每小题5分,共20分.13.以抛物线Y i=2x的焦点为圆心,且与抛物线的准线相切的圆的方程为14.我国有“三山五岳”之说,其中五岳是指:东岳泰山,南岳衡山,西岳华山,北岳恒山,中岳高山.某位老师在课堂中拿出这五岳的图片,打乱顺序后在图片上标出数字1-5,他让甲、乙、丙、丁、戊这五位学生来辨别,每人说出两个,学生回答如下:甲:2是泰山,3是华山:乙z4是衡山,2是南山:丙:1是衡山,5是恒山:丁:4是恒山,3是富山:戊:2是华山,5是泰山.老师提示这五个学生都只说对了一半,那么五岳之尊泰山图片上标的数字是15.已知函数f(x)=I ln x I,若0<α<b,且f(a)= f(b),则a+4b的取值范围是·18.Cl2分)己知s.是等比数列{a,;}的前n项和,旦,Sz,S3成等差数列,且s4-a=-18.( I )求数列{an}的通项公式:(2)是否存在正整数n,使得s.兰2020?若存在,求出符合条件的n的最小值:若不存在,说明理由.19.Cl2分)四棱锥P-ABCD中,PC i面ABCD,直角梯形ABCD中,LB=LC=90。

2020年普通高校招生考试新高考山东押题预测数学试卷全解全析(5页)

2020年普通高校招生考试新高考山东押题预测数学试卷全解全析(5页)

2020年普通高校招生考试新高考山东押题预测数学试卷数学全解全析13.30 14.2π 215.16.12π 17.(本小题满分10分) 【解析】(1)由①b ac -=()2223a c b +-=-, 所以222cos 2a c b B ac +-==,由②2cos 22cos 12AA +=得,22cos cos 10A A +-=, 解得1cos 2A=或cos 1A =-(舍),所以3A π=,因为1cos 2B =<-,且()0,B π∈,所以23B π>,所以A B π+>,矛盾. 所以ABC ∆不能同时满足①,②.故ABC ∆满足①,③,④或②,③,④; (2)若ABC ∆满足①,③,④,因为2222cos b a c ac B =+-,所以2862c c =++2420c c +-=. 解得2c =.所以ABC ∆的面积1sin 2S ac B == 若ABC ∆满足②,③,④由正弦定理sin sin a b A B=sin B =,解得sin 1B =, 所以c =ABC ∆的面积1sin 2S bc A ==18.(本小题满分12分)【解析】(1)对任意的n *∈N ,132n nS S +=+,则1133311n n n n S S S S +++==++且113S +=,所以,数列{}1n S +是以3为首项,以3为公比的等比数列;(2)由(1)可得11333n n n S -+=⨯=,31nn S ∴=-.当2n ≥时,()()111313123nn n n n n S a S ---=-=---=⨯,12a =也适合上式,所以,123n n a -=⨯.由于曲线()22:191n n C x a y +-=是椭圆,则190191n n a a ->⎧⎨-≠⎩,即1123192318n n --⎧⨯<⎨⨯≠⎩, n N *∈Q ,解得1n =或2;(3)11333log 3log 3322n n n nn n a a b n --⎛⎫⎛⎫=⨯==⋅⎪ ⎪⎝⎭⎝⎭, 01211323333n n T n -∴=⨯+⨯+⨯++⋅L ,①()12131323133n n n T n n -=⨯+⨯++-⋅+⋅L ,②①-②得()()012111312312333333132n n n n nnn T n n -⨯--⋅--=++++-⋅=-⋅=-L , 因此,()21314n nn T -⋅+=. 19.(本小题满分12分)【解析】(1)证明:因为C 半圆弧»BD上的一点,所以BC BD ⊥. 在ABD ∆中,,E F 分别为,AD BD 的中点,所以112EF AB ==,且//EF AB . 于是在EFC ∆中, 222112EF FC EC +=+==, 所以EFC ∆为直角三角形,且EF FC ⊥. 因为AB BD ⊥,//EF AB ,所以.因为EF FC ⊥,,BD FC F ⋂=,所以EF ⊥平面BCD .又EF ⊂平面CEF ,所以平面CEF ⊥平面BCD .(2)由已知120BFC ∠=o ,以F 为坐标原点,分别以垂直于BD 、向量,FD FE u u u r u u u r所在方向作为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系F xyz -,则1,,0)22C ,(0,0,1)E ,(0,1,0)B -,(0,1,2)A -,1=(,1)2CE -u u u r ,(0,1,1)BE =u u u r ,(0,1,1)AE =-u u u r .设平面ACE 的一个法向量为111(,,)x y z =m ,则·0·0AE m CE m ⎧=⎨=⎩u u u v u u u v即111110102y z x y z -=⎧⎪⎨-+=⎪⎩,取11z =,得3=()m . 设平面BCE 的法向量222(,,)x y z =n ,则·0·0BE n CE n ⎧=⎨=⎩u u u v u u u v即2222201022y z x y z +=⎧⎪⎨--+=⎪⎩,取21z =,得1,1=-)n .所以cos ,||||<>==g m n m n m n , 又二面角A CE B --为锐角,所以二面角A CE B --.20.(本小题满分12分)【解析】(1)设椭圆C 的焦距为()20c c >,由题知,点,P c ⎛ ⎝⎭,b =则有22212c a ⎝⎭+=,2234c a ∴=,又22222a b c c =+=+,28a ∴=,26c =, 因此,椭圆C 的标准方程为22182x y +=;(2)当AB x ⊥轴时,M 位于x 轴上,且OMAB ⊥,由OMAB =12AOB S OM AB ∆=⋅=; 当AB 不垂直x 轴时,设直线AB 的方程为y kx t =+,与椭圆交于()11,A x y ,()22,B x y ,由22182x y y kx t ⎧+=⎪⎨⎪=+⎩,得()222148480k x ktx t +++-=. 122814kt x x k -∴+=+,21224814t x x k-=+,从而224,1414kt t M k k -⎛⎫ ⎪++⎝⎭已知OM =()2222214116k t k+=+.()()()22222212122284814141414kt t AB k x x x x k k k ⎡⎤--⎛⎫⎡⎤=++-=+-⨯⎢⎥ ⎪⎣⎦++⎝⎭⎢⎥⎣⎦Q ()()()222221682114k t k k -+=++. 设O 到直线AB 的距离为d ,则2221t d k=+, ()()()222222221682114114AOBk t t S k k k ∆-+=+⋅++. 将()2222214116k t k+=+代入化简得()()2222219241116AOB k k S k ∆+=+.令2116k p +=,则()()()22222211211192414116AOBp p k k S p k ∆-⎛⎫-+ ⎪+⎝⎭==+211433433p ⎡⎤⎛⎫=--+≤⎢⎥ ⎪⎢⎥⎝⎭⎣⎦.当且仅当3p =时取等号,此时AOB ∆的面积最大,最大值为2. 综上:AOB ∆的面积最大,最大值为2. 21.(本小题满分12分)【解析】(1)所有可能的方式有43种,恰有2人申请A 大学的申请方式有2242C ⋅种,从而恰有2人申请A 大学的概率为224428327C ⋅=; (2)由题意可知,随机变量的可能取值有1、2、3,则()4311327P X ===,()2232434341422327C A C A P X ⋅+===,()234344339C A P X ===. 所以,随机变量X 的分布列如下表所示:()1144651232727927E X =⨯+⨯+⨯=. 22.(本小题满分12分) 【解析】(1)因为()()2112xa f x ex e x =--,所以()x a f x xe xe '=-. 所以()01f =-,()00f '=.所以曲线()y f x =在点()()0,0f 处的切线为1y =-; (2)因为()()xaxaf x xe xe x e e'=-=-,令()0f x '=,得0x =或()0x a a =<.列表如下:所以,函数()y f x =的单调递增区间为(),a -∞和()0,∞+,单调递减区间为(),0a , 所以,当0x =时,函数()y f x =有极小值()01f =-; (3)当1x ≤时,()0f x <,且()222220af e e e =->->.由(2)可知,函数()y f x =在()0,∞+上单调递增,所以函数()y f x =的零点个数为1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档