激光熔覆
激光熔覆

原理
激光熔覆技术的原理是,在需处理的零部件表
面预置一层能满足使用要求的特制粉末材料,然 后用高能激光束对涂层进行快速扫描处理,预置
粉末在瞬间熔化并凝固,涂层下基体金属随之
熔化一薄层,二者之间的界面在很窄的区域内
迅速产生分子或原子级的交互扩散,同时形成牢 固的冶金结合。在快速热作用下,基体受热影响 极小,无变形。熔层合金自成体系,其组织致密, 晶粒细化,硬度和强韧性提高,表面性能大大改 善。
质量优势
举例
不锈钢辊颈·激光熔覆
大型曲轴·激光熔覆
汽轮机叶片及转子·激光 熔覆
展望
综上所述,在过去十几年间,激光熔覆 耐磨、耐蚀、抗氧化、热障涂层等研究 取得了巨大进展,某些方面已进人实际 工业应用阶段,但仍然存在许多挑战性 的困难,随着激光熔覆技术的日趋成熟 和完善,因技术的先进性,高效率和经 济性,其工业应用领域将不断扩大,在 表面改性领域具有强大的生命力.
谢谢
激光熔覆技术
主要内容
概述 特点 涂层体系 原理 应用
概述
激光表面涂层技术主要包括激光表面合 金化、激光气相沉积与激光熔覆三个分 支。
激光熔覆技术是指以不同的添加方法在 被熔覆的基体上放置选择的涂层材料经 激光辐照后使之和基体表面熔化,经快 速凝固形成低稀释度的与基体呈冶金结 合的表面涂层。
抗氧化涂层抗高温氧化涂层在火箭发动机的高 温部件上等高科技领域有着广泛的应用前景.激 光熔覆中研究较多的是MCrALY系合金涂层,其 中M代表Ni、Co等过渡族元素
涂层体系
生物涂层Ti基HAP(羟基磷灰石)复合材料 以及含Ca、P的生物玻璃陶瓷涂层是激光 熔覆中刚刚起步的研究方向。生物金属 材料如Ti基合金等虽然具有比强度高、韧 性好、无毒等优良性能,但一般都不具 备生物活性和相容性。
激光熔覆技术的原理和应用

激光熔覆技术的原理和应用激光熔覆技术是一种将一层或多层材料熔化并覆盖在基底材料表面的表面改性技术。
其原理是利用高能量激光束的热效应使材料熔化,并在凝固过程中形成一层新的材料。
激光熔覆技术广泛应用于工业领域,如航空航天、汽车、冶金和电子等领域,以提高材料的性能和延长其使用寿命。
激光熔覆技术的原理是利用激光束的高能量浓度使材料迅速升温并熔化,然后形成一层新的材料。
其主要步骤包括熔化、溶解和凝固三个阶段。
首先,激光束的高能量聚焦在材料表面,使其迅速升温并熔化。
接下来,激光束的移动速度决定了材料的溶解程度和覆盖层的厚度。
最后,在激光束的作用下,熔化的材料迅速凝固形成一层新的材料。
首先,它可以将多种材料熔融在一起,形成覆盖层。
这样可以在基底材料上形成一种新的材料,提高基底材料的性能。
例如,可以将陶瓷和金属熔融在一起,形成具有陶瓷硬度和金属韧性的覆盖层。
其次,激光熔覆技术可以在材料表面形成非常细小的晶粒结构。
这种细小的晶粒结构可以提高材料的硬度和抗磨损性能。
同时,细小的晶粒结构还可以提高材料的强度和耐腐蚀性能。
此外,激光熔覆技术可以在表面形成非常薄的覆盖层。
这种薄的覆盖层不会改变基底材料的尺寸和形状,从而提高工件的精度和形状精度。
同时,薄的覆盖层还可以减小材料的重量,并提高材料的导热性能。
其次,激光熔覆技术可以用于提高材料的性能。
例如,可以在金属表面形成陶瓷覆盖层,从而提高金属的硬度和抗磨损性能。
同时,还可以在材料表面形成耐腐蚀的覆盖层,提高材料的耐腐蚀性能。
另外,激光熔覆技术还可以用于合金化处理。
例如,可以将两种或多种材料熔融在一起,形成具有多种性能的新材料。
这种合金化处理可以使材料具有更高的强度、硬度和耐磨性能。
总之,激光熔覆技术是一种重要的表面改性技术,可以提高材料的性能和延长使用寿命。
它的原理是利用激光束的高能量浓度使材料熔化,并形成一层新材料。
应用领域广泛,包括零件修复和再制造、提高材料性能和合金化处理等。
激光熔覆标准

激光熔覆标准
激光熔覆是一种表面修复和涂层技术,可以通过将融化的金属材料喷射到工件表面,形成保护层或增加材料硬度。
这种技术被广泛应用于航空航天、能源、汽车和其他工业领域。
激光熔覆的标准主要包括以下几个方面:
1. 材料选择标准:根据具体的应用需求,选择适合的金属材料进行熔覆。
材料应具有良好的耐磨、耐腐蚀和耐高温性能。
2. 熔覆层厚度标准:根据工件的使用要求,确定熔覆层的最佳厚度。
通常情况下,熔覆层的厚度应在几百微米到几毫米之间。
3. 熔覆层质量标准:熔覆层应具有均匀的结构和良好的粘结性,没有气孔、裂纹和其他缺陷。
通过材料测试和显微组织分析等手段,对熔覆层的质量进行评估。
4. 熔覆工艺参数标准:根据具体的材料和工件要求,确定激光熔覆的工艺参数,包括激光功率、扫描速度、喷粉量等。
这些参数直接影响熔覆层的质量和性能。
5. 熔覆后热处理标准:熔覆完成后,通常需要进行热处理来改善熔覆层的性能。
热处理的温度、时间和冷却速度等参数应符合标准要求。
根据不同的行业和应用领域,具体的激光熔覆标准可能有所差异。
相关标准组织和机构如ISO、ASTM、AWS等提供了一些相关的标准和指南,可以供参考和遵循。
在实际应用中,还应根据具体情况进行技术评估和质量控制,确保激光熔覆的质量和性能达到要求。
激光熔覆技术的原理和应用

激光熔覆技术的原理和应用1. 激光熔覆技术的简介激光熔覆技术是一种常用于金属表面改性和复合材料制备的先进加工技术。
它利用高能激光束对工件表面进行局部熔化,使金属或合金液态化并与基材相互混合,形成一层高质量的涂层。
激光熔覆技术具有熔化速度快、固化快、热影响区小、涂层与基材结合强等优点,因而在航空航天、汽车制造、能源装备等领域得到广泛应用。
2. 激光熔覆技术的原理激光熔覆技术的实质是利用高能激光束对工件表面进行局部加热,使其达到熔点,然后进行快速冷却,使其凝固成为一层均匀致密的涂层。
其原理主要包括以下几个方面:2.1 激光加热高能激光束在与工件表面接触时,光能转化为热能,使工件局部区域温度升高。
激光加热具有高度集中的特点,可以实现对工件表面的高温局部加热,而对其他区域几乎没有热影响。
2.2 金属熔化通过激光加热,金属或合金在达到熔点的条件下发生熔化。
激光熔化的特点是熔池温度高、熔池容积小、凝固速度快。
这使得熔化的金属能够在非常短的时间内冷却并固化,形成一层均匀致密的涂层。
2.3 冷却和凝固金属熔池在短时间内冷却并凝固形成固体涂层。
冷却速度的快慢直接影响涂层的组织结构和性能。
激光熔覆技术的快速冷却速度可以避免大晶粒的形成,并在晶界处形成细小的析出相,提高涂层的强度和硬度。
3. 激光熔覆技术的应用激光熔覆技术在多个领域有着广泛的应用,下面列举了其中一些典型的应用:3.1 表面修复和修饰通过激光熔覆技术可以对损坏的金属零件进行修复和修饰。
激光熔覆可以填充表面缺陷、修复裂纹,提高零件的使用寿命和性能。
3.2 硬质合金涂层制备激光熔覆技术可以在金属基材表面涂覆硬质合金材料,提高金属零件的耐磨性、耐腐蚀性和抗疲劳性。
硬质合金涂层广泛应用于机械零件、切削工具等领域。
3.3 功能性涂层制备通过激光熔覆技术可以在金属基材表面制备各种功能性涂层,如热障涂层、阻尼涂层、导电涂层等。
这些涂层可以为金属零件赋予新的性能和功能,拓展其应用范围。
激光熔覆范文

激光熔覆范文激光熔覆激光熔覆是一种先进的金属加工技术,是将金属粉末或线材喷射到工件表面,并通过激光束的熔化和固化,实现对工件表面的覆盖。
激光熔覆技术具有以下优点:1.高精度:激光束的高能量密度使得能够精确控制熔覆区域,使得覆盖层的厚度和尺寸都可以高度精确控制。
2.快速成材:激光熔覆技术的熔化速度非常快,可以实现极高的熔化效率,从而大大提高了加工效率。
3.低热影响区:激光熔覆过程中,热源非常集中,大部分热量都集中在熔覆区域内,因此热影响扩散很小,只有局部区域受热,可以有效降低工件变形的风险。
4.多材料兼容:激光熔覆技术可以采用各种金属粉末或线材进行熔覆,因此可以实现多种材料的冶金反应,例如不相容金属的熔覆。
5.材料节约:激光熔覆技术将金属材料以粉末或线材的形式喷射到工件表面,与传统的加工方法相比,可以大大节约材料的使用。
激光熔覆技术在以下领域有广泛的应用:1.修复和修补:激光熔覆可以用于修复和修补零件表面的损坏或磨损,例如汽车发动机缸盖、轴承等。
2.耐磨涂层:激光熔覆可以在工件表面形成一层耐磨涂层,提高工件的耐磨性能,延长使用寿命,例如刀具、模具等。
3.腐蚀防护层:激光熔覆可以在金属表面形成一层抗腐蚀涂层,提高金属的抗腐蚀性能,延长使用寿命,例如船舶、石油设备等。
4.功能性涂层:激光熔覆可以将特殊功能材料覆盖到工件表面,例如导热涂层、导电涂层等,以实现特定的工作要求。
激光熔覆技术尽管有很多优点,但也存在一些挑战和限制:1.材料选择:激光熔覆技术的材料选择范围相对较窄,目前应用较多的是金属材料,如钛合金、不锈钢等,而对于一些非金属材料的应用较少。
2.设备复杂:激光熔覆设备需要较高的技术要求,设备较为复杂,需要配备激光器、粉末喷射系统、熔覆枪等设备,投资较高。
3.熔覆质量控制:由于激光熔覆过程中涉及到多个因素的相互作用,如激光功率、扫描速度、粉末喷射量等,因此熔覆质量的控制会比较困难。
4.尺寸限制:激光熔覆技术通常适用于小尺寸工件的表面修复和涂覆,对于大尺寸工件的处理相对困难。
激光熔覆 激光淬火

激光熔覆激光淬火
激光熔覆和激光淬火都是金属表面处理技术中常见的方法,它们在提高材料表面性能方面具有重要作用。
首先,让我们来谈谈激光熔覆。
激光熔覆是一种通过高能密度激光束瞬间熔化金属表面,然后在凝固过程中形成涂层的表面处理方法。
这种方法可以在基体材料表面形成具有优异性能的涂层,如耐磨、耐蚀、高温等特性。
激光熔覆的优点包括熔覆层与基体材料结合强度高、熔覆层成分可调、熔覆过程对基体影响小等。
接下来是激光淬火。
激光淬火是利用激光束对金属表面进行快速加热和冷却,以达到提高材料表面硬度和强度的目的。
激光淬火的优点在于可以实现局部淬火,避免了整体淬火可能导致的变形和裂纹问题,同时可以在保持材料核心韧性的情况下提高表面硬度。
从工艺原理来看,激光熔覆注重在金属表面形成一层具有特定性能的涂层,而激光淬火则是通过快速冷却改变金属的组织结构来提高表面硬度。
两种方法都可以显著提高金属材料的表面性能,但选择哪种方法取决于具体的应用场景和要求。
总的来说,激光熔覆和激光淬火都是重要的金属表面处理技术,它们在提高材料表面硬度、耐磨性、耐蚀性等方面发挥着重要作用,对于提高材料的使用寿命和性能具有重要意义。
激光熔覆

一、激光熔覆的原理激光溶覆是利用高能激光束辐照,通过迅速熔化、扩展和凝固,在基材表面熔覆一层具有特殊物理、化学或力学性能的材料,构成一种新的复合材料,以弥补基体所缺少的高性能。
能充分发挥二者的优势,克服彼此的不足。
可以根据工件的工况要求,熔覆各种(设计)成分的金属或非金属,制备耐热、耐蚀、耐磨、抗氧化、抗疲劳或具有光、电、磁特性的表面覆层。
通过激光熔覆,可在低熔点材料上熔覆一层高熔点的合金,亦可使非相变材料(AI 、Cu 、Ni 等)和非金属材料的表面得到强化。
在工件表面制备覆层以改善表面性能的方法很多,在工业中应用较多的是堆焊、热喷涂和等离子喷焊等,与上述表面强化技术相比,激光熔覆具有下述优点:(1 )熔覆层晶粒细小,结构致密,因而硬度一般较高,耐磨、耐蚀等性能亦更为优异。
(2 )熔覆层稀释率低,由于激光作用时间短,基材的熔化量小,对熔覆层的冲淡率低(一般仅为 5%-8%),因此可在熔覆层较薄的情况下,获得所要求的成分与性能,节约昂贵的覆层材料。
(3 )激光熔覆热影响区小,工件变形小,熔覆成品率高。
(4 )激光熔覆过程易实现自动化生产,覆层质量稳定,如在熔覆过程中熔覆厚度可实现连续调节,这在其他工艺中是难以实现的。
由于激光熔覆的上述优点,它在航空、航天乃至民用产品工业领域中都有较广阔的应用前景,已成为当今材料领域研究和开发的热点。
激光熔覆技术应用过程中的关键问题之一是熔覆层的开裂问题,尤其是大工件的熔覆层,裂缝几乎难以避免,为此,研究者们除了改进设备,探索合适工艺,还在研制适合激光熔覆工艺特点的熔覆用合金粉末和其他熔覆材料。
二、激光熔覆工艺方法激光熔覆工艺方法有两种类型:1、二步法(预置法)该法是在激光熔覆处理前,先将熔覆材料置于工作表面,然后采用激光将其熔化,冷凝后形成熔覆层。
预置熔覆材料的方式包括:(1 )预置涂覆层:通常是应用手工涂敷,最为经济、方便、它是用粘结剂将熔覆用粉末调成糊状置于工件表面,干燥后再进行激光熔覆处理。
2024年激光熔覆市场前景分析

2024年激光熔覆市场前景分析激光熔覆是一种先进的表面处理技术,通过使用激光束将金属粉末熔化并覆盖在基材表面上,从而在不改变基材性质的同时增加材料的耐磨、耐蚀和耐高温等性能。
随着制造业的不断发展和对高性能材料需求的增加,激光熔覆技术在各个行业中的应用前景广阔。
市场需求驱动因素1.高性能材料需求增加:随着科技的进步和工业自动化的推进,对高性能材料的需求不断增加,激光熔覆技术能够满足制造业对高质量材料的需求。
2.节能减排政策的推动:全球范围内的环保压力不断增加,各国都出台了一系列的节能减排政策。
激光熔覆技术相比传统热处理技术更加节能环保,符合绿色制造的发展趋势。
3.先进制造业的发展:激光熔覆技术在航空航天、汽车制造、电子设备等领域具有广泛的应用前景。
随着先进制造业的不断发展,对激光熔覆技术的需求将持续增长。
市场前景分析1.航空航天领域: 航空航天领域对材料的性能和质量要求非常高,激光熔覆技术可以提供高性能材料,并且能够实现复杂形状零件的加工。
激光熔覆技术在航空航天领域的应用前景广阔。
2.汽车制造业:汽车制造业对材料的强度、耐磨和耐蚀性能有着严格的要求。
激光熔覆技术可以提供高性能材料,并且能够实现局部修复和修饰,延长汽车零部件的使用寿命。
3.电子设备制造业:电子设备制造业对材料的导热性能、电磁性能和耐腐蚀性能有着高要求,激光熔覆技术可以实现高精度加工,并且能够实现局部修复和修饰,满足电子设备制造业对高性能材料的需求。
4.石油化工行业:石油化工行业对材料的耐腐蚀性能要求非常严格,激光熔覆技术可以提供高性能耐腐蚀材料,并且能够实现复杂形状零件的加工,满足石油化工行业对高性能材料的需求。
挑战与未来发展趋势尽管激光熔覆技术在各个行业中具有广阔的应用前景,但也面临着一些挑战。
1.设备成本较高:激光熔覆设备的价格相对较高,这对于中小型企业来说可能是一个不小的负担,限制了技术的推广应用。
2.技术标准有待统一:激光熔覆技术目前尚缺乏统一的技术标准,这导致不同厂商的设备和材料之间存在差异,限制了技术的应用范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 激光延寿技术
5.1激光熔覆表面处理技术
2、熔覆层的气孔和裂纹问题
熔覆层中的气孔是常见的缺陷。
空气和保护气中的水分以及涂层(或粉)中吸附的水分是产生气孔的主要原因。
在激光加热时,金属表面的预涂层中的水将逐步分解。
分解出的水分和空气及保护气中的水分可以在激光作用的高温区直接分解产生H 。
同时,涂层中的碳粉也会和金属氧化物发生氧化还原反应产生二氧化碳。
这些H 溶入过热的激光熔覆的熔池中,随后在熔池的冷却结晶过程中析出而形成气泡,这些气泡如不能上浮逸出则成为焊接气孔。
由于激光熔覆速度高,熔池的体积又很小,因此熔池的冷却结晶速度极快,不利于气泡的上浮逸出。
从冶金原理知道,对于一般熔覆火花,为防止产生气孔,可以从两方向着手:第一,限制氢溶入焊接熔池,或者减少氢的来源,或者减少氢与熔池的作用时间。
第二,尽量促使氢从熔池析出,即在熔池凝固之前使氢以气泡形式及时排出。
可以采取的办法:减少氢的来源即是彻底清除涂层中的水分,并加强对熔池的保护;减少熔池吸氢时间也就是减少熔池的存在时间,其中焊接速度是主要参数;对表面进行激光重熔处理。
产生裂纹的原因为工艺原因、显微组织因素和残余应力。
可以采取合适的办法降低裂纹的发生。
如选择合适的熔覆材料,使熔覆层内的残余应力降低;优化激光熔覆技术的工艺方法和参数;合理设计熔覆层等。
图2(a ,b )是应用不同的掺杂和工艺参数获得熔覆层的裂纹检测。
图2掺杂5%,10%合金。
HO H O H +→)(2汽2
CO M C O M y x +→+
图2 掺杂5%,10%合金粉末在不同功率下熔覆层裂纹检测
3、激光熔覆工艺参数与优化
脉冲激光可调参数较多,包括单脉冲能量、脉冲宽度、脉冲频率、光斑尺寸、光斑重叠率及激光扫描速度等,这些参数并不是孤立存在的,它们之间的关系以及对溶覆涂层质量的影响较复杂,因此在选择激光工艺参数时需综合考虑各参量,以获得满意的处理效果。
1.1激光工艺参数对熔覆层尺寸的影响
对工件表面进行激光溶覆处理后,表面粗糙度通常较大,因此在实际使用之前,往往需对工件表面进行磨抛处理,这就需要表面培覆层有一定的加工余量,以确保激光擦覆层在磨抛后仍有一定的强化深度。
脉冲激光培覆工艺参数中对溶覆层尺寸影响最大的是单脉冲能量、脉冲频率和激光扫描速度,因此应该对这几个工艺参数与强化层尺寸之间的关系进行研究,例如采用粉体材料是50%镍+50%纳米Al 2O 3,采用单道熔覆。
1.2激光工艺参数对溶覆层表面质量的影响
脉冲激光作用下的熔覆层是由多个脉冲重叠而成,因此与连续激光熔覆相比,培覆层表面的粗链度较高,这就导致培覆后需磨抛去除的厚度较大。
在激光溶覆过程中,应尽量减少磨抛去除厚度,增加表面光洁度。
脉冲激光的工艺参数较多,而影响表面光洁度的主要参数是激光扫描速度和脉冲频率。
脉冲频率与激光扫描)%(560)(323C O B WO Ni a +++)
%(1060)(323C O B WO Ni b +++
速度联合可以确定各个脉冲之间的重叠程度,将此定义为光斑重叠率。
光斑重叠率示意图如图1所示,计算公式如式(1)。
overlap=(1-Df
v )×100% (1) 式中,v 为激光扫描速度,D 为光斑直径,f 为脉冲频率。
由此可见,光斑重叠率能综合体现光斑尺寸、扫描速度与脉冲频率对培覆层表面质量的影响。
图1 光斑重叠率示意图
1.3激光工艺参数对裂纹的影响
1.3.1裂纹的形成的原因
由于激光熔覆典型的快速加热并急速冷却特性,如果熔覆层材料的选择与加工工艺参数的设定不当,则将在零件中形成裂纹,进而影响成形零件的质量。
目前裂纹的产生限制了激光熔覆技术应用范围的进一步拓展,所以有必要对裂纹进行深入的研究。
激光熔覆是一个包含物理、化学和冶金等复杂过程的一种加工工艺。
由于熔覆层材料与基体之间的热膨胀系数、导热系数、弹性模量、熔点等存在巨大的差异和激光熔覆本身所具有的独有特点 (急热骤冷),使得在熔覆层中形成内应力,而内应力是引起开裂的直接原因。
引发内应力的原因是由于热应力的产生,热应力主要是由熔覆过程中的温度梯度和热膨胀系数之差导致膨胀和收缩不均匀而引起的。
其计算公式为:v
T E T 21-∆∙∆∙-=ασ (1) 式中:E 为熔覆层的弹性模量;v 为熔覆层泊松比;α∆为熔覆层与基体的热膨胀系数差值; ∆T 为熔覆层温度与室温差值。
由式(1)可看出:熔覆层与基体的热膨胀系数差值是影响热应力的重要原因之一,所以选择和基体的热膨胀系数相差不大的熔覆合金是减小开裂敏感性的有效方法之一。
当内应力值超过材料的抗拉强度极限时,将会产生裂纹。
经试验观察裂纹大都起源于结合区,有些终止在溶覆层中间,有些贯穿到表
面。
由于所釆用光束为高斯分布,形成的堵覆层整体呈月牙形,中间部分的能量密度高,而两边的逐渐降低。
因此,裂纹主要产生在溶覆层中间部位。
激光熔覆过程中形成裂纹的原因有多种,热应力、组织应力和约束应力是产生激光熔覆裂纹的主要因素。
一般来说,当熔覆层中的瞬态热应力超过材料相应温度下的抗拉强度值时,裂纹萌生的可能性很大。
1.3.2激光工艺参数对裂纹的影响
脉冲激光熔覆的工艺参数较多,其中对溶覆层温度梯度影响最大即对熔覆层裂纹影响最大的参数有脉冲频率、脉冲宽度和激光扫描速度。
当脉冲频率从10 Hz 增加到40Hz时,相邻两道光斑的重叠率增加,从而导致熔覆层的温度梯度降低,熔覆层的开裂倾向减少。
而当频率继续升高到50Hz时,熔覆层出现较多裂纹,其原因在于输出激光的平均功率升高,输入到工件表面的热量增多,由于热输入增多带来的温度梯度变化超过了光斑重叠率增加带来的温度梯度变化,所以熔覆层出现了较多的裂纹。