无功补偿

合集下载

无功补偿

无功补偿

无功补偿的意义
谐波电流会对供电系统中的电器设备产生损害,不仅 造成企业检修费用提高,而且对供电系统的安全稳定运行 埋下很大隐患。 基于以上分析,要求企业必须对供电系统存在的此类 危害进行治理。无功功率补偿技术(SVC)是一种挖掘现有
电力资源潜力、改善电能质量、消除此类事故隐患的行之
有效的方法之一,对供电系统的安全稳定运行具有非常重 大的意义。
吴佳祥
无功补偿
无功补偿的意义 无功补偿的基本原理
提高功率因数的方法
无功补偿的意义
随着我国电力工业的不断发展大范围的高压输电 网络逐渐发展形成,同时对电网无功功率的要求也日
益严格。无功功率如同有功功率一样,是保证电力系
统的电能质量、降低电能损耗以及保证其安全运行所 部不可缺少的部分。电网无功功率不平衡将导致系统 电压的巨大波动,严重时会导致用电设备的损坏,出 现系统电压崩溃和稳定破坏事故。
无功补偿的意义
研究无功功率,可以解决现代电力系统中与无功功率相关的一 系列技术问题。与无功功率相关的技术问题很多,主要有:
1.无功功率静态稳定问题; 2.电容性无功功率引起的发电机自励磁问题; 3.因潜供电流引起的单相快速自动重合闸电弧不能熄灭问题;
4.冲击性无功负荷的调节问题;
5.无功功率中的高次谐波公害和闪变问题; 6.跟随馈电系统引起的负荷功率因数的变化与改善问题。
无功补偿的基本原理
无功补偿的基本原理实质上就是把具有容性功率 负荷的装置与感性功率负荷并联接在同一电路上, 能量
在两种负荷之间相互交换。这样, 感性负荷所需要的
无功功率可由容性负荷输出的无功功率来补偿。即把 原来是由电网或者变压器提供的无功功率, 改为由交 流电力电容器来提供。

无功补偿的作用和原理

无功补偿的作用和原理

无功补偿的作用和原理无功补偿是电力系统中的重要概念,它是指通过采用补偿设备来控制无功功率的流动,以保持电力系统的功率平衡和电压稳定。

本文将介绍无功补偿的作用和原理,以及常用的无功补偿设备。

一、无功补偿的作用无功功率是电力系统中的虚功,对电网的运行和稳定性有一定的影响。

无功补偿的作用主要表现在以下几个方面:1. 改善电力系统的功率因数电力系统的功率因数是指有功功率和视在功率的比值,用来衡量电能的有效利用程度。

功率因数低会引起电网的电压降低、电流增大、线路损耗增加等问题。

通过无功补偿,可以减小无功功率的流动,提高功率因数,从而减少电网的损耗,提高供电质量。

2. 调整电网的电压水平无功补偿设备可以根据实际需要主动投入或退出运行,调节电网的电压水平。

当电压过高时,可以通过投入无功补偿设备来吸收一部分无功功率,从而降低电压水平;当电压过低时,可以通过退出无功补偿设备来释放一部分无功功率,提高电压水平。

通过这种方式,可以保持电网的电压稳定,提高供电可靠性。

3. 抑制电网谐波和电磁干扰无功补偿设备可以对电网谐波进行滤波和衰减,减少电网谐波对其他电气设备的干扰。

此外,无功补偿设备还可以提高电网的电能质量,减少电气设备的故障率,延长设备的使用寿命。

二、无功补偿的原理无功补偿的原理主要涉及电力系统中的三个方面:功率因数、无功功率和电压。

功率因数是电力系统中有功功率和视在功率的比值,通常用功率因数角(cosφ)来表示。

当电力系统中存在感性负载时,功率因数是正值;当电力系统中存在容性负载时,功率因数是负值。

为了提高功率因数,可以通过引入合适的无功补偿设备来平衡系统中的感性负载和容性负载。

无功功率是电力系统中的虚功,通常用无功功率角(Q)来表示。

感性负载所产生的无功功率是正值,而容性负载所产生的无功功率是负值。

通过补偿设备,可以调整电力系统中无功功率的流动方向和大小,实现无功功率的消纳或释放。

电压是电力系统中的重要参数,通过无功补偿设备可以调节电网的电压水平。

无功补偿的多种方式及各自的优缺点有哪些

无功补偿的多种方式及各自的优缺点有哪些

无功补偿的多种方式及各自的优缺点有哪些无功补偿是指通过投入无功功率来改善电力系统的功率因数和电压质量。

无功补偿的多种方式根据实现的方法和装置的种类,可以分为静态无功补偿和动态无功补偿。

下面将对这两种方式及其各自的优缺点进行详细说明。

静态无功补偿常见的方式有电容补偿、电抗补偿和混合补偿等。

电容补偿主要通过并联接入电容器的方式进行,它能够提高电力系统的功率因数,提高电源的容量利用效率,减小线路功率损耗,并改善电压的稳定性。

电容补偿的优点有:1.无需响应时间,能实现快速无功补偿;2.功率因数改善明显,系统稳定性较好;3.维护成本低,装置体积小;4.可靠性高,寿命长。

但电容补偿也存在一些缺点:1.稳态补偿效果受负荷变化的影响较大;2.补偿效果受谐波干扰的限制;3.对电源电压波动敏感,需配合电压调整设备。

电抗补偿主要通过串联电抗器的方式实现,它能够提高电力系统的电压质量,改善电网稳定性,减小潮流损耗,提高电能质量。

电抗补偿的优点有:1.对电源电压波动不敏感,较适合对电力系统进行长距离补偿;2.补偿稳态性能好,可适用于任意负荷;3.能抵抗系统谐波干扰。

电抗补偿的缺点是:1.响应速度较慢,不能实现快速的动态无功补偿;2.在低频部分容易产生谐振问题;3.需要较大的设备体积和投资成本。

混合补偿通常综合了电容补偿和电抗补偿的优点,通过同时串联接入电容器和并联接入电抗器的方式进行补偿。

混合补偿的优点有:1.能够综合利用电容补偿和电抗补偿的优点,使补偿效果更好;2.适用于各种负荷类型和负荷变化的场合;3.能够抑制谐波,提高电压质量;4.稳态和动态补偿效果均较好。

混合补偿的缺点是:1.需要更大的设备容量,增加了投资成本;2.响应时间相对较长。

动态无功补偿是指通过高速的开关装置来实现无功功率的补偿。

常见的动态无功补偿装置包括静态无功发生器(SVG)、静止补偿装置(SSC)和可变补偿器(VSC)等。

动态无功补偿的优点有:1.响应速度极快,可以实现毫秒级的无功补偿;2.能够实现连续调整补偿功率,适应负荷变化;3.能够抑制谐波,提高电压质量;4.对电源电压波动不敏感。

无功功率补偿的常见方式方法

无功功率补偿的常见方式方法

无功功率补偿的常见方式方法
1、无功功率补偿的常见方法
(1)并联电容器组
电力电容器是一种静止的无功补偿设备。

它的主要作用是向电力系统供应无功功率,提高功率因数。

采纳就地无功补偿,可以削减输电线路输送电流,起到削减线路能量损耗和压降,改善电能质量和提高设备利用率的重要作用。

(2) 静止无功补偿器
静止无功补偿器是一种没有旋转部件,快速、平滑可控的动态无功功率补偿装置。

它是将可控的电抗器和电力电容器(固定或分组投切)并联使用。

电容器可发出无功功率(容性的),可控电抗器可汲取无功功率(感性的)。

通过对电抗器进行调整,可以使整个装置平滑地从发出无功功率转变到汲取无功功率(或反向进行),并且响应快速。

(3) 同步补偿
运行于电动机状态,不带机械负载也不带原动机,只向电力系统供应或汲取无功功率的同步电机。

用于改善电网功率因数,维持电网电压水平。

2、无功功率补偿的方式
(1)、集中补偿:装设在企业或地方总变电所6~35KV母线上,可削减高压线路的无功损耗,而且能提高本变电所的供电电压质量。

(2)、分散补偿:装设在功率因数较低的车间或村镇终端变、配电所的
高压或低压母线上。

这种方式与集中补偿有相同的优点,但无功容量较小,效果较明显。

(3)、就地补偿:装设在异步电动机或电感性用电设备四周,就地进行补偿。

这种方式既能提高用电设备供电回路的功率因数,又能转变用电设备的电压质量。

无功补偿标准要求

无功补偿标准要求

无功补偿标准要求
无功补偿标准要求是指电力系统对用户产生的无功功率所进行的补偿的规定和要求。

一般情况下,无功补偿标准要求包括以下几个方面:
1. 无功功率因数要求:电力系统对用户的无功功率进行补偿时,通常会要求用户达到一定的功率因数。

功率因数是指电力系统中的有功功率与总功率之比,反映了电能的有效利用程度。

一般来说,电力系统要求用户的功率因数为0.9以上。

2. 无功补偿能力要求:无功补偿设备的能力是指设备可以提供的无功功率大小。

电力系统会根据用户的负荷情况和无功功率需求,要求用户安装相应能力的无功补偿设备,以保证系统的运行稳定。

无功补偿设备的能力一般以千伏安(kVAr)为单位。

3. 无功补偿响应时间要求:无功补偿设备的响应时间是指在电力系统发生无功功率变化时,设备进行补偿所需要的时间。

电力系统要求用户的无功补偿设备具有快速响应的能力,以保证系统的稳定运行。

4. 无功补偿设备的可靠性要求:电力系统要求用户的无功补偿设备具有高可靠性,能够长时间稳定运行。

无功补偿设备应具备较高的工作效率、低损耗、长寿命等特点,以减少设备的故障率和维修频率。

需要注意的是,不同地区和不同类型的电力系统对无功补偿标准要求可能会有所不同,具体要求应根据当地的电力规范和标准制定。

无功补偿计算公式

无功补偿计算公式

无功补偿计算公式无功补偿是电力系统中的一个重要概念,是指在电力系统中对无功功率进行调整的过程,以提高系统的功率因素,降低无功功率的损失。

无功补偿的计算公式可以通过不同的方法得到,下面将详细介绍几种常见的无功补偿计算公式。

一、基础公式1.功率因数公式功率因数(PF)定义为有功功率与视在功率的比值,即:PF=P/S其中,P表示有功功率,单位为瓦特(W);S表示视在功率,单位为伏安(VA)。

2.无功功率公式无功功率(Q)可以由功率因数和视在功率计算得到:Q=√(S²-P²)二、无功补偿公式1.容性补偿容性补偿是通过增加并行连接的电容器来提高功率因数。

假设原始功率因数为PF1,需要提高到目标功率因数PF2,容性补偿公式为:C = ((P * tan(acos(PF2)))) / (ω * (tan(acos(PF1)) -tan(acos(PF2)))))其中,C表示所需电容器的容量,单位为法拉(F);P表示有功功率,单位为瓦特(W);PF1和PF2分别表示原始功率因数和目标功率因数;ω表示电网的角频率,单位为弧度/秒。

2.感性补偿感性补偿是通过增加串联连接的电感来消除过多的无功功率。

感性补偿公式为:L = ((Q * tan(acos(PF2)))) / (ω * (tan(acos(PF1))) -tan(acos(PF2)))))其中,L表示所需电感的大小,单位为亨利(H);Q表示需要消除的无功功率,单位为伏安(VAR);PF1和PF2分别表示原始功率因数和目标功率因数;ω表示电网的角频率,单位为弧度/秒。

需要注意的是,以上公式仅适用于理想情况下的无功补偿计算。

在实际应用中,还需要考虑电力系统的特性、负载变化等因素,以确保无功补偿的效果和安全性。

三、案例分析假设一个电力系统的视在功率为10kVA,有功功率为8kW,功率因数为0.8、现在需要将系统的功率因数提高到0.9、根据以上的公式,可以计算出容性补偿和感性补偿的数值。

无功补偿的作用和原理

无功补偿的作用和原理

无功补偿的作用和原理无功补偿是电力系统中的一个重要概念,用于解决电力系统中出现的无功功率不平衡问题。

本文将介绍无功补偿的作用和原理。

一、无功补偿的作用无功功率是指在交流电路中产生和消耗无功功率的能量,它不对机械负载做功,主要表现为电感和电容元件的无功功率。

而无功功率不仅会造成电力系统中的电能浪费,还会导致电压稳定性问题。

无功补偿的作用就是调整电力系统中的无功功率,以提高电能的利用效率和电压的稳定性。

具体而言,无功补偿可以实现以下几个方面的作用:1. 提高功率因数:功率因数是指有功功率与视在功率之比。

功率因数越接近1,说明电能的利用效率越高。

通过无功补偿,可以降低系统中的无功功率,从而提高功率因数。

2. 改善电压稳定性:电力系统中的负载变化会引起电压波动,尤其是大型电动机和变压器的启动和停止会产生较大的电压波动。

通过无功补偿,可以在负载变化时调整无功功率的产生和吸收,从而保持电压在合理范围内的稳定。

3. 减少线路损耗:无功功率不仅会增加变压器和输电线路的负荷,还会导致线路电压降低,从而增加线路上的电能损耗。

通过无功补偿,可以减少线路上的无功损耗,提高电能传输的效率。

二、无功补偿的原理无功补偿的原理主要涉及到无功功率的产生和吸收,可以通过电容器和电感器来实现。

电容器是一种能够存储电能的元件,可以在电路中产生无功功率。

当电容器与电源相连接时,由于电容器具有存储电能的特性,在电源电压较高的时候,电容器会吸收电能;而在电源电压较低的时候,电容器会释放电能。

通过调整电容器的容值和连接方式,可以实现对无功功率的产生和吸收。

电感器是一种能够存储磁能的元件,可以在电路中吸收无功功率。

当电感器与电源相连接时,由于电感器具有存储磁能的特性,在电源电压较低的时候,电感器会吸收电能;而在电源电压较高的时候,电感器会释放电能。

通过调整电感器的参数和连接方式,可以实现对无功功率的吸收。

无功补偿的原理可以通过自动或手动方式实现。

无功补偿的作用和原理

无功补偿的作用和原理

无功补偿的作用和原理无功补偿是电力系统中的一项重要技术,它对于改善电力质量、提高能效具有重要作用。

本文将介绍无功补偿的作用和原理。

一、无功补偿的作用1. 提高电力系统的功率因数无功补偿可以减少电力系统中的无功功率,提高功率因数。

功率因数是指有功功率与视在功率的比值,它反映了电力系统的有功功率和无功功率之间的协调程度。

功率因数接近1时,电力系统的能效较高,能够更好地满足用户对电力质量的要求。

2. 改善电力网络稳定性无功补偿可以消除电力系统中的无功电流,减小电力系统的无功损耗,提高电力系统的稳定性。

无功电流会导致电压的波动和失真,影响电力系统的正常运行。

通过补偿无功功率,可以降低电力线路的电压损失,改善电力网络的稳定性。

3. 提高电力系统的可靠性无功补偿可以提高电力系统的可靠性。

电力系统中的无功功率会导致电压降低和电压波动,可能引起电力设备的故障和损坏。

通过补偿无功功率,可以提高电力系统的电压稳定性,减少电力设备的故障率,提高电力系统的可靠性。

二、无功补偿的原理1. 电容补偿原理电容补偿主要通过连接并联的电容器来提供无功功率,对电力系统中的感性负载进行补偿。

电容器可以产生与感性负载相反的无功功率,从而使系统的功率因数得到提高。

电容补偿能够快速响应,适用于对瞬时无功补偿要求较高的场合。

2. 感应补偿原理感应补偿主要通过连接串联的感应电抗器来提供无功功率,对电力系统中的容性负载进行补偿。

感应电抗器可以产生与容性负载相反的无功功率,从而提高系统的功率因数。

感应补偿适用于对动态无功补偿要求较高的场合。

3. 谐波补偿原理谐波补偿主要针对电力系统中存在的谐波问题进行补偿。

谐波是电力系统中频率为基波频率整数倍的电压和电流成分,会导致电力系统中的电压波动和电流失真。

通过连接并联的谐波滤波器,可以减小谐波的影响,提高电力系统的质量。

总结起来,无功补偿的作用主要包括提高功率因数、改善电力网络稳定性和提高电力系统的可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电网无功功率分析与补偿器的研究由于无功补偿对电网安全、优质、经济运行具有重要作用,因此无功补偿是电力部门和用户共同关注的问题。

合理选择无功补偿方案和补偿容量,能有效提高系统的电压稳定性,保证电网的电压质量,提高发输电设备的利用率,降低有功网损和减少发电费用。

本文按照电网无功补偿的基本原则是,重点介绍了输配电网中各种无功补偿的原理及方法,以达到改善功率因数、调整电压及补偿参数等作用。

另介绍了电网电压调整的几种方法前言目前世界范围内掀起环境保护的热潮,电力系统是一种特定的环境,在输配电网中出现的无功功率,是电网本身的运行规律所决定,但同时它给电网运行带来了许多麻烦。

无功功率是一种既不能作有功,但又会在电网中引起损耗,而且又是不能缺少的一种功率,所以在电网中要加入无功功率补偿的装置,同时对电网电压进行调整,达到电网利用效率最大化。

二、输配电网的无功补偿2.1输电网的无功补偿电网无功补偿的基本原则是:按电压分层,按电网分区,就地平衡,避免无功功率的远距离输送,以免占用线路输送容量和增加有功损耗。

输电网多数无直供负载,一般不为调压目的而设置无功补偿装置。

参数补偿多用于较长距离的输电线路。

具体补偿方法如下:2.1.1电抗器补偿电抗器是超高压长距离输电线路的常用补偿设备,用以补偿输电线路对地电容所产生的充电功率,以抑制工频过电压。

电抗器的容量根据线路长度和过电压限制水平选择,其补偿度(电抗器容量与线路充电功率之比)国外统计大多为70-85,个别为65,一般不低于60。

电抗器一般常设置在线路两湍,且不设断路器。

2.1.2串连电容补偿串联电容用来补偿输电线路的感抗,起到缩短电气距离提高稳定性水平和线路的输电容量的作用。

串联电容器组多为串、并联组合而成,并联支数由线路输送容量而定,串联个数则由所需的串联电容补偿度(串联电容的容抗与所补偿的线路感抗之比)而定。

串联电容补偿一般在50以下,不宜过高,以免引起系统的次同步谐振。

输电网中因阻抗不均而造成环流时,也可用串联电容来补偿。

日本在110kV环网中就使用了串联电容补偿。

2.1.3中间同步或静止补偿在远距离输电线路中间装设同步调相机或静止补偿装置,利用这些装置的无功调节能力,在线路轻载时吸收线路充电功率,限制电压升高;在线路重载时发出无功功率,以补偿线路的无功损耗,支持电压水平,从而提高线路的输送容量。

中间同步或静止补偿通常设在线路中点,若设在线路首末端,则调节作用消失。

输电网的电压支撑点与调压输电网与受电地区的低一级电压的电网相联的枢纽点,常设置有载调压变压器或有相当调节与控制能力的无功补偿装置,或者二者都有,以实现中枢点调压,使电网的运行不受或少受因潮流变化或其他原因形成的电压波动的影响,在电网发生事故时起支撑电压的作用,防止因电网电压剧烈波动而扩大事故。

电压支撑能力的强弱,除与补偿方法和补偿容量大小有关外,更与补偿装置的调节控制能力和响应速度有关。

并联电容器虽是常用而价廉的补偿设备,但其无功出力在电压下降时将按电压的平方值下降,不利于支撑电压。

大量装设并联补偿电容器反而有事故发生助长电网电压崩溃的可能性。

采用同步调相机和静止无功补偿装置辅以适当的调节控制,是比较理想的支撑电压的无功补偿设备。

近年来,国内外均注重静止补偿装置的应用。

2.2配电网的无功补偿配电网的无功补偿主要以相位补偿和保证用户用电电压质量为主。

具体方法为相位补偿。

2.2.1相位补偿(亦称功率因数补偿)用电电器多为电磁结构,需要大量的励磁功率,致使用户的功率因数均为滞相且较低,一般约为0.7左右。

励磁功率——滞相的无功功率在配电网中流动,不仅占用配电网容量,造成不必要的损耗,而且导致用户电压降低。

相位补偿是以进相的无功补偿设备(如并联电容器)就近供给用户或配电网所需要的滞相无功功率,减少在配电网中流动的无功功率,降低网损,改善电压质量。

中国对大电力用户要求安装无功补偿装置,补偿后的功率因数不得低于0.9。

三、电网电压调整为保证用电电器有良好的工作电压,避免受到配电网电压波动影响而损坏用电设备,配电电网需要进行电压调整。

电网的电压调整方法有:中心调压、调压变压器调压和无功补偿调压。

3.1利用地区发电厂或枢纽变电所进行中心调压这种措施简单而经济方便,但它只能改变整个供电地区的电压水平,不能改善电压分布。

当供电地区的地域比较广阔、供电距离长短悬殊时,中心调压措施往往不能兼顾全区,有顾此失彼的缺点。

3.2调压变压器调压可弥补中心调压方式的不足,进行局部调压。

调压变压器有有载调压变压器、串联升压器和感应调压器三种。

有载调压变压器与感应调压器一般用于特定负荷点,串联升压器则用于供电线路。

调压变压器的调压作用是靠改变电力网的无功潮流来实现的。

它本身不仅不产生无功功率,而且还因本身励磁的需要而消耗无功功率。

当电网的无功电源不足时,调压变压器的调压效果不显著。

相反地,若调压变压器装设过多,将加重配电网的无功功率消耗,拉低全网电压水平,增大网损,降低并联电容器的无功出力,严重时有可能造成恶性循环的趋向。

3.3无功补偿调压由于增加了电力网的无功电源,能起到改善电网电压的作用。

装设于变电所内的无功补偿装置,还可采用分组投切的办法,对供电地区实行中心调压。

3.4串联电容补偿调压串联电容补偿可用于配电网中进行局部调压。

在距离较长的重载线路,因其调压作用是通过线路滞相电流流过串联电容而产生的电压升高来实现的。

故线路负载愈重,功率因数愈低,串联电容补偿调压的作用愈显著。

这种调压作用随线路负载的变化而变化,具有自行调节的功能将电抗器、电容器、同步调相机和调压变压器等装置接入电网中,以改善功率因数、调整电压及起到补偿参数等作用。

电网无功补偿的基本原则是:按电压分层,按电网分区,就地平衡,避免无功功率的远距离输送,以免占用线路输送容量和增加有功损耗。

1输电网的无功补偿与电压调整输电网多数无直供负载,一般不为调压目的而设置无功补偿装置。

参数补偿多用于较长距离的输电线路,有串联补偿(又称纵补偿)与并联补偿(又称横补偿)之分。

电压支撑则多用于与地区受电网络连接的输电网的中枢点。

1.1电抗器补偿电抗器是超高压长距离输电线路的常用补偿设备,用以补偿输电线路对地电容所产生的充电功率,以抑制工频过电压。

电抗器的容量根据线路长度和过电压限制水平选择,其补偿度(电抗器容量与线路充电功率之比)国外统计大多为70~85,个别为65,一般不低于60。

电抗器一般常设置在线路两端,且不设断路器。

1.2串连电容补偿串联电容用来补偿输电线路的感抗,起到缩短电气距离提高稳定性水平和线路的输电容量的作用。

串联电容器组多为串、并联组合而成,并联支数由线路输送容量而定,串联个数则由所需的串联电容补偿度(串联电容的容抗与所补偿的线路感抗之比)而定。

串联电容补偿一般在50以下,不宜过高,以免引起系统的次同步谐振。

输电网中因阻抗不均而造成环流时,也可用串联电容来补偿。

日本在110kV环网中就使用了串联电容补偿。

1.3中间同步或静止补偿在远距离输电线路中间装设同步调相机或静止补偿装置,利用这些装置的无功调节能力,在线路轻载时吸收线路充电功率,限制电压升高;在线路重载时发出无功功率,以补偿线路的无功损耗,支持电压水平,从而提高线路的输送容量。

中间同步或静止补偿通常设在线路中点,若设在线路首末端,则调节作用消失。

输电网的电压支撑点与调压输电网与受电地区的低一级电压的电网相联的枢纽点,常设置有载调压变压器或有相当调节与控制能力的无功补偿装置,或者二者都有,以实现中枢点调压,使电网的运行不受或少受因潮流变化或其他原因形成的电压波动的影响,在电网发生事故时起支撑电压的作用,防止因电网电压剧烈波动而扩大事故。

电压支撑能力的强弱,除与补偿方法和补偿容量大小有关外,更与补偿装置的调节控制能力和响应速度有关。

并联电容器虽是常用而价廉的补偿设备,但其无功出力在电压下降时将按电压的平方值下降,不利于支撑电压。

大量装设并联补偿电容器反而有事故发生助长电网电压崩溃的可能性。

采用同步调相机和静止无功补偿装置辅以适当的调节控制,是比较理想的支撑电压的无功补偿设备。

近年来,国内外均注重静止补偿装置的应用。

2配电网的无功补偿与电压调整以相位补偿和保证用户用电电压质量为主。

2.1相位补偿亦称功率因数补偿用电电器多为电磁结构,需要大量的励磁功率,致使用户的功率因数均为滞相且较低,一般约为0.7左右。

励磁功率——滞相的无功功率在配电网中流动,不仅占用配电网容量,造成不必要的损耗,而且导致用户电压降低。

相位补偿是以进相的无功补偿设备(如并联电容器)就近供给用户或配电网所需要的滞相无功功率,减少在配电网中流动的无功功率,降低网损,改善电压质量。

中国对大电力用户要求安装无功补偿装置,补偿后的功率因数不得低于0.9。

2.2电压调整为保证用电电器有良好的工作电压,避免受配电网电压波动的影响,配电网需要进行电压调整。

配电网电压调整的措施包括:中心调压、调压变压器调压和无功补偿调压。

2.2.1利用地区发电厂或枢纽变电所进行中心调压这种措施简单而经济方便,但它只能改变整个供电地区的电压水平,不能改善电压分布。

当供电地区的地域比较广阔、供电距离长短悬殊时,中心调压措施往往不能兼顾全区,有顾此失彼的缺点。

2.2.2调压变压器调压可弥补中心调压方式的不足,进行局部调压。

调压变压器有有载调压变压器、串联升压器和感应调压器三种。

有载调压变压器与感应调压器一般用于特定负荷点,串联升压器则用于供电线路。

调压变压器的调压作用是靠改变电力网的无功潮流来实现的。

它本身不仅不产生无功功率,而且还因本身励磁的需要而消耗无功功率。

当电网的无功电源不足时,调压变压器的调压效果不显著。

相反地,若调压变压器装设过多,将加重配电网的无功功率消耗,拉低全网电压水平,增大网损,降低并联电容器的无功出力,严重时有可能造成恶性循环的趋向。

2.2.3无功补偿调压由于增加了电力网的无功电源,能起到改善电网电压的作用。

装设于变电所内的无功补偿装置,还可采用分组投切的办法,对供电地区实行中心调压。

串联电容补偿,可用于配电网中进行局部调压。

距离较长的重载线路,使用串联电容补偿,效果较好。

因其调压作用是由线路滞相电流流过串联电容而产生的电压升高来实现的。

故线路负载愈重,功率因数愈低,串联电容补偿调压的作用愈显著。

这种调压作用随线路负载的变化而变化,具有自行调节的功能。

串联电容器所产生的无功功率,也增加了电力网的无功电源,可改善电力网的电压水平。

串联电容能使线路受端的电动机产生自励磁现象,在设计、使用时,需采取预防措施。

二、无功补偿的目的电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中电网电源需向这些设备提供相应的无功功率。

相关文档
最新文档