(北师大版)初中数学《整式的乘法》参考教案1

合集下载

4整式的乘法第1课时-初中七年级下册数学(教案)(北师大版)

4整式的乘法第1课时-初中七年级下册数学(教案)(北师大版)
教师在教学中应针对以上难点,采用直观的图形演示、分步骤的讲解、互动式的问答等方法,帮助学生逐步突破难点。同时,设计适量的练习题,让学生在实际操作中加深理解,提高解题能力。通过反复练习和反馈,确保学生能够准确理解和掌握本节课的核心知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整式的乘法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将几个物品的个数相乘的情况?”(如购买水果时计算总价)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索整式乘法的奥秘。
本节课将结合具体实例,让学生在实际操作中掌握整式乘法的基本方法,培养他们的运算能力和逻辑思维能力。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的逻辑推理能力:通过整式乘法的学习,使学生能够运用数学语言和符号进行逻辑推理,理解数学概念之间的内在联系,提高解决问题的能力。
2.发展学生的数学建模素养:让学生在实际问题中运用整式乘法建立数学模型,培养他们从现实情境中抽象出数学问题,并用数学语言进行表达和分析的能力。
-合并同类项:在乘法运算过程中,学生容易忽视或错误处理含有相同字母的项的合并。
难点举例:在计算4x^2 * (x + 2x)时,学生可能会错误地将结果写为8x^3,而忽略了字母x的指数合并。
-系数与指数的正确处理:在计算过程中,学生可能会混淆系数的乘法与字母指数的加法。
难点举例:3x^2 * 4x中,学生可能会错误地将系数3和4相加,而将字母x的指数2和1相乘。
在学生小组讨论时,我尝试作为一个引导者,提出了一些开放性的问题。我发现这样的问题能够激发学生的思考,促使他们从不同角度去理解和应用整式乘法。但同时,我也发现部分学生在分享成果时表达不够清晰,可能是因为他们对知识的掌握还不够牢固。

北师大版数学七年级下册1.4《整式的乘法》说课稿1

北师大版数学七年级下册1.4《整式的乘法》说课稿1

北师大版数学七年级下册1.4《整式的乘法》说课稿1一. 教材分析《整式的乘法》是北师大版数学七年级下册第1.4节的内容,本节课的主要任务是让学生掌握整式乘法的基本运算方法。

整式乘法是代数学习的基础,也是后续学习多项式乘法、因式分解等知识的关键。

在本节课中,学生将通过具体的例子,学习如何进行整式的乘法运算,并理解其运算规律。

二. 学情分析面对七年级的学生,他们对整数四则运算已经有一定的基础,但对于代数式的运算还比较陌生。

因此,在教学过程中,我需要从学生的实际出发,引导他们从具体到抽象,逐步理解整式乘法的运算规律。

此外,学生的学习动机、学习习惯和学习能力各有不同,我需要在教学中关注每一个学生的个体差异,充分调动他们的学习积极性。

三. 说教学目标本节课的教学目标有三:1.让学生掌握整式乘法的基本运算方法,能够正确进行整式的乘法运算。

2.让学生理解整式乘法的运算规律,能够灵活运用所学知识解决实际问题。

3.培养学生的逻辑思维能力,提高他们的数学素养。

四. 说教学重难点本节课的重难点是整式乘法的运算方法和运算规律。

对于这部分内容,学生需要通过大量的练习,才能熟练掌握。

因此,在教学过程中,我需要合理安排练习题,引导学生通过自主学习、合作学习等方式,克服困难,掌握重难点。

五. 说教学方法与手段在本节课的教学中,我将采用“引导发现法”和“实践操作法”相结合的教学方法。

通过引导学生观察、思考、讨论,发现整式乘法的运算规律;同时,通过让学生亲自动手进行实践操作,加深他们对整式乘法的理解。

此外,我还将利用多媒体教学手段,为学生提供丰富的学习资源,激发他们的学习兴趣。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何进行整式的乘法运算。

2.新课讲解:通过具体的例子,讲解整式乘法的运算方法,引导学生发现运算规律。

3.练习巩固:安排一系列练习题,让学生亲自动手进行整式的乘法运算,巩固所学知识。

4.拓展延伸:引导学生思考如何将整式乘法应用到实际问题中,提高他们的应用能力。

北师大七年级数学教案-整式的乘法

北师大七年级数学教案-整式的乘法
整式的乘法(一)
教學內容
整式的乘法(一)
教學目標
知識與技能目標
1、經歷探索單項式與單項式相乘運算法則的過程,會進行單項式與單項式相乘的運算;
2、理解單項式與單項式相乘的算理,體會乘法交換律和結合律的作用和轉化的思想。
過程與方法目標
1、發展有條理的思考和語言表達能力;
2、培養學生轉化的數學思想。
情感與態度目標
mx2,
對一個問題的改進
四、誘向深入拓展思維
類似的,3a2b·2ab3,(xyz)·y2z可以表達得更簡單些麼?
以上所進行的正是單項式與單項式的 乘法運算,那麼如何來進行這樣的運算呢?
四、深入思考
3a3b4,xy3z2
1、係數與係數相乘
2、同底數冪與同底數冪相乘
3、其餘字母及其指數不變作為積的因式
進行更深入的探討,學會總結運算中的規律
一、參與回顧
同底數冪的乘法
冪的乘方與積的乘方
同底數冪的除法
溫故而知新
二、創設情境誘發主動
為支持將就申辦奧運會,一位畫家設計了一幅長6000米,名為“奧運龍”的宣傳畫,受他啟發,京京用兩張同樣的大小的紙精心製作了兩幅,第一幅畫的畫面大小與紙的大小相同,兩邊長分別為x米,mx米,第二幅的畫面在紙的上、下方各留有 的空白。
(1)第一幅畫的畫面面積是多少平方米?
(2)第二幅畫的畫面面積是多少平方米?
二、投入情境
(1)x·(mx)米2
(2) 米2
由生活中的具體問題引出數學問題。進一步加強學生的對數學的興趣
三、引入課題激發探究
想一想:
以上的答案是不是最簡?若不是,可以改進麼?如何改進?
三、主動探究
運用乘法交換律、乘法結合律、同底數冪的運算性質能得出:

数学北师大版七年级下册整式的乘法教学设计(--)

数学北师大版七年级下册整式的乘法教学设计(--)

整式的乘法教学设计(一)教学设计思想整式的乘法包括单项式乘单项式、单项式乘多项式和多项式乘多项式,故本节知识分三个课时进行教学。

学生是课堂的主体,要充分调动学生的积极性主动性,故教学时尽可能设计了学生积极探索、自主研讨的过程,引导学生自己概括出乘法的各个法则。

教学目标知识与技能:1.会进行单项式与单项式的乘法运算2.灵活运用单项式相乘的运算法则过程与方法:1.经历探索乘法运算法则的过程,体会乘法分配律的作用和转化思想2.感受运算法则和相应的几何模型之间的联系,发展数形结合的思想情感、态度与价值观:在学习中获得成就感,增强学好数学的能力和信心。

教学重难点重点:熟练地进行单项式的乘法运算难点:单项式的乘方与乘法的混合运算关键:明确混合运算中的运算顺序,熟练掌握幂的运算性质和单项式乘法法则教具准备投影仪、电脑课时安排1课时教学设计一、情景引入1.教师引导学生复习整式的有关概念整式的乘法实际上就是单项式×单项式、单项式×多项式、多项式×多项式教法说明:培养学生前后知识的连续性、一致性。

二、探索法则与应用1.组织讨论:完成P79试着做做的练习,引导学生分组讨论单项式×单项式的法则(组织学生积极讨论,教师应积极参与学生的讨论过程,并对不主动参与的同学进行指导。

)2.在学生发言的基础上,教师总结单项式的乘法法则并板书法则。

系数与系数相同字母与相同字母单独存在的字母以上3点的处理办法,并让学生归纳解题步骤。

(学生刚接触,故要求学生按步骤解题,且提醒学生不能漏项。

)3.例题讲解例1 计算:(强调法则的运用)4.练习:随堂练习P80.1题口答,学生讲解错误的理由,2题学生板书,发现问题及时纠正,可让学生辨析、指出错误,巩固法则。

三、课堂总结指导学生总结本节课的知识点、学习过程等的自我评价。

(可畅所欲言,包括学习心得和困惑,互相帮助,互相促进。

教师要鼓励学生发言,锻炼他们的语言表达能力。

七年级数学下册《整式的乘法》教案 北师大版

七年级数学下册《整式的乘法》教案 北师大版

§1.6 整式的乘法(一)备课时间:第一周 上课时间 :第三周知识与技能目标经历探索单项式与单项式相乘运算法则的过程,会进行单项式与单项式相乘的运算;理解单项式与单项式相乘的算理,体会乘法交换律和结合律的作用和转化的思想。

过程与方法目标发展有条理的思考和语言表达能力;培养学生转化的数学思想。

情感与态度目标在探索单项式与单项式相乘的过程中,利用乘法的运算律将问题转化,使学生从中获得成就感,培养学习数学的兴趣。

教学重点:单项式与单项式相乘的运算法则及其应用。

教学难点:灵活地进行单项式与单项式相乘的运算。

教学过程一、引导回顾同底数幂的乘法幂的乘方与积的乘方同底数幂的除法二、创设情境支持将就申办奥运会,一位画家设计了一幅长6000米,名为“奥运龙”的宣传画,受他启发,京京用两张同样的大小的纸精心制作了两幅,第一幅画的画面大小与纸的大小相同,两边长分别为x 米,mx 米,第二幅的画面在纸的上、下方各留有x 81的空白。

(1)第一幅画的画面面积是多少平方米?(2)第二幅画的画面面积是多少平方米?三、引入课题想一想:以上的答案是不是最简?若不是,可以改进么?如何改进?运用乘法交换律、乘法结合律、同底数幂的运算性质能得出:mx 2 ,243mx 四、诱向深入 拓展思维类似的,3a 2b·2ab 3,(xyz)·y 2z 可以表达得更简单些么?以上所进行的正是单项式与单项式的 乘法运算,那么如何来进行这样的运算呢?3a 3b 4 ,xy 3z 2 法则:系数与系数相乘、同底数幂与同底数幂相乘、其余字母及其指数不变作为积的因式例1(1)()⎪⎭⎫ ⎝⎛⋅y x xy 22312 (2))3()2(23b b a -⋅-(3))105)(103(35⨯⨯注意点:任何一个因式都不可丢掉;结果仍是单项式;要注意运算顺序。

课堂小结学生完成教师适当补充布置作业:A 组:随堂练习 习题 练习册B 组:随堂练习C 组:背法则教学反思:在探究法则的过程中设置循序渐进的问题,不断启迪学生思考,发展学生的思维能力,在应用法则的过程中,又引导学生进行解题后的反思,这些将促使学生知识水平和能力水平同时提高§1.6 整式的乘法(二)备课时间:第一周 上课时间 :第三周知识与技能目标过程与方法目标情感与态度目标教学过程一、复习引入(1) (1) 22m m ∙- (2) 23)()(xy xy ∙ (3) 2(ab -3)(4)-3(ab 2c+2bc -c) (5)(―2a 3b)∙(―6ab 6c) (6) (2xy 2)∙3y x 二:探索新知: 展示图画,让学生观察图画用不同的形式表示图画的面积.并做比较.由此得到单项式与多项式的乘法法则。

(北师大版)初中数学《整式的乘法》教案

(北师大版)初中数学《整式的乘法》教案

整式的乘法(一)单项式与单项式相乘一、教学目标:1、在具体情境中了解单项式乘法的意义;2、理解单项式乘法法则;3、会利用法则进行单项式的乘法运算。

二、过程与方法二、教学重点、难点重点:单项式乘法法则及其应用。

难点:理解运算法则及其探索过程。

三、教学设计(一)创设情境探求新知一、问题引入:1、现有长为x米,宽为a米的矩形,其面积为平方米。

2、长为x米,宽为2a米的矩形,面积为平方米。

3、长为2x米,宽为3a米的矩形,面积为平方米。

教师活动学生活动在这里,求矩形的面积,会遇到,32,2,axaxxa⋅⋅⋅这是什么运算呢?因式都是单项式,它们相乘,是单项式与单项式相乘。

二、探索单项式乘单项式的运算法则:对于引例中的问题,我们可以借助于图示帮助得出结果。

axxa=⋅)1(axax22)2(=⋅axax632)3(=⋅(二)运用新知体验成功例1:计算:)31()2)(1(2xy xy ⋅ )3()2)(2(32a b a -⋅-)105()104)(3(45⨯⨯⨯52322)()3)(4(b a b a -⋅-)1()3()2)(5(2532c ab c bc a ⋅-⋅- 课堂练习:1、计算:)4(23)1(23ab a ⋅ )32()3)(2(22xyz y x -⋅- )54()83(31)3(322bc a ac c ab -⋅-⋅ 2、一个长方体形储货仓长为4×103㎝,宽为3×103㎝,高为5×102㎝,求这个货仓的体积。

3、讨论、探究:。

n m ,b a b a )b (a n n m 的值求若+=⋅⋅-++351221)(四、小结:利用乘法交换律和综合律及同底数幂的乘法探索出单项式乘以单项式的运算法则。

五、课后作业:P28 习题1。

初中数学(北师大版)七年级-整式的乘法_教学设计_教案_1(课件免费下载)

初中数学(北师大版)七年级-整式的乘法_教学设计_教案_1(课件免费下载)

教学准备1. 教学目标经历探索整式的乘法运算法则的过程,会进行简单的整式的乘法运算.2. 教学重点/难点重点:整式的乘法运算.难点:推测整式乘法的运算法则.3. 教学用具课件4. 标签整式的乘法教学过程一、预习(1)预习书P14-15.(2)思考:单项式与多项式相乘最容易出错的是哪点?二、学习过程:1.我们本单元学习整式的乘法,整式包括什么?2.什么是多项式?怎么理解多项式的项数和次数?整式乘法除了我们上节课学习的单项式乘以单项式外,还应该有单项式乘以多项式,今天将学习单项式与多项式相乘.做一做:如图所示,公园中有一块长mx米、宽y米的空地,根据需要在两边各留下宽为a米、b米的两条小路,其余部分种植花草,求种植花草部分的面积.(1)你是怎样列式表示种植花草部分的面积的?是否有不同的表示方法?其中包含了什么运算?方法一:可以先表示出种植花草部分的长与宽,由此得到种植花草部分面积为.方法二:可以用总面积减去两条小路的面积,得到种植花草部分面积为.由上面的探索,我们得到了.上面等式从左到右运用了乘法分配律,将单项式乘以多项式转化为单项式乘以单项式、单项式与多项式相乘:就是根据分配律用单项式去乘多项式的每一项再把所得的积相加.例1.计算:练习:拓展:3.已知有理数a、b、c满足|a―b―3|+(b+1)2+|c-1|=0,求(-3ab)•(a2c-6b2c)的值.4.已知:2x•(xn+2)=2xn+1-4,求x的值.5.若a3(3an-2am+4ak)=3a9-2a6+4a4,求-3k2(n3mk+2km2)的值.三、回顾小结:单项式和多项式相乘,就是根据分配律用单项式去多乘多项式的每一项,再把所得的积相加.课堂小结学了这节课,你有什么收获?课后习题完成课后练习题。

板书整式的乘法。

七年级数学下册第一章整式的乘除1.4整式的乘法1教案新版北师大版

七年级数学下册第一章整式的乘除1.4整式的乘法1教案新版北师大版

七年级数学下册第一章整式的乘除1.4整式的乘法1教案新版北师大版一. 教材分析本节课主要讲解整式的乘法,是学生在掌握了整式的加减法、乘除法的基础上进行学习的。

整式的乘法是初中学历中非常重要的一部分,也是后续学习更复杂数学知识的基础。

本节课通过具体的例子引导学生掌握整式乘法的方法和技巧,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了整式的加减法,对整式的概念有一定的了解。

但是,对于整式的乘法,学生可能还存在着一些困难和模糊的地方。

因此,在教学过程中,需要通过具体的例子和讲解,帮助学生理解和掌握整式的乘法。

三. 教学目标1.知识与技能:使学生掌握整式的乘法,能够熟练地进行整式的乘法运算。

2.过程与方法:通过具体的例子和讲解,引导学生理解和掌握整式的乘法,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和积极进取的精神。

四. 教学重难点1.重点:整式的乘法的方法和技巧。

2.难点:整式乘法中的一些特殊情况和高阶整式的乘法。

五. 教学方法采用讲解法、例题演示法、练习法、小组合作学习法等,通过具体的例子和讲解,引导学生理解和掌握整式的乘法。

六. 教学准备1.准备相关的例题和习题。

2.准备多媒体教学设备,用于展示例题和讲解。

七. 教学过程1.导入(5分钟)通过一个简单的例子,引导学生复习整式的加减法,为新课的学习做好铺垫。

2.呈现(10分钟)展示整式的乘法的定义和规则,通过讲解和演示,使学生理解和掌握整式的乘法。

3.操练(10分钟)让学生进行一些整式乘法的练习,巩固所学知识,并发现和解决一些问题。

4.巩固(10分钟)对整式的乘法进行总结和巩固,使学生能够熟练地进行整式的乘法运算。

5.拓展(10分钟)引导学生思考和探索一些整式乘法的特殊情况和高阶整式的乘法,培养学生的逻辑思维能力和解决问题的能力。

6.小结(5分钟)对本节课的学习内容进行小结,使学生对整式的乘法有一个清晰的认识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.6 整式的乘法(一)●教学目标(一)教学知识点1.经历探索单项式与单项式相乘的运算法则的过程,会进行单项式与单项式相乘的运算.2.理解单项式与单项式相乘的算理,体会乘法交换律和结合律的作用和转化的思想.(二)能力训练要求1.发展有条理的思考和语言表达能力.2.培养学生转化的数学思想.(三)情感与价值观要求在探索单项式与单项式相乘的过程中,利用乘法的运算律将问题转化,使学生从中获得成就感,培养学习数学的兴趣.●教学重点单项式与单项式相乘的运算法则及其应用.●教学难点灵活地进行单项式与单项式相乘的运算.●教学方法引导——发现法●教具准备投影片四张第一张:问题情景,记作(§1.6.1 A)第二张:想一想,记作(§1.6.1 B)第三张:例题,记作(§1.6.1 C)第四张:练习,记作(§1.6.1 D)●教学过程Ⅰ.创设问题情景,引入新课[师]整式的运算我们在前面学习过了它的加减运算,还记得整式的加减法是如何运算的吗?[生]如果遇到有括号,利用去括号法则先去括号,然后再根据合并同类项法则合并同类项.[师]很棒!其实整式的运算就像数的运算,除了加减法,还应有整式的乘法,整式的除法.下面我们先来看投影片§1.6.1 A 中的问题:为支持北京申办2008年奥运会,一位画家设计了一幅长6000米、名为“奥运龙”的宣传画.受他的启发,京京用两张同样大小的纸,精心制作了两幅画,如图1-16所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有81x 米的空白.图1-16(1)第一幅画的画面面积是 米2; (2)第二幅画的画面面积是 米2.[生]从图形我们可以读出条件,第一个画面的长、宽分别为x 米,mx 米;第二个画面的长、宽分别为mx 米、(x -81x -81x)即43x 米.因此,第一幅画的画面面积是x·(mx)米2;第二幅画的画面面积是(mx)·(43x)米2.[师]我们一起来看这两个运算:x·(mx),(mx)·(43x).这是什么样的运算.[生]x,mx,43x 都是单项式,它们相乘是单项式与单项式相乘.[师]大家都知道整式包括单项式和多项式,从这节课开始我们就来研究整式的乘法.我们先来学习单项式与单项式相乘.Ⅱ.运用乘法的交换律、结合律和同底数幂乘法的运算性质等知识,探索单项式与单项式相乘的运算法则出示投影片(§1.6.1 B)想一想:(1)对于上面的问题小明也得到如下的结果:第一幅画的画面面积是x·(mx)米2;3x)米2.第二幅画的画面面积是(mx)·(4可以表达的更简单些吗?说说你的理由.(2)类似地,3a2b·2ab3和(xyz)·y2z可以表达得更简单些吗?为什么?(3)如何进行单项式与单项式相乘的运算?[师]我们来看“想一想”中的三个问题.[生]我认为这两幅画的画面面积可以表达的更简单些.x·(mx)=m·(x·x)——乘法交换律、结合律=mx2——同底数幂乘法运算性质3x)(mx)·(43m)(x·x)——乘法交换律、结合律=(43mx2——同底数幂乘法运算性质=4[生]类似地,3a2b·2ab3和(xyz)·y2z也可以表达得更简单些.3a2b·2ab3=(3×2)·(a2·a)·(b·b3)——乘法交换律、结合律=6a3b4——同底数幂乘法运算性质(xyz)·y2z=x·(y·y2)·(z·z)——乘法交换律、结合律=xy3z2——同底数幂乘法的运算性质[师]很棒!这两位同学恰当地运用了乘法交换律、结合律以及同底数幂乘法的运算性质将这几个单项式与单项式相乘的结果化成最简.在(1)(2)的基础上,你能用自己的语言描述总结出单项式与单项式相乘的运算法则吗?你们一定做得会更棒.[生]单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式.[师]我们接下来就用这个法则去做几个题,出示投影片(§1.6.1 C) [例1]计算: (1)(2xy 2)·(31xy);(2)(-2a 2b 3)·(-3a); (3)(4×105)·(5×104); (4)(-3a 2b 3)2·(-a 3b 2)5; (5)(-32a 2bc 3)·(-43c 5)·(31ab 2c).解:(1)(2xy 2)·(31xy)=(2×31)·(x·x)(y 2·y)=32x 2y 3;(2)(-2a 2b 3)·(-3a)=[(-2)·(-3)](a 2a)·b 3=6a 3b 3; (3)(4×105)·(5×104)=(4×5)·(105×104)=20×109=2×1010; (4)(-3a 2b 3)2·(-a 3b 2)5=[(-3)2(a 2)2(b 3)2]·[(-1)5(a 3)5(b 2)5] =(9a 4b 6)·(a 15b 10) =9·(a 4·a 15)·(b 6·b 10) =9a 19b 16;(5)(-32a 2bc 3)·(-43c 5)·(31ab 2c)=[(-32)×(-43)×(31)]·(a 2·a)(b·b 2)(c 3·c 5·c)=61a 3b 3c 9[师生共析]单项式与单项式相乘的乘法法则在运用时要注意以下几点: 1.积的系数等于各因式系数的积,先确定符号,再计算绝对值.这时容易出现的错误是,将系数相乘与指数相加混淆,如2a 3·3a 2=6a 5,而不要认为是6a 6或5a 5.2.相同字母的幂相乘,运用同底数幂的乘法运算性质.3.只在一个单项式里含有的字母,要连同它的指数作为积的一个因式.4.单项式乘法法则对于三个以上的单项式相乘同样适用.5.单项式乘以单项式,结果仍是一个单项式.Ⅲ.练习,熟悉单项式与单项式相乘的运算法则,及每一步运算的算理 出示投影片(§1.6.1 D)1.计算:(1)(5x3)·(2x2y);(3)(-3ab)·(-4b2);(3)(2x2y)3·(-4xy2).2.一种电子计算机每秒可做4×109次运算,它工作5×102秒,可做多少次运算?(由几位同学板演,最后师生共同讲评)1.解:(1)(5x3)·(2x2y)=(5×2)(x3·x2)·y=10x3+2y=10x5y;(2)(-3ab)·(-4b2)=[(-3)×(-4)]a·(b·b2)=12ab3;(3)(2x2y)3·(-4xy2)=[23(x2)3·y3]·(-4xy2)=(8x6y3)·(-4xy2)=[8×(-4)]·(x6·x)(y3·y2)=-32x7y52.解:(4×109)×(5×102)=(4×5)×(109×102)=20×1011=2×1012(次)答:工作5×102秒,可做2×1012次运算.Ⅳ.课时小结这节课我们利用乘法交换律和结合律及同底数幂乘法的法则探索出单项式相乘的运算法则,并能熟练地运用.Ⅴ.课后作业课本习题1.8,第1、2题.Ⅵ.活动与探究若(a m+1b n+2)·(a2n-1b2m)=a5b3,则m+n的值为多少?[过程]根据单项式乘法的法则,可建立关于m,n的方程,即(a m+1b n+2)·(a2n -1b2m)=(a m+1·a2n-1)·(b n+2·b2m)=a2n+m b2m+n+2=a5b3,所以2n+m=5①,2m+n+2=3即2m+n=1②,观察①②方程的特点,很容易就可求出m+n.[结果]根据题意,得2n+m=5①,2m+n=1②,①+②得3n+3m=6,3(m+n)=6,所以m+n=2.●板书设计§1.5 整式的乘法(一)——单项式与单项式相乘问题:如何将x·(mx);(mx)·(43x)化成最简?探索:x·(mx)=m·(x·x)——乘法交换律、结合律 =mx 2——同底数幂乘法运算性质(mx)·(43x)=(43m)·(x·x)——乘法交换律、结合律=43mx 2——同底数幂乘法运算性质类似地,3a 2b·2ab 3=(3×2)(a 2·a)(b·b 3)=6a 3b 4; (xyz)·y 2z=x·(y·y 2)(z·z)=xy 3z 2.归纳:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.例题:例1.(师生共析)练习:(学生板演,师生共同讲评) ●备课资料有趣的“3x+1问题”现有两个代数式:3x+1①21x②如果随意给出一个正整数x,那么我们都可以根据代数式①或②求出一个对应值.我们约定:若正整数x 为奇数,我们就根据①式求出对应值;若正整数x 为偶数,我们就根据②式求出对应值.例如,根据这种规则,若取正整数x 为18(偶数),则由②式求得对应值为9;而9是奇数,由①式求得对应值为28;同样正整数28(偶数)对应14……我们感兴趣的是,从某一个正整数出发,不断地这样对应下去,会是一个什么样的结果呢?也许这是一个非常吸引人的数学游戏.下面我们以正整数18为例,不断地做下去,如a 所示,最后竟出现了一个循环:4,2,1,4,2,1…再取一个奇数试试看,比如取x为21,如b所示,结果是一样的——仍然是一个同样的循环.大家可以随意再取一些正整数试一试,结果一定同样奇妙——最后总是落入4,2,1的“黑洞”,有人把这个游戏称为“3x+1问题”.是不是从所有的正整数出发,最后都落入4,2,1的“黑洞”中呢?有人借助计算机试遍了从1到7×10的所有正整数,结果都是成立的.遗憾的是,这个结论至今还没有人给出数学证明(因为“验证”得再多,也是有限多个,不可能把正整数全部“验证”完毕).这种现象是否可以推广到整数范围?大家不妨取几个负整数或0再试一试.。

相关文档
最新文档