2017年广西柳州市中考数学试卷(含答案)

合集下载

广西柳州市柳北区二十八中 2017年九年级数学中考模拟试卷(含答案)

广西柳州市柳北区二十八中 2017年九年级数学中考模拟试卷(含答案)

2017年九年级数学中考模拟试卷一、选择题:1.如图,数轴上的点A所表示的数为k,化简|k|+|1﹣k|的结果为()A.1B.2k﹣1C.2k+1D.1﹣2k2.图中的几何体的俯视图是 ( )3.下列各数精确到万分位的是()A.0.0720 B.0.072 C.0.72 D.0.1764.下列各图中,不是中心对称图形的是()5.如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2的度数为()A.140°B.130°C.120°D.110°6.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加书法兴趣小组的频率是()A.0.1B.0.15C.0.2D.0.37.下列运算正确的是()A.a-2a=aB.(-2a2)3=﹣8a6C.a6+a3=a2D.(a+b)2=a2+b28.如图,李老师骑自行车上班,最初以某一速度匀速行进,路途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()A. B. C. D.9.下列长度的三条线段能组成三角形的是()A.1,2,3 B.2,2,4 C.3,4,5 D.3,4,810.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1B.k<1且k≠0C.k≥﹣1且k≠0D.k>﹣1且k≠011.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A. B. C. D.12.设二次函数y=a(x-x1)(x-x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数1y=y2+y1的图象与x轴仅有一个交点,则()A.a(x1-x2)=dB.a(x2-x1)=dC.a(x1-x2)2=dD.a(x1+x2)2=d二、填空题:13.某地某天的最高气温为﹣2℃,最低气温为﹣8℃,这天的温差是℃.化简的结果为_________14.一个不透明的袋子中装有3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,摸出的球是黄球的概率是 .15.如图,在△ABC 中,D,E 分别为AC,AB 上的点,∠ADE=∠B,AE=3,BE=4,则AD ·AC=_______.16.如图,⊙O 的半径为2,点A 、C 在⊙O 上,线段BD 经过圆心O,∠ABD=∠CDB=90°,AB=1,CD=,则图中阴影部分的面积为 .17.观察下列各式的规律:(a ﹣b )(a+b )=a 2﹣b 2(a ﹣b )(a 2+ab+b 2)=a 3﹣b 3(a ﹣b )(a 3+a 2b+ab 2+b 3)=a 4﹣b 4…可得到(a ﹣b )(a 2016+a 2015b+…+ab 2015+b 2016)= .三 、解答题:18.计算:)0211261--⨯++ 45cos19.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,AE ∥BD .求证:四边形AODE 是矩形.20.为了解学生的艺术特长发展情况,某校音乐组决定围绕在“舞蹈、乐器、声乐、戏曲、其它活动”项目中,你最喜欢哪一项活动(每人只限一项)的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制如下两幅不完整的统计图。

2017年柳州市初中毕业升学考试试卷

2017年柳州市初中毕业升学考试试卷

2017年柳州市初中毕业升学考试试卷物理(考试时间90分钟,总分1 00分)注意事项:1.答题前,考生先用黑色字迹的签字笔将自己的姓名、准考证号填写在试卷及答题卡的指定位置,然后将条形码准确粘贴在答题卡的“贴条形码区”处。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。

3.按照题号顺序在答题卡相应区域内作答,超出答题区域书写的答案无效。

4.在草稿纸、试卷上答题无效。

第I卷(选择题,共36分)一、选择题(每小题3分,共36分。

每小题的四个选项中只有一个是正确的,不选、多选、错选均不得分)1.一个中学生的身高约为A.158毫米B.158厘米 C.158米 D.158千米2.如图1所示的实例中,为了减小摩擦的是3.如图2所示情况中,力没做功的是4.如图3所示的用电器中,利用电动机工作的是5.如图4所示实例中,属于费力杠杆的是6.用温度计测量烧杯中水的温度,如图5所示的几种做法中正确的是7.如图6所示,属于平面镜成像的是8.下列关于声音的说法中正确的是A.声音只能在空气中传播 B.声音在真空中的传播速度是3×108 m/s C.声音是由于物体振动而产生的 D.只要物体振动,我们就能听到声音9.如图7所示的电路中,开关S闭合后,两个灯泡都发光的是10.如图8所示的电路中,开关S闭合时,电压表V、Vl 、V2的示数分别是U、Ul 、U2,关于它们的关系正确的是A.U = Ul = U2B.U > Ul+ U2C.U < Ul + U2D.U = Ul+ U211.各物体的受力情况如图9所示,属于二力平衡的是12.探究影响电磁铁磁性强弱的因素时,按图10所示电路进行实验,观察到电磁铁甲吸引大头针的数目比电磁铁乙多。

此实验说明影响电磁铁磁性强弱的因素是A.线圈的匝数B.电流的大小C.电流的方向D.电磁铁的极性第II卷(非选择题,共64分)二、填空题(每空1分,共16分)13. 5月31日是“世界无烟日”。

广西柳州市柳北区2017年中考数学一模试卷(有答案)

广西柳州市柳北区2017年中考数学一模试卷(有答案)

广西柳州市柳北区2017年中考数学一模试卷(解析版)一、选择题(本大题共12小题,每小题3分,共36分)1.2的绝对值是()A.±2 B.2 C.D.﹣2【分析】根据绝对值是实数轴上的点到原点的距离,可得答案.【解答】解:2的绝对值是2.故选:B.【点评】本题考查了绝对值,正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值等于0.2.2016年成都市元宵节灯展参观人数约为47万人,将47万用科学记数法表示为4.7×10n,那么n的值为()A.3 B.4 C.5 D.6【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将470000用科学记数法表示为:4.7×105,所以n=5.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.下列整数中,与最接近的是()A.4 B.3 C.2 D.1【分析】由于4<5<9,由此根据算术平方根的概念可以找到5接近的两个完全平方数即可求解.【解答】解:∵4<5<9,∴2<<3.∵3﹣﹣(﹣2)=5﹣2=﹣>0,∴3﹣>﹣2,∴最接近的整数是2.故选:C.【点评】此题主要考查了无理数的估算能力,关键是掌握估算无理数的时候运用“夹逼法”.4.下列运算正确的是()A.(﹣a)4=a4B.8a﹣a=8 C.a3×a2=a6D.(a﹣b)2=a2﹣b2【分析】根据整式的运算法则即可求出答案.【解答】解:(B)原式=7a,故B错误;(C)原式=a5,故C错误;(D)原式=a2﹣2ab+b2,故D错误;故选(A)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.下列图形中可以作为一个三棱柱的展开图的是()A. B.C. D.【分析】三棱柱展开后,侧面是三个长方形,上下底各是一个三角形.【解答】解:三棱柱展开后,侧面是三个长方形,上下底各是一个三角形由此可得:只有A是三棱柱的展开图.故选:A【点评】此题主要考查了三棱柱表面展开图,注意上、下两底面应在侧面展开图长方形的两侧.6.如图,C、D是线段AB上的两点,且D是线段AC的中点.若AB=10cm,BC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.6cm【分析】利用已知得出AC的长,再利用中点的性质得出AD的长.【解答】解:∵AB=10cm,BC=4cm,∴AC=6cm,∵D是线段AC的中点,∴AD=3cm.故选:B.【点评】此题主要考查了两点间的距离,得出AC的长是解题关键.7.如图,直线a∥b,∠1=55°,则∠2=()A.35°B.45°C.55°D.65°【分析】根据两直线平行,同位角相等可得∠1=∠3,再根据对顶角相等可得∠2的度数.【解答】解:∵a∥b,∴∠1=∠3,∵∠1=55°,∴∠3=55°,又∵∠2=∠3,∴∠2=55°,故选:C.【点评】此题主要考查了平行线的性质,关键是掌握:两直线平行,同位角相等.8.对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理【分析】根据圆的有关定义、垂线段的性质、三角形的稳定性等知识结合生活中的实例确定正确的选项即可.【解答】解:A、把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理,正确;B、木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“两点确定一条直线”的原理,故错误;C、将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理,正确;D、将车轮设计为圆形是运用了“圆的旋转对称性”的原理,正确,故选B.【点评】本题考查了圆的认识、三角形的稳定性、确定直线的条件等知识,解题的关键是熟练掌握这些定理,难度不大.9.如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形【分析】n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【解答】解:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=6.则这个正多边形的边数是6.故选:C.【点评】考查了多边形内角和定理,此题比较简单,只要结合多边形的内角和公式,寻求等量关系,构建方程求解.10.如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为:=.故选:A.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.11.如图,在扇形AOB中,AC为弦,∠AOB=140°,∠CAO=60°,OA=6,则的长为()A.πB.πC.2πD.2π【分析】首先判定三角形为等边三角形,再利用弧长公式计算.【解答】解:连接OC,∵OA=OC,∠CAO=60°,∴△OAC是等边三角形,∴∠COB=80°,∵OA=6,∴的长,故选B【点评】此题主要考查了学生对等边三角形的判定和弧长公式,关键是得到△OAC是等边三角形.12.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:21=2 22=4 23=8 …31=3 32=9 33=27 …指数运算新运算log22=1 log24=2 log28=3 …log33=1 log39=2 log327=3 …根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2=﹣1.其中正确的是()A.①②B.①③C.②③D.①②③【分析】根据指数运算和新的运算法则得出规律,根据规律运算可得结论.【解答】解:①因为24=16,所以此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1=,所以此选项正确;故选B.【点评】此题考查了指数运算和新定义运算,发现运算规律是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.若分式有意义,则x的取值范围为x≠2.【分析】根据分母不为零分式有意义,可得答案.【解答】解:由题意,得x﹣2≠0.解得x≠2,故答案为:x≠2.【点评】本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.14.若﹣2x m﹣n y2与3x4y2m+n是同类项,则m+n=0.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意,得,解得,m+n=0,故答案为:0.【点评】本题考查了同类项,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.15.分解因式:ma2﹣mb2=m(a+b)(a﹣b).【分析】应先提取公因式m,再对余下的多项式利用平方差公式继续分解.【解答】解:ma2﹣mb2,=m(a2﹣b2),=m(a+b)(a﹣b).【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后继续利用平方差公式进行因式分解.16.若菱形的周长为20cm,则它的边长是5cm.【分析】由菱形ABCD的周长为20cm,根据菱形的四条边都相等,即可求得其边长.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵菱形ABCD的周长为20cm,∴边长为:20÷4=5(cm).故答案为:5.【点评】此题考查了菱形的性质,注意掌握菱形四条边都相等定理的应用是解此题的关键,比较容易解答.17.如图,在△ABC中,点D在边AB上,且BD=2AD,DE∥BC,交AC于点E,若线段DE=5,则线段BC的长为15.【分析】根据DE∥BC,可得△ADE∽△ABC,再由相似三角形的对应边成比例代入数值解答即可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,,∵BD=2AD,∴,∵DE=5,∴,∴BC=15.【点评】此题考查了相似三角形的判定与性质.由相似三角形的性质得到比例式是解决问题的关键.18.如图,正方形ABCD的边长AD为⊙O的直径,E是AB上一点,将正方形的一个角沿EC折叠,使得点B恰好与圆上的点F重合,则tan∠AEF=.【分析】连接OF,OC.根据全等三角形的性质得到∠OFC=∠ODC=90°,于是得到FC是⊙O的切线;根据正方形的性质得到AD=BC=AB=CD,由∠CFE=∠B=90°,得到E,F,O三点共线.根据勾股定理得到BE的长,即可得到结论.【解答】解:如图,连接OF,OC.在△OCF和△OCD中,,∴△OCF≌△OCD(SSS),∴∠OFC=∠ODC=90°,∴CF是⊙O的切线,∵四边形ABCD是正方形,∴可设AD=BC=AB=CD=2,∵∠CFE=∠B=90°,∴E,F,O三点共线.∵EF=EB,∴在△AEO中,AO=1,AE=2﹣BE,EO=1+BE,∴(1+BE)2=1+(2﹣BE)2,∴BE=,∴AE=,∴tan∠AEF=.故答案为:.【点评】本题考查的是折叠问题,正方形的性质,切线的判定以及解直角三角形的运用,解决问题的关键是:根据三角形全等判定CF是圆的切线,然后由翻折变换,得到对应的角与对应的边分别相等,利用切线的性质结合直角三角形,运用勾股定理求出线段的长.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣2|﹣+.【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|﹣2|﹣+=2﹣1﹣6=﹣5【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.(6分)阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2.又∵x>1,∴y+2>1.即y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:已知x﹣y=3,且x>2,y<1,则x+y的取值范围.【分析】仿照给出的阅读材料、根据不等式的性质计算.【解答】解:∵x﹣y=3,∴x=y+3.又∵x>2,∴y+3>2.即y>﹣1.又∵y<1,∴﹣1<y<1.…①同理得:2<x<4.…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5.【点评】本题考查的是不等式的性质,正确理解阅读材料、掌握不等式的性质是解题的关键.21.(10分)学校举行“文明环保,从我做起”征文比赛.现有甲、乙两班各上交30篇作文,现将两班的各30篇作文的成绩(单位:分)统计如下:甲班:等级成绩(S)频数A 90<S≤100 xB 80<S≤90 15C 70<S≤80 10D S≤70 3合计30根据上面提供的信息回答下列问题(1)表中x=2,甲班学生成绩的中位数落在等级B中,扇形统计图中等级D部分的扇形圆心角n= 36°.(2)现学校决定从两班所有A等级成绩的学生中随机抽取2名同学参加市级征文比赛.求抽取到两名学生恰好来自同一班级的概率(请列树状图或列表求解).【分析】(1)利用总人数30减去其它各组的人数就是x的值,根据中位数的定义求得中位数的值,利用360°乘以对应的比例就可求得圆心角的度数;(2)甲班的人用甲表示,乙班的人用乙表示,利用列举法即可求得概率.【解答】解:(1)x=30﹣15﹣10﹣3=2;中位数落在B组;等级D部分的扇形圆心角n=360°×=36°;故答案是:2,B,36°;(2)乙班A等级的人数是:30×10%=3,则甲班的二个人用甲表示,乙班的三个人用乙表示.,共有20种情况,则抽取到两名学生恰好来自同一班级的概率是:=.【点评】考查了频数(率)分布表,本题用到的知识点是:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.频率=频数÷总数,用样本估计整体让整体×样本的百分比即可.22.(6分)如图,已知AB=AE,BC=ED,∠B=∠E.(1)AC=AD吗?为什么?(2)若点F为CD的中点,那么AF与CD有怎样的位置关系?请说明理由.【分析】(1)根据全等三角形的判定与性质,可得答案;(2)根据等腰三角形的性质,可得答案.【解答】解:(1)AC=AD,理由如下:在△ABC和△AED中,,△ABC≌△AED(SAS),∴AC=AD;(2)AF⊥CD,理由如下:由AC=AD,CF=DF,得AF⊥CD.【点评】本题考查了全等三角形的判定与性质,熟记圈的那个三角形的判定与性质是解题关键,等腰三角形的性质:等腰三角形的顶角的角平分线,底边的中线,底边的高线三线合一.23.(8分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【分析】(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可得出答案;(2)设普通列车平均速度是x千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可;【解答】解:(1)根据题意得:400×1.3=520(千米),答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:﹣=3,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.【点评】此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.24.(8分)反比例函数y=在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数y=的图象于点M,△AOM的面积为3.(1)求反比例函数的解析式;(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形ABCD有一个顶点在反比例函数y=的图象上,求t的值.【分析】(1)根据反比例函数k的几何意义得到|k|=3,可得到满足条件的k=6,于是得到反比例函数解析式为y=;(2)分类讨论:当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,再利用反比例函数图象上点的坐标特征确定M点坐标为(1,6),则AB=AM=6,所以t=1+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,根据正方形的性质得AB=BC=t﹣1,则C点坐标为(t,t﹣1),然后利用反比例函数图象上点的坐标特征得到t(t﹣1)=6,再解方程得到满足条件的t的值.【解答】解:(1)∵△AOM的面积为3,∴|k|=3,而k>0,∴k=6,∴反比例函数解析式为y=;(2)当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,把x=1代入y=得y=6,∴M点坐标为(1,6),∴AB=AM=6,∴t=1+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,则AB=BC=t﹣1,∴C点坐标为(t,t﹣1),∴t(t﹣1)=6,整理为t2﹣t﹣6=0,解得t1=3,t2=﹣2(舍去),∴t=3,∴以AB为一边的正方形有一个顶点在反比例函数y=的图象上时,t的值为7或3.【点评】本题考查了用待定系数法求反比例函数的解析式:(1)设出含有待定系数的反比例函数解析式y=xk (k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.也考查了反比例函数k的几何意义、反比例函数图象上点的坐标特征和正方形的性质.25.(10分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,若AB=BE.(1)求证:DC=DE;(2)连接OE,交CD于点F,OE⊥CD,求cos∠OEB.【分析】(1)先根据AB=BE得出∠A=∠AEB,再由圆内接四边形的性质得出∠A=∠DCE,故可得出∠DCE=∠AEB,据此可得出结论;(2)先根据CD=DE,△CDE是等腰三角形,再由垂径定理可知EO是CD的垂直平分线,故可得出△DCE是等边三角形,据此可得出结论.【解答】(1)证明:∵AB=BE,∴∠A=∠AEB.∵四边形ABCD是⊙O的内接四边形,∴∠A=∠DCE,∴∠DCE=∠AEB,∴DC=DE;(2)解:∵CD=DE,∴△CDE是等腰三角形.∵EO⊥CD,∴EO是CD的垂直平分线,∴ED=EC,∴DC=DE=EC,∴△DCE是等边三角形,∴∠OEB=30°,∴cos∠OEB=cos30°=.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.26.(12分)在平面直角坐标系xOy中,二次函数y=x2+(m﹣3)x﹣3m(0<m<3)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,若∠ABC=45°,(1)求点B的坐标和m的值;(2)已知一次函数y=kx+b,若只有当﹣2<x<2时,x2+(m﹣3)x﹣3m<kx+b,求这个一次函数的解析式.(3)设P是一次函数图象上任意一点、Q是抛物线上任意一点,是否存在P、Q两点,使以B、C、P、Q 为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)先表示出C点坐标(0,﹣3m),再证明△OBC为等腰直角三角形得到OB=OC=3m,则B(3m,0),然后把B(3m,0)代入y=x2+(m﹣3)x﹣3m得关于m的方程,解方程求出m,从而得到B点坐标;(2)抛物线的解析式为y=x2﹣2x﹣3,分别计算x=﹣2和x=2时的函数值,利用函数图象,由于当﹣2<x<2时,x2+(m﹣3)x﹣3m<kx+b,所以直线y=kx+b经过点(﹣2,5),(2,﹣3),然后利用待定系数法确定一次函数解析式;(3)讨论:当BC为对角线时,如图1,设P(t,﹣2t+1),利用平行四边形的性质,通过点C平移到点P 的坐标变化情况得到点B平移到点Q的坐标变换规律,从而得到点Q(3﹣t,2t﹣4),然后把Q(3﹣t,2t﹣4)代入y=x2﹣2x﹣3得(3﹣t)2﹣2(3﹣t)﹣3=2t﹣4;当BC边时,如图2,设P(t,﹣2t+1),利用同样的方法得到点Q(3+t,﹣2t+4),然后把Q(3+t,﹣2t+4)代入y=x2﹣2x﹣3得(3+t)2﹣2(3+t)﹣3=﹣2t+4,最后分别解关于t的方程,从而得到P点坐标.【解答】解:*(1)当x=0时,y=x2+(m﹣3)x﹣3m=﹣3m,则C(0,﹣3m),∵∠ABC=45°,∴△OBC为等腰直角三角形,∴OB=OC=3m,则B(3m,0),把B(3m,0)代入y=x2+(m﹣3)x﹣3m得9m2+3m(m﹣3)﹣3m=0,整理得m2﹣m=0,解得m1=0(舍去),m2=1,∴m的值为1,B(3,0);(2)抛物线的解析式为y=x2﹣2x﹣3,当x=﹣2时,y=x2﹣2x﹣3=5;当x=2时,y=x2﹣2x﹣3=﹣3,∵只有当﹣2<x<2时,x2+(m﹣3)x﹣3m<kx+b,∴直线y=kx+b经过点(﹣2,5),(2,﹣3),∴,解得,∴一次函数解析式为y=﹣2x+1;(3)存在.当BC为对角线时,如图1,设P(t,﹣2t+1),∵点C(0,﹣3)向右平移t个单位,向上平移(﹣2t+4)个单位得到点P(t,﹣2t+1),则点B(3,0)向左平移t个单位,向下平移(﹣2t+4)个单位得到点Q(3﹣t,2t﹣4),把Q(3﹣t,2t﹣4)代入y=x2﹣2x﹣3得(3﹣t)2﹣2(3﹣t)﹣3=2t﹣4,整理得t2﹣6t+4=0,解得t1=3﹣,m2=3+,此时P点坐标为(3﹣,﹣5+2)或(3+,﹣5﹣2);当BC边时,如图2,设P(t,﹣2t+1),∵点C(0,﹣3)向右平移t个单位,向上平移(﹣2t+4)个单位得到点P(t,﹣2t+1),则点B(3,0)向右平移t个单位,向上平移(﹣2t+4)个单位得到点Q(3+t,﹣2t+4),把Q(3+t,﹣2t+4)代入y=x2﹣2x﹣3得(3+t)2﹣2(3+t)﹣3=﹣2t+4,整理得t2+6t﹣4=0,解得t1=﹣3﹣,m2=﹣3+,此时P点坐标为(﹣3﹣,﹣5+2)或(﹣3﹣,﹣5﹣2),综上所述,满足条件的P点坐标为(3﹣,﹣5+2)或(3+,﹣5﹣2)或(﹣3﹣,﹣5+2)或(﹣3﹣,﹣5﹣2).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的性质;会利用待定系数法求函数解析式;理解点平移的坐标规律和坐标与图形性质;会运用分类讨论的思想解决数学问题.。

柳州中考数学试题及答案

柳州中考数学试题及答案

柳州中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.3B. √2C. 0.33333...D. 1/3答案:B2. 一个长方形的长是宽的两倍,如果宽为x,则长为:A. 2xB. x/2C. x^2D. x+2答案:A3. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1答案:A4. 下列哪个选项不是单项式?A. 3x^2B. -5yC. 7D. x^2 + 3x5. 如果一个角的补角是120°,那么这个角的度数是:A. 60°B. 30°C. 90°D. 120°答案:B6. 一个等腰三角形的底角是45°,那么顶角的度数是:A. 90°B. 45°C. 60°D. 30°答案:A7. 一个二次函数y=ax^2+bx+c的顶点坐标是(1,-4),则a的值是:A. -1B. 1C. 0D. 4答案:A8. 下列哪个选项是二次根式?A. √4B. √(-1)C. √xD. √(x^2)答案:C9. 一个数列的前三项是2,4,8,那么这个数列的第四项是:B. 32C. 64D. 128答案:A10. 一个圆的半径是5cm,那么这个圆的面积是:A. 25π cm^2B. 50π cm^2C. 75π cm^2D. 100π cm^2答案:C二、填空题(每题4分,共20分)11. 一个直角三角形的两直角边长分别是3cm和4cm,那么斜边的长度是_______cm。

答案:512. 如果一个数的立方是-8,那么这个数是______。

答案:-213. 一个等差数列的前三项是1,4,7,那么这个数列的公差是______。

答案:314. 一个扇形的圆心角是60°,半径是10cm,那么这个扇形的面积是_______cm^2。

答案:50π/315. 一个函数y=kx+b的图象经过点(2,3)和(4,7),那么k的值是______。

2017年广西省柳州市中考数学真题及答案

2017年广西省柳州市中考数学真题及答案

2017年广西省柳州市中考数学真题及答案第I卷(选择题,共36分)一、选择题(每小题3分,共12小题,共计36分)1.(2017广西柳州,1,3分)计算:(-3)+(-3)=( )A.-9 B.9 C.-6 D.62.(2017广西柳州,2,3分) 下列交通标志中,是轴对称图形的是( )A.限制速度 B.禁止同行C.禁止直行 D.禁止掉头3.(2017广西柳州,3,3分)如图,这是一个机械模具,则它的主视图是( )A.B.C. D.4.(2017广西柳州,4,3分)现有四个看上去完全一样的纸团,每个纸团里面分别写着数字1,2,3,4,现任意抽取一个纸团,则抽到的数字是4的概率是( )A.34B.12C.14D.15.(2017广西柳州,5,3分)如图,经过直线l外一点画l的垂线,能画出( )A.1条B.2条C.3条D.4条6.(2017广西柳州,6,3分)化简:2x-x=( )A.2 B.1 C.2x D.x7.(2017广西柳州,7,3分)如图,直线y=2x必过的点是( )A.(2,1) B.(2,2) C.(-1,-1) D.(0,0) 8.(2017广西柳州,8,3分) 如图,这个五边形ABCDE的内角和等于( )A .360°B .540°C .720°D .900°9.(2017广西柳州,9,3分)如图,在⊙O 中与∠1一定相等的角是( )A .∠2B .∠3C .∠4D .∠5 10.(2017广西柳州,10,3分)计算5a ab =( ).A .5abB .26a bC .25a b D .10ab 30011. (2017广西柳州,11,3分).化简:211()2x x x -=( ) A .-x . B .1x C .22x - D . 2x 12. (2017广西柳州,12,3分).如果有一组数据为1,2,3,4,5,则这组数据的方差为( )A .1B .2C .3D .4第II 卷(非选择题,共84分)二、填空题(每小题3分,共18分).13.(2017广西柳州,13,3分).如图,AB ∥CD ,若∠1=60°,则∠2=______°.14.(2017广西柳州,14,3分).计算: 35⨯=______.15.(2017广西柳州,15,3分).若点A(2,2)在反比例函数k y x=(k ≠0)的图像上,则k =______. 16.(2017广西柳州,16,3分)某校为了了解本届初三学生体质健康情况,从全校初三学生中随进抽取46名学生进行调查,上述抽取的样本容量为______.17.(2017广西柳州,17,3分)如图,把这个“十字星”形图绕其中心点O 旋转,当至少旋转______度后,所得图形与原图形重合.18.(2017广西柳州,18,3分)如图,在△ABC 中,D ,E 分别为AB ,AC 的中点,BE 交CD 于点O ,连接DE .有下列结论:①DE =12BC ;②△BOD ∽△COE ;③BO =2EO ;④AO 的延长线经过BC 的中点.其中正确的是______(填写所有正确结论的编号)三、解答题(本大题共8个小题,满分66分).19.(2017广西柳州,19,6分)解方程:2x-7=0.20.(2017广西柳州,20,6分)如图,在平行四边形ABCD中,AB=3,BC=4,求这个平行四边形ABCD的周长..21.(2017广西柳州,21,6分)据查,柳州市2017年6月5日至6月9日的气象数据如下,根据数据求出这五天最高气温的平均值.6月5日星期一大雨 24~32°C6月6日星期二中雨 23~30°C6月7日星期三多云 23~31°C6月8日星期四多云 25~33°C6月9日星期五多云 26~34°C22.(2017广西柳州,22,8分)学校要组织去春游,小陈用50圆负责购买小组所需的两种食品,买第一种食品共花去了30元,剩余的钱还要买第二种食品,已知第二种食品的单价为60元/件,问:小陈最多能买第二种食品多少件?23.(2017广西柳州,23,8分)如图,在正方形ABCD中,E,F分别为AD,CD边上的点,BE,AF交于点O,且AE=DF.(1)求证:△ABE≌△DAF;(2)若BO=4,DE=2,求正方形ABCD的面积.24.(2017广西柳州,24,10分)如图,直线y =-x+2与反比例函数k y x =(k ≠0)的图像交于A(-1,m),B(m ,-1)两点,过A 作AC ⊥x 轴于点C ,过B 作BD ⊥x 轴于点D ,(1)求m ,n 的值及反比例函数的解析式;(2)请问:在直线y =-x+2上是否存在点P ,使得PAC PBD =S S △△?若存在,求出点P 的坐标;若不存在,请说明理由.25.(2017广西柳州,25,10分)如图,已知AO 为Rt △ABC 的叫平分线,∠ACB =90°,43AC BC =, 以O 为圆心,OC 为半径的圆分别交AO ,BC 于点D ,E ,连接ED 并延长交AC 于点F .(1) 求证:AB 是⊙O 的切线;(2) 求tan ∠CAO 的值;(3) 求AD CF 的值.26.(2017广西柳州,26,12分)如图,抛物线2113y=--424x x +与x 轴交于A 、C 两点(点A 在点C 的左边).直线y =kx+b(k ≠0)分别交x 轴,y 轴与A ,B 两点,且除了点A 之外,改直线与抛物线没有其他任何交点.(1)求A ,C 两点的坐标;(2)求k ,b 的值;(3)设点P 是抛物线上的动点,过点P 作直线y =kx+b(k ≠0)的垂线,垂足为H ,交抛物线的对称轴于点D ,求PH+DH 的最小值,并求此时点P 的坐标.2017年广西省柳州市中考数学试卷第I卷(选择题,共36分)一、选择题(每小题3分,共12小题,共计36分)1.(2017广西柳州,1,3分)计算:(-3)+(-3)=( )A.-9 B.9 C.-6 D.6【答案】C.解析:-3+(-3)=-(3+3)=-6.2.(2017广西柳州,2,3分) 下列交通标志中,是轴对称图形的是( )A.限制速度 B.禁止同行C.禁止直行 D.禁止掉头【答案】B.解析:根据轴对称图形定义:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,则这个图形叫轴对称图形.A、C、D选项既不是中心对称图形,也不是轴对称图形,B是轴对称图形,但不是中心对称图形.3.(2017广西柳州,3,3分)如图,这是一个机械模具,则它的主视图是( )A.B.C. D.【答案】A,解析;主视图是从几何体正边看得到的图形,题中的几何体从正边看,得到的图形是并列的两个正方形和一个圆,其中圆在右边正方形的上面.4.(2017广西柳州,4,3分)现有四个看上去完全一样的纸团,每个纸团里面分别写着数字1,2,3,4,现任意抽取一个纸团,则抽到的数字是4的概率是( )A.34B.12C.14D.1【答案】C【解析】所有等可能情况是4种(1、2、3、4),符合条件情况一种(4),故概率为14.5.(2017广西柳州,5,3分)如图,经过直线l外一点画l的垂线,能画出( )A.1条B.2条C.3条D.4条【答案】A【解析】平面内经过一点有且只有一条直线垂直于已知直线.6.(2017广西柳州,6,3分)化简:2x-x=( )A.2 B.1 C.2x D.x【答案】D【解析】2x-x=(2-1)x=x.7.(2017广西柳州,7,3分)如图,直线y=2x必过的点是( )A .(2,1)B .(2,2)C .(-1,-1)D .(0,0)【答案】D【解析】将各点坐标代入y =2x ,满足等号成立的既是直线上的点;或根据直线y =2x 上的纵坐标是横坐标的2倍来判断.8.(2017广西柳州,8,3分) 如图,这个五边形ABCDE 的内角和等于( ) A .360°B .540°C .720°D .900°【答案】B .解析:根据多边形内角和公式(n -2)×180°可得(5-2)×180°=540°.9.(2017广西柳州,9,3分)如图,在⊙O 中与∠1一定相等的角是( )A .∠2B .∠3C .∠4D .∠5【答案】A ,因为∠1和∠2所对的弧都是弧BC ,根据同弧所对的圆周角相等可知∠1=∠2.10.(2017广西柳州,10,3分)计算5a ab =( ).A .5abB .26a bC .25a bD .10ab 300【答案】C【解析】a ·5ab =5a 1+1b =5a 2b . 11. (2017广西柳州,11,3分).化简:211()2x x x -=( ) A .-x .B .1xC .22x -D . 2x 【答案】D【解析】原式= 2211222x x x x x x x ⨯-⨯=-=. 12. (2017广西柳州,12,3分).如果有一组数据为1,2,3,4,5,则这组数据的方差为( ) 【答案】B【解析】∵11(12345)153********x =++++=⨯=⨯=⨯=∴2222221[(13)(23)(33)(43)2(53)]5s =⨯-+-+-+-⨯+-=2. 第II 卷(非选择题,共84分)二、填空题(每小题3分,共18分).13.(2017广西柳州,13,3分).如图,AB ∥CD ,若∠1=60°,则∠2=______°.【答案】60°【解析】∵AB ∥CD ,∴∠1=∠2=60°(两直线平行,同位角相等).14.(2017广西柳州,14,3分).计算: 35⨯=______.【答案】15.解析:353515⨯=⨯=.15.(2017广西柳州,15,3分).若点A(2,2)在反比例函数k y x =(k ≠0)的图像上,则k =______. 【答案】4【解析】把(2,2)代入k y x=的k =4. 16.(2017广西柳州,16,3分)某校为了了解本届初三学生体质健康情况,从全校初三学生中随进抽取46名学生进行调查,上述抽取的样本容量为______.【答案】46【解析】样本容量是指抽查部分的数量,没有单位.因本题随机抽查46名同学,故样本容量是46.17.(2017广西柳州,17,3分)如图,把这个“十字星”形图绕其中心点O 旋转,当至少旋转______度后,所得图形与原图形重合.【答案】90°【解析】360°÷4=90°.18.(2017广西柳州,18,3分)如图,在△ABC 中,D ,E 分别为AB ,AC 的中点,BE 交CD 于点O ,连接DE .有下列结论:①DE =12BC ;②△BOD ∽△COE ;③BO =2EO ;④AO 的延长线经过BC 的中点.其中正确的是______(填写所有正确结论的编号)【答案】.①③④【解析】∵D、E是AB、AC的中点,∴DE∥BC,DE=12BC,故①正确;∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AE :AC=1:2,∵DE∥BC,∴△DOE∽△BOC,∴BO:OE=BC :DE=2:1,故③正确,因为三角形三条中线交于一点,BE、CD是中线,故AO是三角形中线,故④正确;△DOE∽△COB,DO:OC=EO:OB=1:2,对△BOD和△COE来说不存在两组对边成比例,故△BOD和△COE不一定相似,故③错误.三、解答题(本大题共8个小题,满分66分).19.(2017广西柳州,19,6分)解方程:2x-7=0.解:2x-7=02x=7x=72.20.(2017广西柳州,20,6分)如图,在平行四边形ABCD中,AB=3,BC=4,求这个平行四边形ABCD的周长..【解析】∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,∴平行四边形的周长为:2(AB+BC)=14.21.(2017广西柳州,21,6分)据查,柳州市2017年6月5日至6月9日的气象数据如下,根据数据求出这五天最高气温的平均值.6月5日星期一大雨 24~32°C6月6日星期二中雨 23~30°C6月7日星期三多云 23~31°C6月8日星期四多云 25~33°C6月9日星期五多云 26~34°C【解析】11(3230313334)1603255x =++++=⨯=, 答:这五天的最高气温平均32℃.22.(2017广西柳州,22,8分)学校要组织去春游,小陈用50圆负责购买小组所需的两种食品,买第一种食品共花去了30元,剩余的钱还要买第二种食品,已知第二种食品的单价为60元/件,问:小陈最多能买第二种食品多少件?【解析】设第二种食品买x 件,根据题意得6x ≤50-30解得x ≤103, 所以第二种食品最多买3件.23.(2017广西柳州,23,8分)如图,在正方形ABCD 中,E ,F 分别为AD ,CD 边上的点,BE ,AF 交于点O ,且AE =DF .(3) 求证:△ABE ≌△DAF ;(4) 若BO =4,DE =2,求正方形ABCD 的面积.【解析】(1)证明:∵四边形ABCD 是正方形,∴AB =AD ,∠BAE =∠D =90°,又AE =DF ,∴△ABE ≌△DAF ;(2)∵△ABE ≌△DAF ,∴∠FAD =∠ABE ,又∠FAD+∠BAO =90°,∴∠ABO+∠BAO =90°,∴△ABO ∽△EAB ,∴AB :BE =BO :AB ,即AB :6=4:AB ,∴AB 2=24,所以正方形ABCD 面积是24.24.(2017广西柳州,24,10分)如图,直线y =-x+2与反比例函数k y x=(k ≠0)的图像交于A(-1,m),B(m ,-1)两点,过A 作AC ⊥x 轴于点C ,过B 作BD ⊥x 轴于点D ,(1)求m ,n 的值及反比例函数的解析式;(2)请问:在直线y =-x+2上是否存在点P ,使得PAC PBD =S S △△?若存在,求出点P 的坐标;若不存在,请说明理由.【解析】(1)把A(-1,m)、B(n ,-1)分别代入y =-x+1得m =1+2或-1=-n+2∴m =3,n =3,∴A(-1,3),B(3,-1),把A(-1,3), 代入k y x =得k =-3, ∴3y x =-; (2) 存在.设P(x ,-x+2), 则P 到AC 、BD 的距离分别为13x x +-、,∵PAC PBD =S S △△,即11AC 1=322x BD x ⨯+⨯-, AC 1=3x BD x ⨯+⨯-31=13x x ⨯+⨯-1133x x +=- ∴1133x x +=-或1133x x +=--, 解得x =-3,或x =0,∴P(-3,5)或(0,2).25.(2017广西柳州,25,10分)如图,已知AO 为Rt △ABC 的叫平分线,∠ACB =90°,43AC BC =, 以O 为圆心,OC 为半径的圆分别交AO ,BC 于点D ,E ,连接ED 并延长交AC 于点F .(4) 求证:AB 是⊙O 的切线;(5) 求tan ∠CAO 的值;(6) 求AD CF的值. 【解析】(1)证明:作OG OG ⊥AB 于点G .∵∠C =∠OGA ,∠GAO =∠CAO ,AO =AO ,∴△OGA ≌△OCA ,∴∠OGA =∠OCA =90°,∴AB 是切线;(2) 设AC =4x ,BC =3x ,圆O 半径为r ,则AB =5x ,由切线长定理知,AC =AG =4x ,故 BG =x . ∵tan ∠B =OG :BG =AC :BC =4:3,∴OG =4433BG x =, ∴tan ∠CAO =tan ∠GAO =13; (3)在Rt △OCA 中,AO = 224103OC AC x +=, ∴AD =OA -OD =410-13x (). 连接CD ,则∠DCF+∠ECD =∠ECD+∠CEF ,∴∠DCF =∠CEF ,又∠CEF =∠EDO =∠FDA ,∴∠DCF =∠ADF ,又∠FAD =∠DAC ,∴△DFA ∽△CDA ,∴DA :AC =AF :AD ,即410-13x ():4x =AF:410-13x (),∴AF =810-19x (),∴AD 3=CF 2.26.(2017广西柳州,26,12分)如图,抛物线2113y=--424x x +与x 轴交于A 、C 两点(点A 在点C 的左边).直线y =kx+b(k ≠0)分别交x 轴,y 轴与A ,B 两点,且除了点A 之外,改直线与抛物线没有其他任何交点.(1)求A ,C 两点的坐标;(2)求k ,b 的值;(3)设点P 是抛物线上的动点,过点P 作直线y =kx+b(k ≠0)的垂线,垂足为H ,交抛物线的对称轴于点D ,求PH+DH 的最小值,并求此时点P 的坐标.【解析】(1) 21130=--424x x +,解得x 1=-3,x 2=1,所以A(-3,0),C(1,0);(2)把A(-3,0)代入y =kx+b 得0=-3k+b ,∴b =3k; 由2113424y x x y kx b ⎧=--+⎪⎨⎪=+⎩得2113--424x x kx b +=+,即2(24k)340x x b ++-+=, ∵直线y =kx+b 和抛物线有唯一公共点,∴224+4b-3b ac -=-(24k )(4)=0把b =3k 代入2+4b-3-(24k )(4)=0得2+412k-3-(24k )()=0 解得k =1,∴b =3∴直线AB 表达式为y =x+3;(3) 作HG ⊥对称轴于点G ,HF ⊥对称轴于点F .由抛物线表达式知对称轴为x =-1,由直线y =x+3知∠EAO =∠EHG =∠AEM =∠PFD =∠PDF =45°.当x =-1时,y =x+3=2,即H(-1,2).设P(x , 2113--424x x +),则PF =FD =-1-x ,ED =EM+MF+FD =2-(2113--424x x +)+(-1-x)= 2111-424x x +,PD =2FD =2-(1-x ) ∴DH =HE =22ED =22111(-)2424x x +, ∴DH+PH =DH+DH -PD =2DH -PD =21112(-)2-424x x +-(x-1)=22252424x x ++, 当x =12b a -=-时,PH+DH 取得最小值,最小值是22522424x -+=。

广西柳州市柳南区 2017年 九年级数学 中考模拟试题(含答案)

广西柳州市柳南区 2017年 九年级数学 中考模拟试题(含答案)

2017年九年级数学中考模拟试题一、选择题:1.﹣3的相反数是()A. B. C.3 D.﹣32.如图,1,2,3,4,T是五个完全相同的正方体,将两部分构成一个新的几何体得到其正视图,则应将几何体T放在()A.几何体1的上方B.几何体2的左方C.几何体3的上方D.几何体4的上方3.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50000000000千克,这个数据用科学记数法表示为()A.0.5×1011千克B.50×109千克C.5×109千克D.5×1010千克4.下列图形中,是中心对称图形的是()A. B. C. D.5.如图,AB//DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36°D.65°6.某中学举行校园歌手大赛,7位评委给选手小明的评分如下表:最后得分为 ( )A.9.56B.9.57C.9.58D.9.597.下列计算正确的是()A.a6÷a2=a3B.a2+a2=2a4C.(a﹣b)2=a2﹣b2D.(a2)3=a68.已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为( )A.k>1,b<0B.k>1,b>0C.k>0,b>0D.k>0,b<09.现有两根木棒,它们的长度分别为20cm和30cm,若不改变木棒的长度, 要钉成一个三角形木架,应在下列四根木棒中选取 ( )A.10cm的木棒B.20cm的木棒;C.50cm的木棒D.60cm的木棒10.已知m,n是方程x2-2x-1=0的两实数根,则+的值为( )A.-2B.-C.D.211.在一个边长不超过8厘米的大正方形ABCD中,如图所示,放入3张面积都是20平方厘米的小正方形纸片BEFG、OPNC、IQKJ,已知3张小正方形纸片盖住的总面积为44平方厘米,那么大正方形ABCD和小正方形BEFG的边长之比为()A.5:3B.3:2C.10:7D.8:512.如图,○O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()二、填空题:13.已知a-b=-3,c+d=2,则(b+c)-(a-d) =________15.有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为负数的概率为.16.如图,在△ABC中,D,E分别为AC,AB上的点,∠ADE=∠B,AE=3,BE=4,则AD·AC=_______.17.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF= .18.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.三、解答题:19.计算:tan30°cos60°+tan45°cos30°.20.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,AD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长。

2017年广西柳州市柳江区中考一模数学试卷(解析版)

2017年广西柳州市柳江区中考一模数学试卷(解析版)

2017年广西柳州市柳江区中考数学一模试卷一、选择题(每题3分)1.(3分)﹣的相反数是()A.﹣B.C.﹣D.2.(3分)计算:5x﹣3x=()A.2x B.2x2C.﹣2x D.﹣23.(3分)如图是一个正方体,则它的表面展开图可以是()A.B.C.D.4.(3分)如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有()A.2条B.3条C.4条D.5条5.(3分)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°6.(3分)在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)如图所示,该几何体的俯视图是()A.B.C.D.8.(3分)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b9.(3分)下列各曲线中表示y是x的函数的是()A.B.C.D.10.(3分)函数y=中,自变量x的取值范围是()A.x≥1B.x>1C.x≥1且x≠2D.x≠211.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.12.(3分)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1B.y=2n+n C.y=2n+1+n D.y=2n+n+1二、填空题(每题3分)13.(3分)不等式组的解集是.14.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.15.(3分)分解因式:a2﹣4b2=.16.(3分)有一组数据:2,a,4,6,7,它们的平均数是5,则这组数据的中位数是.17.(3分)某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.如图表示的是该电路中电流I与电阻R之间函数关系的图象,当电阻R 为6Ω时,电流I为A.18.(3分)一个圆锥形零件,高为8cm,底面圆的直径为12cm,则此圆锥的侧面积是cm2.三、解答题19.(6分)计算:(3﹣π)0+4sin45°﹣+|1﹣|.20.(6分)如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.21.(6分)解方程:+=1.22.(8分)为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.23.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使P A+PB的值最小,请直接写出点P的坐标.24.(10分)为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?25.(10分)如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.(1)求证:DE与⊙O相切;(2)求证:BC2=2CD•OE;(3)若cos C=,DE=4,求AD的长.26.(12分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C 三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)b=,c=,点B的坐标为;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.2017年广西柳州市柳江区中考数学一模试卷参考答案与试题解析一、选择题(每题3分)1.(3分)﹣的相反数是()A.﹣B.C.﹣D.【解答】解:﹣的相反数是.故选:B.2.(3分)计算:5x﹣3x=()A.2x B.2x2C.﹣2x D.﹣2【解答】解:原式=(5﹣3)x=2x,故选:A.3.(3分)如图是一个正方体,则它的表面展开图可以是()A.B.C.D.【解答】解:A、含有田字形,不能折成正方体,故A错误;B、能折成正方体,故B正确;C、凹字形,不能折成正方体,故C错误;D、含有田字形,不能折成正方体,故D错误.故选:B.4.(3分)如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有()A.2条B.3条C.4条D.5条【解答】解:如图所示:线段AB是点B到AC的距离,线段CA是点C到AB的距离,线段AD是点A到BC的距离,线段BD是点B到AD的距离,线段CD是点C到AD的距离,故图中能表示点到直线距离的线段共有5条.故选:D.5.(3分)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°【解答】解:∵AB⊥BC,∴∠ABC=90°,∴∠3=180°﹣90°﹣∠1=35°,∵a∥b,∴∠2=∠3=35°.故选:C.6.(3分)在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点P(﹣2,﹣3)所在的象限是第三象限.故选:C.7.(3分)如图所示,该几何体的俯视图是()A.B.C.D.【解答】解:从上往下看,可以看到选项C所示的图形.故选:C.8.(3分)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【解答】解:由图可知:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.9.(3分)下列各曲线中表示y是x的函数的是()A.B.C.D.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选:D.10.(3分)函数y=中,自变量x的取值范围是()A.x≥1B.x>1C.x≥1且x≠2D.x≠2【解答】解:依题意得:x﹣1≥0且x﹣2≠0,解得x≥1且x≠2.故选:C.11.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b>0,即kb>0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k<0,b<0,即kb>0,故C不正确;D.k<0,b=0,即kb=0,故D不正确;故选:B.12.(3分)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1B.y=2n+n C.y=2n+1+n D.y=2n+n+1【解答】解:∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,2+22,…,n+2n,∴y=2n+n.故选:B.二、填空题(每题3分)13.(3分)不等式组的解集是x<2.【解答】解:,解不等式①,得x<;解不等式②,得x<2.∴不等式组的解集为x<2.故答案为:x<2.14.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.15.(3分)分解因式:a2﹣4b2=(a+2b)(a﹣2b).【解答】解:a2﹣4b2=(a+2b)(a﹣2b).故答案为:(a+2b)(a﹣2b).16.(3分)有一组数据:2,a,4,6,7,它们的平均数是5,则这组数据的中位数是6.【解答】解:∵该组数据的平均数为5,∴,∴a=6,将这组数据按照从小到大的顺序排列为:2,4,6,6,7,可得中位数为:6,故答案为:6.17.(3分)某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.如图表示的是该电路中电流I与电阻R之间函数关系的图象,当电阻R 为6Ω时,电流I为1A.【解答】解:设I=,那么点(3,2)适合这个函数解析式,则k=3×2=6,∴I=.令R=6,解得:I==1.故答案为1.18.(3分)一个圆锥形零件,高为8cm,底面圆的直径为12cm,则此圆锥的侧面积是60πcm2.【解答】解:底面直径为12cm,则底面周长=12πcm,由勾股定理得,母线长=10cm,所以侧面面积=×12π×10=60πcm2.故答案为60π.三、解答题19.(6分)计算:(3﹣π)0+4sin45°﹣+|1﹣|.【解答】解:(3﹣π)0+4sin45°﹣+|1﹣|=1+4×﹣2﹣1=1﹣2+﹣1=20.(6分)如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠E=∠BAE,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠E=∠DAE,∴DA=DE.21.(6分)解方程:+=1.【解答】解:方程两边乘以(x+1)(x﹣1)得:(x+1)2+4=(x+1)(x﹣1),解这个方程得:x=﹣3,检验:当x=﹣3时,(x+1)(x﹣1)≠0,x=﹣3是原方程的解;∴原方程的解是:x=﹣3.22.(8分)为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.【解答】解:(1)根据题意得:15÷10%=150(名).答;在这项调查中,共调查了150名学生;(2)本项调查中喜欢“立定跳远”的学生人数是;150﹣15﹣60﹣30=45(人),所占百分比是:×100%=30%,画图如下:(3)用A表示男生,B表示女生,画图如下:共有20种情况,同性别学生的情况是8种,则刚好抽到同性别学生的概率是=.23.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使P A+PB的值最小,请直接写出点P的坐标.【解答】解:(1)如图1所示:(2)如图2所示:(3)找出A的对称点A′(1,﹣1),连接BA′,与x轴交点即为P;如图3所示:点P坐标为(2,0).24.(10分)为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?【解答】解:(1)设篮球的单价为x元,则排球的单价为x元,据题意得x+x=160,解得x=96,故x=×96=64,所以篮球和排球的单价分别是96元、64元.(2)设购买的篮球数量为n,则购买的排球数量为(36﹣n)个.由题意得:解得25<n≤28.而n是整数,所以其取值为26,27,28,对应36﹣n的值为10,9,8,所以共有三种购买方案:①购买篮球26个,排球10个;②购买篮球27个,排球9个;③购买篮球28个,排球8个.25.(10分)如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.(1)求证:DE与⊙O相切;(2)求证:BC2=2CD•OE;(3)若cos C=,DE=4,求AD的长.【解答】解:(1)如图1,连接BD,OD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠BDC=90°,在Rt△BDC中,E是BC的中点,∴DE=CE=BE=BC,∴∠3=∠4,∵OD=OB,∴∠1=∠2,∴∠ODE=∠1+∠3=∠2+∠4=90°,∴DE与⊙O相切;(2)如图2,在直角三角形ABC中,∠C+∠A=90°,在直角三角形BDC中,∠C+∠4=90°,∴∠A=∠4,又∵∠C=∠C,∴△BCD∽△ACB,,∴BC2=AC•CD,∵O是AB的中点,E是BC的中点,∴AC=2OE,∴BC2=2CD•OE;(3)如图3,由(2)知,DE=BC,又DE=4,∴BC=8,在直角三角形BDC中,=cos C=,∴CD=,在直角三角形ABC中,=cos C=,∴AC=12,∴AD=AC﹣CD=.26.(12分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C 三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)b=﹣2,c=﹣3,点B的坐标为(﹣1,0);(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.【解答】解:(1)∵将点A和点C的坐标代入抛物线的解析式得:,解得:b=﹣2,c=﹣3.∴抛物线的解析式为y=x2﹣2x﹣3.∵令x2﹣2x﹣3=0,解得:x1=﹣1,x2=3.∴点B的坐标为(﹣1,0).故答案为:﹣2;﹣3;(﹣1,0).(2)存在.理由:如图所示:①当∠ACP1=90°.由(1)可知点A的坐标为(3,0).设AC的解析式为y=kx﹣3.∵将点A的坐标代入得3k﹣3=0,解得k=1,∴直线AC的解析式为y=x﹣3.∴直线CP1的解析式为y=﹣x﹣3.∵将y=﹣x﹣3与y=x2﹣2x﹣3联立解得x1=1,x2=0(舍去),∴点P1的坐标为(1,﹣4).②当∠P2AC=90°时.设AP2的解析式为y=﹣x+b.∵将x=3,y=0代入得:﹣3+b=0,解得b=3.∴直线AP2的解析式为y=﹣x+3.∵将y=﹣x+3与y=x2﹣2x﹣3联立解得x1=﹣2,x2=3(舍去),∴点P2的坐标为(﹣2,5).综上所述,P的坐标是(1,﹣4)或(﹣2,5).(3)如图2所示:连接OD.由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=3,OD⊥AC,∴D是AC的中点.又∵DF∥OC,∴.∴点P的纵坐标是.∴,解得:.∴当EF最短时,点P的坐标是:(,)或(,).。

2017年广西柳州市中考数学试卷(含答案)

2017年广西柳州市中考数学试卷(含答案)

2017年广西柳州市中考数学试卷满分:120分第I卷(选择题,共36分)一、选择题(每小题3分,共12小题,共计36分)1.(2017广西柳州,1,3分)计算:(-3)+(-3)=( )A.-9 B.9 C.-6 D.6【答案】C.解析:-3+(-3)=-(3+3)=-6.2.(2017广西柳州,2,3分) 下列交通标志中,是轴对称图形的是( )A.限制速度B.禁止同行C.禁止直行 D.禁止掉头【答案】B.解析:根据轴对称图形定义:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,则这个图形叫轴对称图形.A、C、D选项既不是中心对称图形,也不是轴对称图形,B是轴对称图形,但不是中心对称图形.3.(2017广西柳州,3,3分)如图,这是一个机械模具,则它的主视图是( )A.3 B.5 C.5.5 D.6【答案】A,解析;主视图是从几何体正边看得到的图形,题中的几何体从正边看,得到的图形是并列的两个正方形和一个圆,其中圆在右边正方形的上面.4.(2017广西柳州,4,3分)现有四个看上去完全一样的纸团,每个纸团里面分别写着数字1,2,3,4,现任意抽取一个纸团,则抽到的数字是4的概率是( )A.34B.12C.14D.1【答案】C【解析】所有等可能情况是4种(1、2、3、4),符合条件情况一种(4),故概率为14.5.(2017广西柳州,5,3分)如图,经过直线l外一点画l的垂线,能画出( ) A.1条B.2条C.3条D.4条【答案】A【解析】平面内经过一点有且只有一条直线垂直于已知直线.6.(2017广西柳州,6,3分)化简:2x-x=( )A.2 B.1 C.2x D.x【答案】D【解析】2x-x=(2-1)x=x.7.(2017广西柳州,7,3分)如图,直线y=2x必过的点是( )A .(2,1)B .(2,2)C .(-1,-1)D .(0,0) 【答案】D【解析】将各点坐标代入y =2x ,满足等号成立的既是直线上的点;或根据直线y =2x 上的纵坐标是横坐标的2倍来判断.8.(2017广西柳州,8,3分) 如图,这个五边形ABCDE 的内角和等于( )A .360°B .540°C .720°D .900° 【答案】B .解析:根据多边形内角和公式(n -2)×180°可得(5-2)×180°=540°. 9.(2017广西柳州,9,3分)如图,在⊙O 中与∠1一定相等的角是( )A .∠2B .∠3C .∠4D .∠5【答案】A ,因为∠1和∠2所对的弧都是弧BC ,根据同弧所对的圆周角相等可知∠1=∠2. 10.(2017广西柳州,10,3分)计算5a ab =( ). A .5ab B .26a b C .25a b D .10ab 300【答案】C 【解析】a·5ab =5a 1+1b =5a 2b .11. (2017广西柳州,11,3分).化简:211()2x xx-=( ) A .-x .B .1xC .22x -D . 2x【答案】D 【解析】原式=2211222x x x x x x x ⨯-⨯=-=. 12. (2017广西柳州,12,3分).如果有一组数据为1,2,3,4,5,则这组数据的方差为( )A .1B .2C .3D .4【答案】B 【解析】∵11(12345)153********x =++++=⨯=⨯=⨯= ∴2222221[(13)(23)(33)(43)2(53)]5s =⨯-+-+-+-⨯+-=2. 第II 卷(非选择题,共84分)二、填空题(每小题3分,共18分).13.(2017广西柳州,13,3分).如图,AB ∥CD ,若∠1=60°,则∠2=______°.【答案】60°【解析】∵AB ∥CD ,∴∠1=∠2=60°(两直线平行,同位角相等). 14.(2017广西柳州,14,3分).计算:35⨯=______.【答案】15.解析:353515⨯=⨯=.15.(2017广西柳州,15,3分).若点A(2,2)在反比例函数ky x=(k≠0)的图像上,则k =______. 【答案】4【解析】把(2,2)代入ky x=的k =4. 16.(2017广西柳州,16,3分)某校为了了解本届初三学生体质健康情况,从全校初三学生中随进抽取46名学生进行调查,上述抽取的样本容量为______. 【答案】46【解析】样本容量是指抽查部分的数量,没有单位.因本题随机抽查46名同学,故样本容量是46. 17.(2017广西柳州,17,3分)如图,把这个“十字星”形图绕其中心点O 旋转,当至少旋转______度后,所得图形与原图形重合.【答案】90° 【解析】360°÷4=90°.18.(2017广西柳州,18,3分)如图,在△ABC 中,D ,E 分别为AB ,AC 的中点,BE 交CD 于点O ,连接DE .有下列结论:①DE =12BC ;②△BOD ∽△COE ;③BO =2EO ;④AO 的延长线经过BC 的中点.其中正确的是______(填写所有正确结论的编号)【答案】.①③④【解析】∵D、E是AB、AC的中点,∴DE∥BC,DE=12BC,故①正确;∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AE :AC=1:2,∵DE∥BC,∴△DOE∽△BOC,∴BO:OE=BC :DE=2:1,故③正确,因为三角形三条中线交于一点,BE、CD是中线,故AO是三角形中线,故④正确;△DOE∽△COB,DO:OC=EO:OB=1:2,对△BOD和△COE来说不存在两组对边成比例,故△BOD 和△COE不一定相似,故③错误.三、解答题(本大题共8个小题,满分66分).19.(2017广西柳州,19,6分)解方程:2x-7=0.解:2x-7=02x=7x=72.20.(2017广西柳州,20,6分)如图,在平行四边形ABCD中,AB=3,BC=4,求这个平行四边形ABCD的周长..【解析】∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,∴平行四边形的周长为:2(AB+BC)=14.21.(2017广西柳州,21,6分)据查,柳州市2017年6月5日至6月9日的气象数据如下,根据数据求出这五天最高气温的平均值.6月5日星期一大雨24~32°C6月6日星期二中雨23~30°C6月7日星期三多云23~31°C6月8日星期四多云25~33°C6月9日星期五多云26~34°C【解析】11(3230313334)1603255x =++++=⨯=, 答:这五天的最高气温平均32℃.22.(2017广西柳州,22,8分)学校要组织去春游,小陈用50圆负责购买小组所需的两种食品,买第一种食品共花去了30元,剩余的钱还要买第二种食品,已知第二种食品的单价为60元/件,问:小陈最多能买第二种食品多少件?【解析】设第二种食品买x 件,根据题意得 6x≤50-30 解得x≤103, 所以第二种食品最多买3件.23.(2017广西柳州,23,8分)如图,在正方形ABCD 中,E ,F 分别为AD ,CD 边上的点,BE ,AF 交于点O ,且AE =DF .(1) 求证:△ABE ≌△DAF ;(2) 若BO =4,DE =2,求正方形ABCD 的面积.【解析】(1)证明:∵四边形ABCD 是正方形, ∴AB =AD ,∠BAE =∠D =90°, 又AE =DF ,∴△ABE ≌△DAF ; (2)∵△ABE ≌△DAF , ∴∠FAD =∠ABE , 又∠FAD+∠BAO =90°, ∴∠ABO+∠BAO =90°, ∴△ABO ∽△EAB ,∴AB :BE =BO :AB ,即AB :6=4:AB , ∴AB 2=24,所以正方形ABCD 面积是24.24.(2017广西柳州,24,10分)如图,直线y =-x+2与反比例函数ky x=(k≠0)的图像交于A(-1,m),B(m ,-1)两点,过A 作AC ⊥x 轴于点C ,过B 作BD ⊥x 轴于点D , (1)求m ,n 的值及反比例函数的解析式;(2)请问:在直线y =-x+2上是否存在点P ,使得PAC PBD =S S △△若存在,求出点P 的坐标;若不存在,请说明理由.【解析】(1)把A(-1,m)、B(n ,-1)分别代入y =-x+1得 m =1+2或-1=-n+2 ∴m =3,n =3,∴A(-1,3),B(3,-1), 把A(-1,3), 代入ky x=得k =-3, ∴3y x=-; (2) 存在.设P(x ,-x+2), 则P 到AC 、BD 的距离分别为13x x +-、, ∵PAC PBD =S S △△, 即11AC 1=322x BD x ⨯+⨯-, AC 1=3x BD x ⨯+⨯-31=13x x ⨯+⨯-1133x x +=- ∴1133x x +=-或1133x x +=--, 解得x =-3,或x =0, ∴P(-3,5)或(0,2).25.(2017广西柳州,25,10分)如图,已知AO 为Rt △ABC 的叫平分线,∠ACB =90°,43AC BC =, 以O 为圆心,OC 为半径的圆分别交AO ,BC 于点D ,E ,连接ED 并延长交AC 于点F . (1) 求证:AB 是⊙O 的切线; (2) 求tan ∠CAO 的值; (3) 求ADCF的值.【解析】(1)证明:作OG OG ⊥AB 于点G . ∵∠C =∠OGA ,∠GAO =∠CAO ,AO =AO , ∴△OGA ≌△OCA , ∴∠OGA =∠OCA =90°, ∴AB 是切线;(2) 设AC =4x ,BC =3x ,圆O 半径为r ,则AB =5x ,由切线长定理知,AC =AG =4x ,故 BG =x . ∵tan ∠B =OG :BG =AC :BC =4:3, ∴OG =4433BG x =, ∴tan ∠CAO =tan ∠GAO =13; (3)在Rt △OCA 中,AO =22410OC AC x +=, ∴AD =OA -OD =410-13x ().连接CD ,则∠DCF+∠ECD =∠ECD+∠CEF , ∴∠DCF =∠CEF ,又∠CEF =∠EDO =∠FDA ,∴∠DCF =∠ADF ,又∠FAD =∠DAC , ∴△DFA ∽△CDA , ∴DA :AC =AF :AD ,即410-13x ():4x =AF:410-13x (),∴AF =810-19x (),∴AD 3=CF 2.26.(2017广西柳州,26,12分)如图,抛物线2113y=--424x x +与x 轴交于A 、C 两点(点A 在点C 的左边).直线y =kx+b(k≠0)分别交x 轴,y 轴与A ,B 两点,且除了点A 之外,改直线与抛物线没有其他任何交点.(1)求A ,C 两点的坐标; (2)求k ,b 的值;(3)设点P 是抛物线上的动点,过点P 作直线y =kx+b(k≠0)的垂线,垂足为H ,交抛物线的对称轴于点D ,求PH+DH 的最小值,并求此时点P 的坐标.【解析】(1) 21130=--424x x +,解得x 1=-3,x 2=1,所以A(-3,0),C(1,0); (2)把A(-3,0)代入y =kx+b 得0=-3k+b ,∴b =3k;由2113424y x x y kx b⎧=--+⎪⎨⎪=+⎩得2113--424x x kx b +=+,即2(24k)340x x b ++-+=, ∵直线y =kx+b 和抛物线有唯一公共点, ∴224+4b-3b ac -=-(24k )(4)=0把b =3k 代入2+4b-3-(24k )(4)=0得 2+412k-3-(24k )()=0解得k =1,∴b =3∴直线AB 表达式为y =x+3;(3) 作HG ⊥对称轴于点G ,HF ⊥对称轴于点F . 由抛物线表达式知对称轴为x =-1,由直线y =x+3知∠EAO =∠EHG =∠AEM =∠PFD =∠PDF =45°. 当x =-1时,y =x+3=2,即H(-1,2).设P(x , 2113--424x x +),则PF =FD =-1-x ,ED =EM+MF+FD =2-(2113--424x x +)+(-1-x)= 2111-424x x +,PD 2FD 2-(1-x )∴DH =HE =22ED =22111-)2424x x +, ∴DH+PH =DH+DH -PD =2DH -PD 21112(-)2-424x x +-(x-1)=2222424x x ++, 当x =12ba-=-时,PH+DH 取得最小值,最小值是22522424x -+=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年广西柳州市中考数学试卷满分:120分第I卷(选择题,共36分)一、选择题(每小题3分,共12小题,共计36分)1.(2017广西柳州,1,3分)计算:(-3)+(-3)=( )A.-9 B.9 C.-6 D.6【答案】C.解析:-3+(-3)=-(3+3)=-6.2.(2017广西柳州,2,3分) 下列交通标志中,是轴对称图形的是( )A.限制速度B.禁止同行C.禁止直行 D.禁止掉头【答案】B.解析:根据轴对称图形定义:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,则这个图形叫轴对称图形.A、C、D选项既不是中心对称图形,也不是轴对称图形,B是轴对称图形,但不是中心对称图形.3.(2017广西柳州,3,3分)如图,这是一个机械模具,则它的主视图是( )A.3 B.5 C.5.5 D.6【答案】A,解析;主视图是从几何体正边看得到的图形,题中的几何体从正边看,得到的图形是并列的两个正方形和一个圆,其中圆在右边正方形的上面.4.(2017广西柳州,4,3分)现有四个看上去完全一样的纸团,每个纸团里面分别写着数字1,2,3,4,现任意抽取一个纸团,则抽到的数字是4的概率是( )A.34B.12C.14D.1【答案】C【解析】所有等可能情况是4种(1、2、3、4),符合条件情况一种(4),故概率为14.5.(2017广西柳州,5,3分)如图,经过直线l外一点画l的垂线,能画出( )A.1条B.2条C.3条D.4条【答案】A【解析】平面内经过一点有且只有一条直线垂直于已知直线.6.(2017广西柳州,6,3分)化简:2x-x=( )A.2 B.1 C.2x D.x【答案】D【解析】2x-x=(2-1)x=x.7.(2017广西柳州,7,3分)如图,直线y=2x必过的点是( )A .(2,1)B .(2,2)C .(-1,-1)D .(0,0) 【答案】D【解析】将各点坐标代入y =2x ,满足等号成立的既是直线上的点;或根据直线y =2x 上的纵坐标是横坐标的2倍来判断.8.(2017广西柳州,8,3分) 如图,这个五边形ABCDE 的内角和等于( )A .360°B .540°C .720°D .900° 【答案】B .解析:根据多边形内角和公式(n -2)×180°可得(5-2)×180°=540°. 9.(2017广西柳州,9,3分)如图,在⊙O 中与∠1一定相等的角是( )A .∠2B .∠3C .∠4D .∠5【答案】A ,因为∠1和∠2所对的弧都是弧BC ,根据同弧所对的圆周角相等可知∠1=∠2. 10.(2017广西柳州,10,3分)计算5a ab =( ). A .5ab B .26a b C .25a b D .10ab 300【答案】C 【解析】a·5ab =5a 1+1b =5a 2b .11. (2017广西柳州,11,3分).化简:211()2x xx-=( ) A .-x .B .1xC .22x -D . 2x【答案】D 【解析】原式=2211222x x x x x x x ⨯-⨯=-=. 12. (2017广西柳州,12,3分).如果有一组数据为1,2,3,4,5,则这组数据的方差为( )A .1B .2C .3D .4 【答案】B【解析】∵11(12345)153********x =++++=⨯=⨯=⨯= ∴2222221[(13)(23)(33)(43)2(53)]5s =⨯-+-+-+-⨯+-=2. 二、填空题(每小题3分,共18分).13.(2017广西柳州,13,3分).如图,AB ∥CD ,若∠1=60°,则∠2=______°.【答案】60°【解析】∵AB ∥CD ,∴∠1=∠2=60°(两直线平行,同位角相等).14.(2017广西柳州,14,3分).计算:35=______. 15353515⨯=.15.(2017广西柳州,15,3分).若点A(2,2)在反比例函数ky x=(k≠0)的图像上,则k =______. 【答案】4【解析】把(2,2)代入ky x=的k =4. 16.(2017广西柳州,16,3分)某校为了了解本届初三学生体质健康情况,从全校初三学生中随进抽取46名学生进行调查,上述抽取的样本容量为______. 【答案】46【解析】样本容量是指抽查部分的数量,没有单位.因本题随机抽查46名同学,故样本容量是46. 17.(2017广西柳州,17,3分)如图,把这个“十字星”形图绕其中心点O 旋转,当至少旋转______度后,所得图形与原图形重合.【答案】90° 【解析】360°÷4=90°.18.(2017广西柳州,18,3分)如图,在△ABC 中,D ,E 分别为AB ,AC 的中点,BE 交CD 于点O ,连接DE .有下列结论:①DE =12BC ;②△BOD ∽△COE ;③BO =2EO ;④AO 的延长线经过BC 的中点.其中正确的是______(填写所有正确结论的编号)【答案】.①③④【解析】∵D、E是AB、AC的中点,∴DE∥BC,DE=12BC,故①正确;∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AE :AC=1:2,∵DE∥BC,∴△DOE∽△BOC,∴BO:OE=BC :DE=2:1,故③正确,因为三角形三条中线交于一点,BE、CD是中线,故AO是三角形中线,故④正确;△DOE∽△COB,DO:OC=EO:OB=1:2,对△BOD和△COE来说不存在两组对边成比例,故△BOD 和△COE不一定相似,故③错误.三、解答题(本大题共8个小题,满分66分).19.(2017广西柳州,19,6分)解方程:2x-7=0.解:2x-7=02x=7x=72.20.(2017广西柳州,20,6分)如图,在平行四边形ABCD中,AB=3,BC=4,求这个平行四边形ABCD的周长..【解析】∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,∴平行四边形的周长为:2(AB+BC)=14.21.(2017广西柳州,21,6分)据查,柳州市2017年6月5日至6月9日的气象数据如下,根据数据求出这五天最高气温的平均值.6月5日星期一大雨24~32°C6月6日星期二中雨23~30°C6月7日星期三多云23~31°C6月8日星期四多云25~33°C6月9日星期五多云26~34°C【解析】11(3230313334)1603255x =++++=⨯=, 答:这五天的最高气温平均32℃.22.(2017广西柳州,22,8分)学校要组织去春游,小陈用50圆负责购买小组所需的两种食品,买第一种食品共花去了30元,剩余的钱还要买第二种食品,已知第二种食品的单价为60元/件,问:小陈最多能买第二种食品多少件?【解析】设第二种食品买x 件,根据题意得 6x≤50-30 解得x≤103, 所以第二种食品最多买3件.23.(2017广西柳州,23,8分)如图,在正方形ABCD 中,E ,F 分别为AD ,CD 边上的点,BE ,AF 交于点O ,且AE =DF .(1) 求证:△ABE ≌△DAF ;(2) 若BO =4,DE =2,求正方形ABCD 的面积.【解析】(1)证明:∵四边形ABCD 是正方形, ∴AB =AD ,∠BAE =∠D =90°, 又AE =DF ,∴△ABE ≌△DAF ; (2)∵△ABE ≌△DAF , ∴∠FAD =∠ABE , 又∠FAD+∠BAO =90°, ∴∠ABO+∠BAO =90°, ∴△ABO ∽△EAB ,∴AB :BE =BO :AB ,即AB :6=4:AB , ∴AB 2=24,所以正方形ABCD 面积是24.24.(2017广西柳州,24,10分)如图,直线y =-x+2与反比例函数ky x=(k≠0)的图像交于A(-1,m),B(m ,-1)两点,过A 作AC ⊥x 轴于点C ,过B 作BD ⊥x 轴于点D , (1)求m ,n 的值及反比例函数的解析式;(2)请问:在直线y =-x+2上是否存在点P ,使得PAC PBD =S S △△?若存在,求出点P 的坐标;若不存在,请说明理由.【解析】(1)把A(-1,m)、B(n ,-1)分别代入y =-x+1得 m =1+2或-1=-n+2 ∴m =3,n =3,∴A(-1,3),B(3,-1), 把A(-1,3), 代入ky x=得k =-3, ∴3y x=-; (2) 存在.设P(x ,-x+2), 则P 到AC 、BD 的距离分别为13x x +-、, ∵PAC PBD =S S △△, 即11AC 1=322x BD x ⨯+⨯-, AC 1=3x BD x ⨯+⨯-31=13x x ⨯+⨯-1133x x +=- ∴1133x x +=-或1133x x +=--, 解得x =-3,或x =0, ∴P(-3,5)或(0,2).25.(2017广西柳州,25,10分)如图,已知AO 为Rt △ABC 的叫平分线,∠ACB =90°,43AC BC =, 以O 为圆心,OC 为半径的圆分别交AO ,BC 于点D ,E ,连接ED 并延长交AC 于点F . (1) 求证:AB 是⊙O 的切线; (2) 求tan ∠CAO 的值; (3) 求ADCF的值.【解析】(1)证明:作OG OG ⊥AB 于点G . ∵∠C =∠OGA ,∠GAO =∠CAO ,AO =AO , ∴△OGA ≌△OCA , ∴∠OGA =∠OCA =90°, ∴AB 是切线;(2) 设AC =4x ,BC =3x ,圆O 半径为r ,则AB =5x ,由切线长定理知,AC =AG =4x ,故 BG =x . ∵tan ∠B =OG :BG =AC :BC =4:3, ∴OG =4433BG x =, ∴tan ∠CAO =tan ∠GAO =13;(3)在Rt △OCA 中,AO =x =, ∴AD =OA -OD =43x (). 连接CD ,则∠DCF+∠ECD =∠ECD+∠CEF ,∴∠DCF =∠CEF ,又∠CEF =∠EDO =∠FDA ,∴∠DCF =∠ADF ,又∠FAD =∠DAC , ∴△DFA ∽△CDA , ∴DA :AC =AF :AD ,即43x ():4x =AF:43x (), ∴AF =89x (), ∴AD 3=CF 2.26.(2017广西柳州,26,12分)如图,抛物线2113y=--424x x +与x 轴交于A 、C 两点(点A 在点C 的左边).直线y =kx+b(k≠0)分别交x 轴,y 轴与A ,B 两点,且除了点A 之外,改直线与抛物线没有其他任何交点.(1)求A ,C 两点的坐标; (2)求k ,b 的值;(3)设点P 是抛物线上的动点,过点P 作直线y =kx+b(k≠0)的垂线,垂足为H ,交抛物线的对称轴于点D ,求PH+DH 的最小值,并求此时点P 的坐标.【解析】(1) 21130=--424x x +,解得x 1=-3,x 2=1,所以A(-3,0),C(1,0); (2)把A(-3,0)代入y =kx+b 得0=-3k+b ,∴b =3k;由2113424y x x y kx b⎧=--+⎪⎨⎪=+⎩得2113--424x x kx b +=+,即2(24k)340x x b ++-+=, ∵直线y =kx+b 和抛物线有唯一公共点,∴224+4b-3b ac -=-(24k )(4)=0 把b =3k 代入2+4b-3-(24k )(4)=0得 2+412k-3-(24k )()=0解得k =1,∴b =3∴直线AB 表达式为y =x+3;(3) 作HG ⊥对称轴于点G ,HF ⊥对称轴于点F . 由抛物线表达式知对称轴为x =-1,由直线y =x+3知∠EAO =∠EHG =∠AEM =∠PFD =∠PDF =45°. 当x =-1时,y =x+3=2,即H(-1,2).设P(x , 2113--424x x +),则PF =FD =-1-x ,ED =EM+MF+FD =2-(2113--424x x +)+(-1-x)= 2111-424x x +,PD-1-x )∴DH =HE=2ED=2111(-)2424x x +,∴DH+PH =DH+DH -PD =2DH -PD21112(-)-424x x +x-1)=2424x x ++, 当x =12b a -=-时,PH+DH取得最小值,最小值是424x -+=。

相关文档
最新文档