激光原理习题
激光原理习题

第一章:激光的基本原理1. 为使He-Ne激光器的相干长度达到1km,它的单色性/ o应是多少?2. 设一对激光能级为E2和E i(f i=f2),相应的频率为v(波长为),能级上的粒子数密度分别为n2和n i,求:(a) 当v=3000MHz,T=300K 时,n2/n1=?(b) 当=i m,T=300K 时,n2/n i=?(c) 当=1 m,n2/n i=0.1 时,温度T=?3. 设一对激光能级为E2和E1(f1=f2),相应的频率为(波长为入),能级上的粒子数密度分别为n1和n2,求(a)当尸3000Mhz,T=300K 时,n2/n1=?(b)当/=1um,T=300K 时,,n亦1=?(c)当?=1um, ,n2/n1=0.1 时,温度T=?4. 在红宝石Q 调制激光器中,有可能将几乎全部Cr+3离子激发到激光上能级并产生激光巨脉冲。
设红宝石棒直径1cm,长度7.5cm,Cr+3离子浓度为2X 1019cm-3, 巨型脉冲宽度为10ns,求输出激光的最大能量和脉冲功率。
5. 试证明,由于自发辐射,原子在E2能级的平均寿命t s=1/A21。
6. 某一分子的能级E4 到三个较低能级E1,E2 和E3 的自发跃迁几率分别是A43=5*107S-1,A42=1*107S-1和A41=3*107S-1,试求该分子能级的自发辐射寿命T。
若T=5*107S-1 , T=6*10-9S,T=1*10-8S在对E4连续激发并达到稳态时,试求相应能级上的粒子数比值n1/n4, n2/n4,n3/n4,并回答这时在哪两个能级间实现了集居数反转。
7. 证明当每个膜内的平均光子数(光子简并度)大于 1 时,辐射光中受激辐射占优势。
8. (1) 一质地均匀的材料对光的吸收系数为0.01mm-1,光通过10cm长的该材料后,出射光强为入射光强的百分之几?( 2)一光束通过长度为1m 的均匀激励的工作物质,如果出射光强是入射光强的两倍,试求该物质的增益系数。
激光原理课后习题

激光原理课后习题第1章习题1. 简述激光器的基本结构及各部分的作用。
2. 从能级跃迁角度分析,激光是受激辐射的光经放大后输出的光。
但是在工作物质中,自发辐射、受激辐射和受激吸收三个过程是同时存在的,使受激辐射占优势的条件是什么?采取什么措施能满足该条件?3. 叙述激光与普通光的区别,并从物理本质上阐明造成这一区别的原因。
4. 什么是粒子数反转分布?如何实现粒子数反转分布?5. 由两个反射镜组成的稳定光学谐振腔腔长为m,腔内振荡光的中心波长为 nm,求该光的单色性/的近似值。
6. 为使He-Ne激光器的相干长度达到1 km,它的单色性/应是多少?7. 在2cm3的空腔内存在着带宽为 nm,波长为m的自发辐射光。
试问:(1)此光的频带范围是多少?(2)在此频带范围内,腔内存在的模式数是多少?(3)一个自发辐射光子出现在某一模式的几率是多少?8. 设一光子的波长为510-1 m,单色性/=10-7,试求光子位置的不确定量x。
若光子波长变为510-4 m(X射线)和510-8 m(射线),则相应的x又是多少?9. 设一对激光(或微波辐射)能级为E2和E1,两能级的简并度相同,即g1=g2,两能级间跃迁频率为(相应的波长为),能级上的粒子数密度分别为n2和n1。
试求在热平衡时:(1)当=3000 MHz,T=300 K时,n2/n1=?(2)当=1 m,T=300 K时,n2/n1=?(3)当=1 m,n2/n1=时,T=?为1kHz,输出功率P为1 mW的单模He-Ne 10. 有一台输出波长为 nm,线宽s为1 mrad,试问:激光器,如果输出光束直径为1 mm,发散角(1)每秒发出的光子数目N 0是多少?(2)该激光束的单色亮度是多少?(提示,单模激光束的单色亮度为20)(πθννs A PB ?=) 11. 在2cm 3的空腔内存在着带宽为110-4 m ,波长为510-1 m 的自发辐射光。
试问:(1)此光的频带范围是多少?(2)在此频带宽度范围内,腔内存在的模式数是多少?(3)一个自发辐射光子出现在某一模式的几率是多少?第2章习题1. 均匀加宽和非均匀加宽的本质区别是什么?2. 为什么原子(分子,离子)在能级上的有限寿命会造成谱线加宽?从量子理论出发,阐明当下能级不是基态时,自然线宽不仅和上能级的自发辐射寿命有关,而且和下能级的自发辐射寿命有关,并给出谱线宽度与激光上、下能级寿命的关系式。
激光原理习题宝典

n2 n1
=
exp
−
6.62610−34 3109 1.3810−23 300
1
(b) 当 λ=1μm ,T=300K 时:
n2 n1
=
exp
−
6.626 10−34 3 1.38 10−23 10−6
108 300
0
(c) 当 λ=1μm , n2 / n1 = 0.1 时:
(b) 当 λ=1μm ,T=300K 时, n2 / n1 = ?
(c) 当 λ=1μm , n2 / n1 = 0.1 时,温度 T=?
解:当物质处于热平衡状态时,各能级上的粒子数服从波尔兹曼统计分布:
n2 n1
=
exp
−
(E2 − E1 KT
)
=
exp
−
h KT
=
exp
−
hc KT
(a) 当 ν=3000MHz ,T=300K 时:
证:受激辐射跃迁几率为W21 = B21
受激辐射跃迁几率与自发辐射跃迁机率之比为 黑体辐射公式:
W21 = B21 = A21 A21 n h
v
8 hv3
=
c3
exp
1 hv
= nv nhv n −1
= exp
1 hv
= −1
v 8 hv3
kbT
kbT
c3
式中, / n 表示每个模式内的平均能量,因此 / (n h ) 即表示每个模式内的 平均光子数,因此当每个模式内的平均光子数大于 1 时,受激辐射跃迁机率大于 自发辐射跃迁机率,即辐射光中受激辐射占优势。
=500nm 时:
n=2.5 1018s-1
=3000MHz 时:光能级为 E2 和 E1 ( f2 = f1 ),相应的频率为 (波长为 λ ),能级上的
激光原理习题答案

激光原理习题答案激光是一种特殊的光源,它具有高度的单色性、相干性、方向性和亮度。
激光的产生基于受激辐射原理,即当原子或分子被激发到高能级状态后,受到外部光子的激发,以相同的频率、相位和方向释放出光子。
以下是一些激光原理习题的答案:1. 激光的产生条件:- 粒子数反转:在激光介质中,高能级上的粒子数必须大于低能级上的粒子数。
- 光学谐振腔:激光器内部需要有一个反射镜和一个半反射镜构成的谐振腔,以形成反馈机制。
2. 激光的分类:- 固体激光器:如红宝石激光器、Nd:YAG激光器等。
- 气体激光器:如氦氖激光器、CO2激光器等。
- 半导体激光器:也称为激光二极管,广泛应用于通信和数据存储。
3. 激光的特性:- 单色性:激光的波长非常窄,颜色非常纯净。
- 相干性:激光的光波具有相同的频率和相位。
- 方向性:激光束具有很好的方向性,发散角很小。
4. 激光的应用:- 医学:用于手术切割、治疗等。
- 工业:用于材料加工,如焊接、切割、打标等。
- 通信:光纤通信中使用激光作为信号载体。
5. 激光的安全问题:- 激光可能对眼睛造成损伤,使用时应采取适当的防护措施。
- 激光器应按照安全等级分类,并遵守相应的操作规程。
6. 激光器的工作原理:- 泵浦源提供能量,将介质中的粒子激发到高能级。
- 高能级粒子在受到外部光子的激发下,通过受激辐射释放出光子。
- 释放的光子在谐振腔中来回反射,不断被放大,最终形成激光束输出。
7. 激光的调制和调Q技术:- 调制:通过改变激光的参数(如频率、强度)来传输信息。
- 调Q:通过改变谐振腔的品质因数,实现激光脉冲的压缩和放大。
8. 激光的光谱特性:- 激光的光谱非常窄,通常用线宽来描述。
- 线宽越窄,激光的单色性越好。
9. 激光的相干长度:- 相干长度是激光在保持相干性的情况下能够传播的最大距离。
10. 激光的发散角:- 发散角是激光束在传播过程中的扩散程度,与激光的模式有关。
以上是一些基本的激光原理习题答案,希望能够帮助理解激光的基本原理和特性。
激光原理例题

例1 由凸面镜和凹面镜组成的球面腔,如果凸面镜曲率半径为2米,凹面镜曲率半径为3米,腔长L 为1米,腔内介质折射率为1,此球面镜腔是何种腔(稳定腔、临界腔、非稳腔)?。
当腔内插入一块长为0.5米,折射率2η=的其它透明介质时(介质两端面垂直于腔轴线),此时谐振腔为何种腔(稳定腔、非稳腔、临界腔)?解:设凸面镜与凹面镜曲率半径分别为R 1和R 2,当腔内未插入其它透明介质时12111111123L L R R −−=−−= − 即121g g =,该腔为临界腔。
当腔内插入其它介质时,设该介质的长度为l ,该介质左右两边剩余的腔内长度分别为1l 和2l ,则12l l l L ++=。
设此时的等效腔长为'L ,则212111'11011010101001010101l l l L l l l ηηη ++ == ()120.5m 3'0.5m m 24l l L l l L l ηη=++=−+=+= 1212''343433*********L L g g R R =−−=−−=> − 此时腔为非稳腔。
例2 如图所示谐振腔:(1) 画出其等效透镜序列。
如果光线从薄透镜右侧开始,反时针传播,标出光线的一个往返传输周期;(2) 求当/d F (F 是透镜焦距)满足什么条件时, 谐振腔为稳定腔;(3) 指出光腰位置(不用计算)。
解:(1) 该谐振腔的等效透镜序列如图2.5所示。
图2.5(2) 列出光在该谐振腔中传输一个周期的变换矩阵1013131/1011/3/1A B d d T C D F F d F === −−−+由稳定性条件可得3113111222d A D d F F−++<==−< 由上式可得谐振腔稳定时,应满足 403d F << (3) 此腔可等效为对称球面镜腔,其光腰应位于该等效腔的中心,因此光腰位置在上方平面镜表面处。
激光原理习题-问答精选全文完整版

10、什么是频率牵引?
12、高阶高斯光束有哪些?
13、什么是一般稳定球面腔与共焦腔的等价性?
14、如何计算一般稳定球面腔的主要参量?
15、什么是腔的菲涅耳数?它与腔的损耗有什么关系?
16、高斯光束的表征方法有哪些?什么是q参数?
17、高斯光束q参数的变换规律是什么?
18、什么是高斯光束的自再现变换?
19、高斯光束的自再现变换与稳定球面腔有什么关系物理基础是什么?
9.描述能级的光学跃迁的三大过程,并写出它们的特征和跃迁几率。
10、Einstein系数有哪些?他们之间的关系是什么?
11、什么是热平衡时能级粒子数的分布?
12、产生激光的必要条件是什么?
13、什么是粒子数反转?如何实现粒子数反转?
14、如何定义激光增益?什么是小信号增益?什么是增益饱和?(可结合第三章内容)
7.分析三能级和四能级系统中粒子在各能级之间的跃迁过程,并写出速率方程。
8.说明均匀加宽和非均匀加宽工作物质中增益饱和的机理,并写出激光增益的表达式。
9.饱和光强有什么含义?怎么定义的?
10、什么是小信号增益、大信号增益?
11、在强光入射下,均匀加宽和非均匀加宽工作物质中,弱光的增益系数如何变化?
12、描述非均匀加宽工作物质中增益饱和的“烧孔效应”,并说明原理。
15、什么是自激振荡?产生激光振荡的条件是什么?
16、如何理解激光的空间相干性与方向性?如何理解激光的时间相干性?如何理解激
光的相干光强?
第二章
开放式光腔与高斯光束
1.什么是谐振腔的谐振条件?
2.如何计算纵模的频率、纵模间隔和纵模的数目?
3.在激光谐振腔中有哪些损耗因素?
激光原理课后习题-陈鹤鸣-赵新彦精选全文完整版

1.3 什么是时间相干性和空间相干性?怎样定义相干时间和相干长度?时间相干性:光场中同一空间点在不同时刻光波场之间的相干性,描述的是光束传播方向上的各点的相位关系,与光束单色性密切相关。
空间相干性:光场中不同的空间点在同一时刻的光场的相干性,描述的是垂直于光束传播方向的平面上各点之间的相位关系,与光束方向性密切相关。
相干时间t c,即光传播方向上某点处可以使不时刻光波场之间有相干性的最大时间间隔。
相干长度L c指的是可以使光传播方向上两个不同点处的光波场具有相干性的最大空间间隔。
二者实质上是相同的。
L c=t c∙c=C∆ν1.4 为使He-Ne激光器的相干长度达到1Km,它的单色性∆λ/λ0应是多少?L c=C∆ν⁄=1Km ∆ν=3×105Hz∆λλ0=∆νν0=∆νc∙λ0=6.328×10−112.3 如果激光器和微波激射器分别在λ=10μm、λ=500nm和ν=3000MHz输出1W连续功率,问每秒从激光上能级向下能级跃迁的粒子数是多少?W=Pt=nhν当λ=10μm时, ν=cλ=3×1013Hz n=5.03×1019当λ=500nm时,ν=cλ=6×1014Hz n=2.51×1018当ν=3000MHz时,n=5.03×10232.4 设一对激光能级为E2和E1(f2=f1),相应频率为ν(波长为λ),能级上的粒子数密度分别为n2和n1,求:(1)当ν=3000MHz,T=300K时n2n1⁄=?(2)当λ=1μm,T=300K时n2n1⁄=?(3)当λ=1μm,n2n1⁄=0.1时,温度T=?(1)E2−E1=hν=1.99×10−24 J k b=1.38×10−23J K⁄n2 n1=f2f1e−(E2−E1)k b T=0.9995(2)同理得n2n1⁄=1.4×10−21(3)同理得T =6.26×103K2.10 激光在0.2m 长的增益介质中往复运动的过程中,其强度增加了30%。
激光原理复习题(含参考答案)

激光原理复习题(含参考答案)1. 自发辐射爱因斯坦系数与激发态E2平均寿命τ的关系为(B)2. 爱因斯坦系数A21和B21之间的关系为( C)3. 自然增宽谱线为(C)(A)高斯线型(B)抛物线型(C)洛仑兹线型(D)双曲线型4. 对称共焦腔在稳定图上的坐标为( B )(A)(-1,-1)(B)(0,0)(C)(1,1)(D)(0,1)5. 阈值条件是形成激光的(C)(A)充分条件(B)必要条件(C)充分必要条件(D)不确定6. 谐振腔的纵模间隔为( B )7. 对称共焦腔基模的远场发散角为(C)8. 谐振腔的品质因数Q衡量腔的( C )(A)质量优劣(B)稳定性(C)储存信号的能力(D)抗干扰性9. 锁模激光器通常可获得( A)量级短脉冲10. YAG激光器是典型的(C)系统(A)二能级(B)三能级(C)四能级(D)多能级11. 任何一个共焦腔与无穷多个稳定球面腔等价,而任何一个满足稳定条件的球面腔唯一地等价于一个共焦腔。
12. 激光器的基本结构包括三部分,即工作物质、激励物质光学谐振腔。
13. 有一个谐振腔,腔长L=1m,在1500MHz的范围内所包含的纵模个数为10 个(设μ=1)。
14. 激光的特点是相干性强、单色性佳、方向性好高亮度。
15 调Q 技术产生激光脉冲主要有 、 两种方法,调Q 激光器通常可获得ns 量级短脉冲,锁模有 和 两种锁模方式。
锁模 、 调Q 主动锁模 被动锁模16. 受激辐射激励发射出的光子与外来光完全相同,即 , , , 。
传播方向相同,相位相同,偏振态相同,频率相同17写出光与物质相互作用的爱因斯坦关系式,说明其物理含义。
答:(1)自发辐射跃迁几率2121211sp s dn A dt n τ⎛⎫== ⎪⎝⎭,表示了单位时间内从高能级向低能级跃迁的原子数与高能级原有粒子数的比例。
(2)受激吸收跃迁几率121211st dn W dt n ⎛⎫= ⎪⎝⎭,表示单位时间内由于受激跃迁引起的由低能级向高能级跃迁的原子数和低能级原子数的比例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章:激光的基本原理1.为使He-Ne激光器的相干长度达到1km,它的单色性∆λ/λ0应是多少?2.设一对激光能级为E2和E1(f1=f2),相应的频率为v(波长为λ),能级上的粒子数密度分别为n2和n1,求:(a)当v=3000MHz,T=300K时,n2/n1=?(b)当λ=1μm,T=300K时,n2/n1=?(c)当λ=1μm,n2/n1=0.1时,温度T=?3.设一对激光能级为E2和E1(f1=f2),相应的频率为ν(波长为λ),能级上的粒子数密度分别为n1和n2,求(a)当ν=3000Mhz,T=300K时,n2/n1=?(b)当λ=1um,T=300K时, ,n2/n1=?(c)当λ=1um, ,n2/n1=0.1时,温度T=?4.在红宝石Q调制激光器中,有可能将几乎全部Cr+3离子激发到激光上能级并产生激光巨脉冲。
设红宝石棒直径1cm,长度7.5cm,Cr+3离子浓度为2×1019cm-3,巨型脉冲宽度为10ns,求输出激光的最大能量和脉冲功率。
5.试证明,由于自发辐射,原子在E2能级的平均寿命t s=1/A21。
6.某一分子的能级E4到三个较低能级E1,E2和E3的自发跃迁几率分别是A43=5*107s-1,A42=1*107s-1和A41=3*107s-1,试求该分子能级的自发辐射寿命τ4。
若τ1=5*107s-1,τ2=6*10-9s,τ3=1*10-8s在对E4连续激发并达到稳态时,试求相应能级上的粒子数比值n1/n4,n2/n4,n3/n4,并回答这时在哪两个能级间实现了集居数反转。
7.证明当每个膜内的平均光子数(光子简并度)大于1时,辐射光中受激辐射占优势。
8.(1)一质地均匀的材料对光的吸收系数为0.01mm-1,光通过10cm长的该材料后,出射光强为入射光强的百分之几?(2)一光束通过长度为1m的均匀激励的工作物质,如果出射光强是入射光强的两倍,试求该物质的增益系数。
第二章:开放式光腔与高斯光束1.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
2.试求平凹,双凹、凹凸共轴球面镜腔的稳定性条件。
3. 激光器的谐振腔由一面曲率半径为1m的凸面镜和曲率半径为2m的凹面镜组成,工作物质长0.5m,其折射率为1.52,求腔长L在什么范围内是稳定腔。
4.图2.1所示三镜环形腔,已知l,试画出其等效透镜序列图,并求球面镜的曲率半径R在什么范围内该腔是稳定腔。
图示环形腔为非共轴球面镜腔。
在这种情况下,对于在由光轴组成的平面内传输的子午光线,式(2.2.7)中的f=(Rcosθ)/2,对于在与此垂直的平面内传输的弧失光线,f=R/(2cosθ),θ为光轴与球面镜法线的夹角。
•5.有一方形孔径共焦氦氖激光器,腔长L=30cm,方形孔边长d=2a=0.12cm,λ=632.8nm,镜的反射率为r1=1,r2=0.96,其他损耗以每程0.003估计。
此激光器能否单模运转?如果想在共焦镜面附近加一个方形小孔阑来选择TEM00,小孔的边长应为多大?试根据图2.2.5作一大概的估计。
氦氖增益由公式e gl=1+3*10-4(l/d)估算(l为放电管长度)。
6.试求出方形镜共焦腔面上的TEM30模的节线位置,这些节线是等距分布的吗?7.求圆形镜共焦腔TEM20和TEM02模在镜面上光斑的节线位置。
8.今有一球面腔,R1=1.5m,R2=-1m, L=80cm。
试证明该腔为稳定腔;求出它的等价共焦腔的参数;在图上画出等价共焦腔的具体位置。
9.某二氧化碳激光器采用平—凹腔,L=50cm,R=2m,2a=1cm,λ=10.6um试计算w s1,w s2,w0,θ0,δ100,δ200各为多少。
10.试证明,在所有a2/Lλ相同而R不同的对称稳定球面腔中,共焦腔的衍射损耗最低。
这里L表示腔长,R=R1=R2为对称球面腔反射镜的曲率半径,a为镜的横向线度(半径)。
11. 今有一平面镜和一R=1m 的凹面镜,问:应如何构成一平—凹稳定腔以获得最小的基膜远场角;画出光束发散角与腔长L的关系曲线。
12.推导出平—凹稳定腔基模在镜面上光斑大小的表达式,做出:(1)当R=100cm 时,w s1,w s2随L而变化的曲线;(2)当L=100cm,时,w s1,w s2随R而变化的曲线。
13.某二氧化碳激光器,采用平-凹腔,凹面镜的R=2m,腔长L=1m。
试给出它所产生的高斯光束的束腰斑半径ω0的大小与位置、该高斯光束的f及θ0的大小。
14.某高斯光束束腰斑大小为w0=1.14cm,λ=10.6um。
求与束腰相距30cm,10m,1000m远处的光斑半径w及波前曲率半径R。
15.若已知某高斯光束之w0=0.3mm,λ=632.8nm。
求束腰处的q参考值,与束腰相距30cm处的q参考值,以及在与束腰相距无限远处的q值。
16.某高斯光束ω0=1.2mm,λ=10.6μm。
今用F=2cm的锗透镜来聚焦,当束腰与透镜的距离为10m、1m、10cm、0时求焦斑大小和位置,并分析所得的结果。
17.CO2激光器输出光λ=10.6um,w0=3mm,用一F=2cm的凸透镜聚焦,去欲得到w'0=20um及2.5um时透镜应放在什么位置。
18.如图2.2光学系统,入射光λ=10.6um,求w''0及l319某高斯光束ω0=1.2mm,λ=10.6μm。
今用一望远镜将其准直。
主镜用镀金反射镜R=1m,口径为20cm;副镜为一锗透镜,F1=2.5cm,口径为1.5cm;高斯光束束腰与透镜相距l=1m ,如图2.3所示。
求该望远镜系统对高斯光束的准直倍率。
20.激光器的谐振腔由两个相同的凹面镜组成,它出射波长为λ的基模高斯光束,今给定功率计,卷尺以及半径为a 的小孔光阑,试叙述测量该高斯光束共焦参数f 的实验原理及步骤。
21.已知一二氧化碳激光谐振腔由两个凹面镜构成,R 1=1m,R 2=2m,L=0.5m 。
如何选择高斯束腰斑的大小ω0和位置才能使它成为该谐振腔中的自在现光束?22.(1)用焦距为F 的薄透镜对波长为λ、束腰半径为ω0的高斯光束进行变换,并使变换后的高斯光束的腰斑半径00ωω<'(此称为高斯光束的聚焦),在F>f 和F<f (λπω20=f )两种情况下,如何选择薄透镜到该高斯光束束腰的距离l ?(2)在聚焦过程中,如果薄透镜到高斯光束束腰的距离l 不能改变,如何选择透镜的焦距F ?23.试由自在现变换的定义式(2.12.2)用q 参数法来推导出自在现变换条件式(2.12.3).24.试证明在一般稳定腔(R 1,R 2,L ),其高斯模在腔镜面处的两个等相位面的曲率半径必分别等于各该镜面的曲率半径。
25.试从式(2.14.12)导出(2.14.13),并证明对双凸腔B 2-4C>0.26.试计算R 1=1m,L=0.25m,a 1=2.5cm,a 2=1cm 的虚共焦腔的ξ单程和ξ往返,若想保持a 1不变并从凹面镜M 1端单端输出,应如何选择a 2?反之若想保持a 2,不变并从凸面镜M 2端单端输出,应如何选择a 1?在这两种单端输出的条件下,ξ单程和ξ往返各为多大?题中a 1为镜M 1的横截面半径,R 1为其曲率半径,a 2,R 2的意义类似。
第三章(对应教材第四章):电磁场和物质的共振相互作用1.静止氖原子的3S 2-2P 4谱线中心波长为632.8nm ,设氖原子分别以0.1c 、0.4c 和0.8c 的速度向着观察者运动,问其中表观中心波长分别变为多少?2.在激光出现之前,Kr 86低压放电灯是很好的单色光源。
如果忽略自然加宽和碰撞加宽,试估算在77K 温度下它的605.7nm 谱线的相干长度是多少,并与一个单色性λλ/∆=10-8的氦氖激光器比较。
3.考虑某二能级工作物质,E 2能级自发辐射寿命为τs ,无辐射跃迁寿命为τnr 。
假定在t =0时刻能级E 2上的原子数密度为n 2(0),工作物质的体积为V ,自发辐射光的频率为ν,求:(1) 自发辐射光功率随时间t 的变化规律;(2) 能级E 2上的原子在其衰减过程中发出的自发辐射光子数;(3) 自发辐射光子数与初始时刻能级E 2上的粒子数之比η2(η2称为量子产额)。
4.估算CO 2气体在室温(300K )下的多普勒线宽∆νD 和碰撞线宽系数a ,并讨论在什么气压范围内从非均匀加宽过渡到均匀加宽。
5.氦氖激光器有下列三种跃迁,即3S 2-2P 4的632.8nm ,2S 2-2P 4的1.1523um ,和3S 2-3P 4的3.39um 的跃迁。
求400K 时它们的多普勒线宽,分别用GHz,um,cm -1为单位表示。
由所得结果你能得到什么启示?6.考虑某二能级工作物质,E 2能级自发辐射寿命为τS ,无辐射跃迁寿命为τnr 。
假定在时刻t=0能级上E 2的原子数密度为n 2(0),工作物质的体积为V ,自发辐射光的频率为v ,求:(1)自发辐射光功率随时间t 的变化规律(2)能级E 2上的原子在其衰减过程中发出的自发辐射光子数(3)自发辐射光子数与初始时刻能级E 2上的粒子数之比η2(η2称为量子产额)7.根据4.4 节所列红宝石的跃迁几率数据,估算 W 13等于多少时红宝石对λ=694.3nm 的光是透明的。
(对红宝石,激光上、下能级的统计权重f 1=f 2=4,计算中可不计光的各种损耗。
)8设粒子数密度为n 的红宝石被一矩形脉冲激励光照射,其激励跃迁几率可表示为(如图4.1所示)13000pW t t W t t <≤⎧=⎨>⎩求激光上能级粒子数密度n 2(t),并画出相应的波形。
9.某种多普勒加宽气体吸收物质被置于光腔中,设吸收谱线对应的能级为E 2和E 1(基态),中心频率为ν0。
如果光腔中存在频率为ν的单模光波场,试定性画出下列情况下基态粒子数按速度分布n 1(υz ):(1)0νν>>;(2)D ννν∆≈-210; (3)0νν=10.试从爱因斯坦系数之间的关系说明下述概念,分配在一个模式中的自发辐射跃迁几率等于在此模式中的一个光子引起的受激跃迁几率。
11.短波长(真空紫外,软X 射线)谱线的主要加宽机构是自然加宽。
试证明峰值吸收截面σ=λ20/2π。
12.已知红宝石的密度为3.98g/cm 3,其中Cr 2O 3所占比例为0.05%(质量比),在波长694.3nm 附近的峰值吸收系数为0.4cm -1,试求其峰值吸收截面(T=300K )。
13.有光源一个,单色仪一台,光电倍增及其电源一套,微安表一块,圆柱形端面抛光红宝石样品一块,红宝石中鉻离子数密度n=1.9*1019/cm 3,694.3nm 荧光线宽。