随机过程读书报告
随机过程报告

随机过程报告在我们的日常生活和众多科学领域中,随机过程这一概念扮演着极其重要的角色。
它不仅是理论研究的关键领域,也在实际应用中发挥着巨大的作用。
随机过程,简单来说,就是一族随机变量,其取值会随着某些参数(比如时间)的变化而变化。
想象一下,我们在预测天气时,每天的天气状况并不是完全确定的,而是具有一定的随机性。
这种随着时间变化的不确定的天气情况,就可以看作是一个随机过程。
随机过程有着各种各样的类型。
比如,泊松过程就是其中一种常见的类型。
泊松过程通常用于描述在一定时间内某一事件发生的次数。
例如,在一段时间内到达某个服务窗口的顾客数量,或者某一时间段内网站的点击次数等。
另一个重要的随机过程是马尔可夫过程。
马尔可夫过程具有一个非常有趣的特性,那就是“无记忆性”。
这意味着未来的状态只取决于当前的状态,而与过去的历史无关。
就好像一个人在做决策时,只考虑当下的情况,而不受到之前所做决定的影响。
随机过程在通信领域也有着广泛的应用。
在信号传输过程中,由于存在各种干扰和噪声,信号的强度和质量会发生随机变化。
通过对这些随机变化的分析和建模,我们可以更好地设计通信系统,提高信号传输的可靠性和效率。
在金融领域,随机过程同样不可或缺。
股票价格的波动、汇率的变化等都具有随机性。
通过建立合适的随机模型,投资者可以对风险进行评估和管理,制定更合理的投资策略。
让我们通过一个具体的例子来更深入地理解随机过程。
假设我们有一个抽奖游戏,每次抽奖的结果是独立的,可能抽到奖品,也可能抽不到。
我们把每次抽奖看作一个时间点,抽到奖品记为 1,抽不到记为0。
那么随着抽奖次数的增加,这一系列的结果就构成了一个随机过程。
在研究随机过程时,我们会用到一些重要的概念和方法。
期望值和方差是两个常用的统计量,它们可以帮助我们了解随机变量的平均水平和波动程度。
而概率分布函数则描述了随机变量取不同值的概率。
为了更准确地描述和分析随机过程,我们还会使用一些数学工具,如微分方程和随机微分方程。
随机过程实验报告

随机过程实验报告一.实验目的通过随机过程的模拟实验, 熟悉随机过程编码规律以及各种随机过程的实现方法, 通过理论与实际相结合的方式, 加深对随机过程的理解。
二. 实验原理及实现代码1.伪随机数的产生函数功能: 采用线性同余法, 根据输入的种子数产生一个伪随机数, 如果种子不变, 则将可以重复调用产生一个伪随机序列实现思路:利用CMyRand类中定义的全局变量:S, K, N, Y。
其中K和N为算法参数, S用于保存种子数, Y为产生的随机数, 第一次调用检查将seed赋值与S获得Y的初值, 之后调用选择rand()函数赋值与Y。
代码如下:unsigned int CMyRand::MyRand(unsigned int seed){Y=seed;Y=K*seed%N;S=Y;return Y;}2.均匀分布随机数的产生在上面实验中, 已经产生了伪随机序列, 所以为了得到0~N 的均匀分布序列, 只需将其转化为min 到max 的均匀分布即可, 代码如下:double CMyRand::AverageRandom(double min,double max) {double dResult;dResult = (double(MyRand(S))/N)*(max-min)+min; dResult=(int(dResult*10000))/10000.0 ;return dResult; }3.正态分布随机数的产生由AverageRandom 函数获得0-1间隔均匀分布随机数U(0,1), i=1,2,…,n, 且相互独立, 由中心极限定理可知, 当n 较大时,()~(0,1)nU nE U Z N -=取n=12, 近似有, 也就是说, 只要产生12个伪随机数u1,u2,…u12, 将它们加起来, 再减去6, 就能近似得到标准正态变量的样本值。
代码如下:double CMyRand::NormalRandom(double miu, double sigma, double min, double max){double dResult;dResult = 0;for(int i=0;i<12;i++)dResult+=(double(MyRand(S))/N); //循环相加12次dResult-=6;dResult=(dResult*sigma+miu)*(max-min)+min;return dResult;}3.指数分布的随机数的产生用AverageRandom产生均匀分布随机数{ui}, 计算指数分布随机数: xi=-ln ui /λdouble CMyRand::ExpRandom(double lambda, double min, double max){double dResult = 0.0;dResult=-log(AverageRandom(min,max))/lambda;return dResult;}4.泊松分布的随机数产生unsigned int CMyRand::PoisonRandom(double lambda, double min, double max){unsigned int dResult = 0;double F=exp(-lambda);while(AverageRandom(0,1)>=F){F+=(lambda*F)/(dResult+1);dResult++;}return dResult;}5.计算任意分布的随机过程的均值根据大数定律, 调用任意函数加和求平均即为该分布的均值。
随机过程实验报告

一、实验目的1. 理解随机过程的基本概念和性质。
2. 掌握随机过程的基本运算和性质。
3. 通过实验验证随机过程的性质和规律。
二、实验原理随机过程是指一系列随机变量按照一定规则排列而成的序列。
在现实生活中,随机过程广泛存在于自然界和人类社会,如股票价格、气象变化、生物进化等。
随机过程的研究有助于我们更好地理解和预测这些现象。
随机过程可以分为两类:离散随机过程和连续随机过程。
本实验主要研究离散随机过程。
三、实验设备与材料1. 计算机2. 随机过程模拟软件(如Matlab)3. 纸笔四、实验内容1. 随机过程的基本概念(1)随机变量的概念随机变量是指具有不确定性的变量,它可以取多个值。
在随机过程中,随机变量是基本的研究对象。
(2)随机过程的概念随机过程是由一系列随机变量按照一定规则排列而成的序列。
2. 随机过程的基本性质(1)无后效性无后效性是指随机过程的前后状态相互独立。
(2)无记忆性无记忆性是指随机过程的状态只与当前时刻有关,与过去时刻无关。
(3)马尔可夫性马尔可夫性是指随机过程的状态只与当前时刻有关,与过去时刻无关。
3. 随机过程的运算(1)随机过程的和设{Xn}和{Yn}是两个随机过程,则它们的和{Zn}定义为Zn = Xn + Yn。
(2)随机过程的差设{Xn}和{Yn}是两个随机过程,则它们的差{Zn}定义为Zn = Xn - Yn。
(3)随机过程的乘积设{Xn}和{Yn}是两个随机过程,则它们的乘积{Zn}定义为Zn = Xn Yn。
4. 随机过程的模拟利用随机过程模拟软件(如Matlab)模拟随机过程,观察其性质和规律。
五、实验步骤1. 初始化随机数生成器2. 定义随机过程(1)根据随机过程的基本性质,定义随机过程{Xn}。
(2)根据随机过程的运算,定义随机过程{Yn}。
3. 模拟随机过程(1)使用随机过程模拟软件(如Matlab)模拟随机过程{Xn}和{Yn}。
(2)观察模拟结果,分析随机过程的性质和规律。
随机过程实验报告全

随机过程实验报告学院:专业:学号:姓名:一、实验目的通过随机过程的模拟实验,熟悉随机过程编码规律以及各种随机过程的实现方法,通过理论与实际相结合的方式,加深对随机过程的理解。
二、实验内容(1)熟悉Matlab工作环境,会计算Markov链的n步转移概率矩阵和Markov链的平稳分布。
(2)用Matlab产生服从各种常用分布的随机数,会调用matlab自带的一些常用分布的分布律或概率密度。
(3)模拟随机游走。
(4)模拟Brown运动的样本轨道的模拟。
(5)Markov过程的模拟。
三、实验原理及实验程序n步转移概率矩阵根据Matlab的矩阵运算原理编程,Pn = P ^n。
已知随机游动的转移概率矩阵为:P =0.5000 0.5000 00 0.5000 0.50000.5000 0 0.5000求三步转移概率矩阵p3及当初始分布为P{x0 = 1} = p{x0 = 2} = 0, P{x0 = 3} = 1 时经三步转移后处于状态3的概率。
代码及结果如下:P = [0.5 0.5 0; 0 0.5 0.5; 0.5 0 0.5] %一步转移概率矩阵P3 = P ^3 %三步转移概率矩阵P3_3 = P3(3,3) %三步转移后处于状态的概率1、两点分布x=0:1;y=binopdf(x,1,0.55);plot(x,y,'r*');title('两点分布');2、二项分布N=1000;p=0.3;k=0:N;pdf=binopdf(k,N,p);plot(k,pdf,'b*');title('二项分布');xlabel('k');ylabel('pdf');gridon;boxon3、泊松分布x=0:100;y=poisspdf(x,50);plot(x,y,'g.');title('泊松分布')4、几何分布x=0:100;y=geopdf(x,0.2);plot(x,y,'r*');title('几何分布');xlabel('x');ylabel('y');5、泊松过程仿真5.1 % simulate 10 timesclear;m=10; lamda=1; x=[];for i=1:ms=exprnd(lamda,'seed',1);x=[x,exprnd(lamda)];t1=cumsum(x);end[x',t1']5.2%输入:N=[];for t=0:0.1:(t1(m)+1)if t<t1(1)N=[N,0];elseif t<t1(2)N=[N,1];elseif t<t1(3)N=[N,2];elseif t<t1(4)N=[N,3];elseif t<t1(5)N=[N,4];elseif t<t1(6)N=[N,5];elseif t<t1(7)N=[N,6];elseif t<t1(8)N=[N,7];elseif t<t1(9)N=[N,8];elseif t<t1(10)N=[N,9];elseN=[N,10];endendplot(0:0.1:(t1(m)+1),N,'r-') 5.3% simulate 100 timesclear;m=100; lamda=1; x=[];for i=1:ms= rand('seed');x=[x,exprnd(lamda)];t1=cumsum(x);end[x',t1']N=[];for t=0:0.1:(t1(m)+1)if t<t1(1)N=[N,0];endfor i=1:(m-1)if t>=t1(i) & t<t1(i+1)N=[N,i];endendif t>t1(m)N=[N,m];endendplot(0:0.1:(t1(m)+1),N,'r-')6、泊松过程function I=possion(lambda,m,n)for j=1:mX=poissrnd(lambda,[1,n]); %参数为lambda的possion 过程N(1)=0;for i=2:nN(i)=N(i-1)+X(i-1);endt=1:n;plot(t,N)grid onhold onend7、布朗运动7.1一维布朗运动程序:function [t,w]=br1(t0,tf,h)t=t0:h:tf;t=t';x=randn(size(t));w(1)=0;for k=1:length(t)-1w(k+1)=w(k)+x(k);endw=sqrt(h)*w;w=w(:);end调用t0=1;tf=10;h=0.01;[t,w]=br1(t0,tf,h);figure;plot(t,w,'*');xlabel('t');ylabel('w');title('一维Brown运动模拟图'); 7.2二维布朗运动:function [x,y,m,n]=br2(x0,xf,y0,yf,h)x=x0:h:xf;y=y0:h:yf;a=randn(size(x));b=randn(size(y));m(1)=0;n(1)=0;for k=1:length(x)-1m(k+1)=m(k)+a(k);n(k+1)=n(k)+b(k);endm=sqrt(h)*m;n=sqrt(h)*n;end调用x0=0;xf=10;h=0.01;y0=0;yf=10;[x,y,m,n]=br2(x0,xf,y0,yf,h);figure;plot(m,n);xlabel('m');ylabel('n');title('二维Brown运动模拟图');7.3三维布朗运动:npoints =1000;dt = 1;bm = cumsum([zeros(1, 3); dt^0.5*randn(npoints-1, 3)]);figure(1);plot3(bm(:, 1), bm(:, 2), bm(:, 3), 'k');pcol = (bm-repmat(min(bm), npoints, 1))./ ...repmat(max(bm)-min(bm), npoints, 1);hold on;scatter3(bm(:, 1), bm(:, 2), bm(:, 3), ...10, pcol, 'filled');grid on;hold off;8、马尔科夫链离散服务系统中的缓冲动力学m=200;p=0.2;N=zeros(1,m); %初始化缓冲区A=geornd(1-p,1,m); %生成到达序列模型, for n=2:mN(n)=N(n-1)+A(n)-(N(n-1)+A(n)>=1);endstairs((0:m-1),N);9、随机数游走9.1 100步随机游走n = 100; %选取步数。
随机过程学习总结

随机过程学习报告通过这一段时间以来的学习,我认识到我们的生活中充满了随机过程的实例,在生活中我们经常需要了解在一定时间间隔[0,t)内某随机事件出现次数的统计规律,如到某商店的顾客数;某电话总机接到的呼唤次数;在电子技术领域中的散粒噪声和脉冲噪声;已编码信号的误码数等。
在我们的专业学习——通信工程中,研究数字通信中已编码信号的误码流,数模变换中对信号进行采样等也都会应用到随机过程的知识,因此这门课程的学习是非常重要的。
一、认识泊松过程与复合泊松过程的区别泊松过程是一类很重要的随机过程,随机质点流描述的随机现象十分广泛,下面我就通过运用泊松过程的知识解答一道书本中的实际应用题目:设移民到某地区定居的户数是一泊松过程,平均每周有两户定居,即λ=2。
若每户的人口数是随机变量,一户4人的概率是1/6,一户3人的概率是1/3,一户两人的概率是1/3,一户一人的概率是1/6,且每户的人口数是相互独立的,①5周内移民到该地区定居的人口数是否为泊松过程?②求上述随机过程的数学期望与方差。
分析:这道题目中的问题就是复合泊松过程的实际应用,这类过程具有泊松过程的一部分性质,不同的地方就在于随机质点流的到达不必再满足每次只能到一个的标准,这就将随机过程的研究与实际相融合,生活中的大部分过程其实是不可能满足每次到达一个这样的苛刻要求的,比如调查到达商场购物的人数等问题时,实际去商场购物时人们大多都是与好朋友结伴出行而不可能存在每个人都是独自来购物的现象,所以引入复合泊松过程是十分有必要的。
解:设[0,t)时间内到该地定居的户数为N(t),则{N(t),t>=0}是一泊松过程,X(n)为第n 户移民到该地定居的家庭人口数,{X(0)=0,X(n),n=1,2,3···}是独立同分布随机变量列,Y(t)为[0,t)时间内定居到该地的人数。
则Y(t)=∑=)(0)n (X t N n t>=0 为一复合泊松过程,)()(υϕn X =4γi e *1/6+3γi e *1/3+2γi e *1/3+γi e *1/6)()t (υϕY =)1)((t )1(-γϕλX e由特征函数的唯一性可知,Y(t)不是泊松过程。
高等概率论

立,由 sup E t , 知, sup E t /
tT tT
于是,当 时, p ( t ) E t / sup/ ,
tT
从而 E t I 对任何 t T 成立,即 sup E t I t 。 t
tT
lim sup E t I t 0 ,则称之为一致可积的。
从一致可积的定义可见:有限个期望存在的 r.v. 组成的 r.v. 族是一致可积的;如果 r.v. 族
t , t T 和 t , t T 都一致可积,那么对任何 a, b R , a t bt , t T 也一致可积。
j 1 i 1 i i j
m
n
Bj
。 E ( X g ) 是一 g 可测随机变量,
满足: E E X g I B E XI B , B g 条件期望的基本性质: (1) E E X g E X ;
(2)若 X 为 g 可测,则 E X g X a.s. ; (3)设 g 则 E X g E X a.s. ; , , (4) E X g E X g E X g a.s. ; (5) X Y a.s. E X g E Y g a.s. ; (6)设 c1 , c2 为实数, X , Y , c1 X c2Y 的数学期望存在,则
P
得E
nN
(
n
, ) 1
nN
E (
n
, ) 1 ,则
n a.s.。 N
不 成 立 , 存 在 一 些 0 使 得 E ( n , ) 1 沿 着 一 个 子 序 列 如 果 n
随机过程读书报告

随机过程读书报告摘要: 本文主要是近阶段对随机过程的初步研究的总结。
主要对随机过程的基本知识,泊松过程以及平稳随机过程进行了研究,其中,着重对平稳过程部分进行了总结。
关键词:随机过程 泊松过程 平稳随机过程Keywords: Stochastic Process Poisson process stationary random process1. 随机过程基本知识 1.1. 随机过程概念设T 为一无限实数集,记{X (t ),t ∈T},其中t 为参数,X(t)为随机变量,也称为过程状态。
将依赖参数t ∈T 的一族随机变量称为随机过程。
1.2. 随机过程分类依状态分⎩⎨⎧离散型随机过程连续型随机过程),(当出现当出现现定义本空间为例:抛掷一枚硬币,样变量上服从均匀分布的随机)为在(为正常数,,),其中(例离散型随机过程连续型随机过程∞+∞∈⎩⎨⎧==+=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-t T Htt cos X(t)T}{H,S 2,0t cos X(t):ππθωαθω 依t ∈T 的连续性分 ⎩⎨⎧离散参数随机过程连续参数随机过程1.3. 随机过程的分布函数族引人{X F (1x ,2x ,…, n x ;1t ,2t ,…, n t ), i t ∈T}来刻画随机过程在不同时刻状态之间的统计联系,其中X F (1x ,2x ,…, n x ;1t ,2t ,…, n t )=P{X (t )≤11x t X ≤)(,…,X(n t )≤n x } ,R x ∈i ,i=1,2,…,n1.4. Kolmogrov 定理若一族给定的分布函数具有对称性和相容性,则保证了存在一个随机过程{X (t ),t ∈T}使它的有限维分布族正好就是给定的分布函数族相容性:当某些x →∞时高维分布的边缘分布与相应的低维分布是一致的。
即对m ﹤n 有n m m t ,...,t ,t ,...,t 11F +(1x ,…, m x ,∞,…, ∞)=m t ,...,t 1F (1x ,…, m x )1.5. 随机过程的数字特征 均值函数)(t x μ =E[X(t)] 方差函数Var[X(t)]=E{[X(t)-)(t x μ]2}=EX 2(t)-)(t 2x μ 自相关函数),(21xx t t R =E[X(1t )X(2t )]自协方差函数),(21xx t t C =COV[X(1t ),X(2t )]=E{[ X(1t )-)(1x t μ][X(2t )-)(2x t μ]} Var[X(t)]= ),(t t C xx如果n 个随机过程之和W (t )=)(t X 1+…+)(t X n ,其中)(t X 1,…, )(t X n 两两不相关且各自均值函数为零,则有),(21w t t R =),(21x t t R 1+…+),(21x t t R n 1.6. 二维随机过程设X(t),Y(t)是依赖于同一参数t ∈T 的随机过程,对于不同的t ∈T ,(X(t),Y(t)) 是不同的二维随机变量,我们称{(X(t),Y(t)),t ∈T} 为二维随机过程给定二维随机过程{(X(t),Y(t)),t ∈T},1t ,2t ,…, n t ;'1t , '2t ,…, 'm t 是T 中任意两组实数,我们称n+m 维随机变量(X(1t ),X(2t ),…,X(n t );Y('1t )Y('2t )Y('m t ))的分布函数X F (1x ,2x ,…, n x ;1t ,2t ,…, n t ;1y ,2y ,…, m y ;'1t , '2t ,…, 'm t ),i x j y ∈R,i=1,2,…,n,j=1,2,…,m 为这个二维随机过程的n+m 维分布函数互相关函数),(21t t R XY =E[X(1t )Y(2t )]1t ,2t ∈T 互协方差函数),(C 21t t XY =E{[ X(1t )-)(1x t μ][Y(2t )-)(2Y t μ]}=),(21t t R XY -)()(2Y 1X t t μμ2. 泊松过程2.1. 独立增量过程如果对任意选定的正整数n 和任意选定的0≦0t <1t <2t <…<n t ,N 个增量,X (1t )-X(0t ),X(2t )-X(1t ),…, X(n t )-X(1n t +)相互独立,则称{X(t),t ≥0}为独立增量过程2.2. 增量的平稳性若对任意的实数h 和0≦s+h <t+h ,X(t+h)-X (s+h )与X (t )-X (s )具有相同的分布,称这一独立增量过程是其次的或时齐的 2.3. 泊松过程所需满足的条件①在不相重复的区间上的增量具有独立性,即对任何整数n=2,3,…如时刻0t =0<1t <2t <…<n t ,增量N (1t )-N (0t ),N (2t )-N (1t ),N (n t )-N (1-n t )互相独立②时间上均匀性或齐次性,即对任何时刻t 和正数h ,随机变量增量N (t+h )-N (t )的概率分布只依赖于区间长度h 而不依赖于时刻t③事件是稀有的,即存在正常数λ,当h →0时,使在长度为h 小区间里,事件至少发生一次的概率为P{N (t+h )-N (t )≥1}=λh+)(t ∆ο④相继性,即在小区间(t ,t+h]发生两个或两个以上事件的概率为 )(h ο,即当h →0, P{N (t+h )-N (t )≥2}=)(h ο 2.4. 等待时间随机变量设指点依次重复出现的时刻1t ,2t ,…, n t ,…是以强度为λ的泊松流,{N (t ),t ≥0}为相应的泊松过程。
1随机过程实验报告-副本

1随机过程实验报告 - 副本__________________________________________________________________________________随机过程试验报告班级:姓名:学号:____________________________________________________________________ ____________________________________________________________________________________________ ______________________________________________________________________________________实验一实验题目 Xtxwt()cos(),描绘出随机过程的图像实验目的 Xtxwt()cos(),利用MATLAB编程描绘出随机过程的图像实验地点及时间信息楼127机房 2012.5.31实验内容Xtxwt()cos(),绘制随机过程的图像实验习题,函数z=xcos(wt)中,w为常量,设为2;自变量为x和t,其中t[-1,1],x服从[-1,1]上的标准正态分布;y是因变量。
用Matlab编程如下:t=-1:0.01:1;>> x=normpdf(t);//x服从标准正态分布。
>> z=x.*cos(1*t);>> plot3(t,x,z);如下图所示;实验总结理解随机过程的本质含义,并学会运用MATLAB语言编程描绘在随机过程函数图像。
实验成绩评阅时间评阅教师____________________________________________________________________ ____________________________________________________________________________________________ ______________________________________________________________________________________实验二实验题目 Xtwt()cos(),,,,绘制随机相位正弦波的均值,方差和自相关函数的图像实验目的通过绘制图像,深入理解随机相位正弦波的均值,方差和自相关函数实验地点及时间信息楼127机房 2012.5.31Xtwt()cos(),,,,实验内容:绘制随机相位正弦波的均值,方差和自相关函数的图像实验习题,cos(,t,,),,,,函数z=中,令=2,=2,服从(0,2)上的均匀分布,,,t(0,2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机过程读书报告老子云:“合抱之木,生于毫末;九层之台,起于垒土;千里之行,始于足下。
”而这句话的哲理就是告诉我们量变最终可以达到质变。
而对于任何事物的认识只有逐渐积累,扩大视野,把握其整体基础体系并不断思索,才会上升到一个新的高度。
其实考试只是一种形式,而真正的去理解和领悟一门课程知识才是最为重要的,而学期结束时写一篇读书报告有利于我们去对这门课整体把握同时也复习一下已经掌握的知识。
因此,我想这也是老师的一番苦心吧!说实在的,我本科是师范类专业的,从未接触过随机过程这门在工程技术中广泛应用的课程知识。
但我感到很庆幸,有幸在读研期间接触到这门课程。
并对其有了初步的了解和认识。
下面对自己对随机过程的学习做以下报告:学习过程中通过老师的讲解和自己课下的学习我了解到随机过程的理论与方法,已广泛地应用于科学技术各个领域,并越来越显示出十分重要的作用。
例如,平稳过程的滤波和预测应用于通信、雷达及导航;时间序列分析应用于系统建模及气象预报;卡尔曼滤波应用于空间技术及信息处理;线性系统在随机作用下的分析计算应用于电力系统运行及船舶自动航行等等。
不仅如此,随机过程理论与方法已广泛地渗透到很多专业和技术领域中,特别是,作为控制科学与工程的基础课,为许多后续专业课,如系统辨识与参数估计,自适应控制,随机控制,最优估计,智能控制与专家系统等学习,打下坚实的理论基础。
因此,我认识到对于工科院校的研究生以及从事科学研究、工程技术的工作者,随机过程无疑是一门很重要的基础课程。
下面具体谈一下我所了解和学到的随机过程知识。
一般来说,把一组随机变量定义为随机过程。
在研究随机过程时人们透过表面的偶然性描述出必然的内在规律并以概率的形式来描述这些规律,从偶然中悟出必然正是这一学科的魅力所在。
古人云:“欲灭一国,必先灭其历史文化。
”由此可见历史文化的重要性,下面我们就一起来了解一下随机过程学科的历史发展,随机过程整个学科的理论基础是由柯尔莫哥洛夫和杜布奠定的。
这一学科最早源于对物理学的研究,如吉布斯、玻尔兹曼、庞加莱等人对统计力学的研究,及后来爱因斯坦、维纳、莱维等人对布朗运动的开创性工作。
1907年前后,马尔可夫研究了一系列有特定相依性的随机变量,后人称之为马尔可夫链。
1923年维纳给出布朗运动的数学定义,直到今日这一过程仍是重要的研究课题。
随机过程一般理论的研究通常认为开始于20世纪30年代。
1931年,柯尔莫哥洛夫发表了《概率论的解析方法》,1934年A·辛钦发表了《平稳过程的相关理论》,这两篇著作奠定了马尔可夫过程与平稳过程的理论基础。
1953年,杜布出版了名著《随机过程论》,系统且严格地叙述了随机过程基本理论。
在研究方法方面,研究随机过程的方法多种多样,主要可以分为两大类:一类是概率方法,其中用到轨道性质、停时和随机微分方程等;另一类是分析的方法,其中用到测度论、微分方程、半群理论、函数堆和希尔伯特空间等。
实际研究中常常两种方法并用。
另外组合方法和代数方法在某些特殊随机过程的研究中也有一定作用。
而该课程研究的主要内容有:多指标随机过程、无穷质点与马尔可夫过程、概率与位势及各种特殊过程的专题讨论等。
中国学者在平稳过程、马尔科夫过程、鞅论、极限定理、随机微分方程等方面做出了较好的工作。
然而一个实际的随机过程是任意一个受概率支配的过程,例子有:①看做是受孟德尔遗传学支配的群体的发展;②受分子碰撞影响的微观质点的布朗运动,或者是宏观空间的星体运动;③赌场中一系列的赌博;④公路一指定点汽车的通行。
在每一种情形,一个随机系统在演化,这就是说它的状态随着时间而改变,于是,在时间t的状态具有偶然性,它是一个随机变量x(t),参数t的集通常是一个区间(连续参数的随机过程)或一个整数集合(离散参数的随机过程)。
然而,有些作者会只把随机过程这个术语用于连续参数的情形。
当系统的状态用一个数来表示,x(t)就是数值的,在其他情形,x(t)可以是向量值或者更为复杂。
在本条的讨论中,通常限于数值的情形。
当状态变化时,它的值确定一个时间的函数——样本函数,支配过程的概率规律确定赋予样本函数的各种可能性质的概率。
数学上的随机过程是由实际随机过程概念引起的一种数学结构。
人们研究这种过程,是因为它是实际随机过程的数学模型,或者是因为它的内在数学意义以及它在概率论领域之外的应用。
数学上的随机过程可以简单的定义为一组随机变量,即指定一参数集,对于其中每一参数点t指定一个随机变量x(t)。
如果回忆起随机变量自身就是一个函数,以ω表示随机变量x(t)的定义域中的一点,并以x(t,ω)表示随机变量在ω的值,则随机过程就由刚才定义的点偶(t,ω)的函数以及概率的分配完全确定。
如果固定t,这个二元函数就定义一个ω的函数,即以x(t)表示的随机变量。
如果固定ω,这个二元函数就定义一个t的函数,这是过程的样本函数。
一个随机过程的概率分配通常是由指定它的随机变量的联合分布来给定的,这些联合分布以及由它们诱导出来的概率可以解释为样本函数的性质的概率。
例如,如果0t是一个参数值,样本函数在0t取正值的概率是随机变量X(0t)有正值的概率。
在这个水平上的基本定理:任意指定的自身相容的联合概率分布对应一随机过程。
发展过程随时间推进的随机现象的数学抽象。
例如,某地第n年的年降水量x由于n受许多随机因素的影响,它本身具有随机性,因此{x,n=1,2,…}便是一个随机n过程。
类似地,森林中某种动物的头数,液体中受分子碰撞而作布朗运动的粒子位置,百货公司每天的顾客数,等等,都随时间变化而形成随机过程。
严格说来,现实中大多数过程都具有程度不同的随机性。
气体分子运动时,由于相互碰撞等原因而迅速改变自己的位置与速度,其运动的过程是随机的。
人们希望知道,运动的轨道有什么性质(是否连续、可微等等)?分子从一点出发能达到某区域的概率有多大?如果有两类分子同时运动,由于扩散而互相渗透,那么扩散是如何进行的,要经过多久其混合才会变得均匀?又如,在一定时间内,放射性物质中有多少原子会分裂或转化?电话交换台将收到多少次呼唤?机器会出现多少次故障?物价如何波动?这些实际问题的数学抽象为随机过程论提供了研究的课题。
学习过程中我了解到一些特殊的随机过程早已引起注意,例如1907年前后,Α.Α.马尔可夫研究过一列有特定相依性的随机变量,后人称之为马尔可夫链(见马尔可夫过程);又如1923年N.维纳给出了布朗运动的数学定义(后人也称数学上的布朗运动为维纳过程),这种过程至今仍是重要的研究对象。
虽然如此,随机过程一般理论的研究通常认为开始于30年代。
1931年,Α.Η.柯尔莫哥洛夫发表了《概率论的解析方法》;三年后,Α.Я.辛钦发表了《平稳过程的相关理论》。
这两篇重要论文为马尔可夫过程与平稳过程奠定了理论基础。
稍后,P.莱维出版了关于布朗运动与可加过程的两本书,其中蕴含着丰富的概率思想。
1953年,J.L.杜布的名著《随机过程论》问世,它系统且严格地叙述了随机过程的基本理论。
1951年伊藤清建立了关于布朗运动的随机微分方程的理论(见随机积分),为研究马尔可夫过程开辟了新的道路;近年来由于鞅论的进展,人们讨论了关于半鞅的随机微分方程;而流形上的随机微分方程的理论,正方兴未艾。
60年代,法国学派基于马尔可夫过程和位势理论中的一些思想与结果,在相当大的程度上发展了随机过程的一般理论,包括截口定理与过程的投影理论等,中国学者在平稳过程、马尔可夫过程、鞅论、极限定理、随机微分方程等方面也做出了较好的工作。
以下为我说了解的特殊随机过程:对过程的概率结构作各种假设,便得到各类特殊的随机过程。
除上述正态过程、二阶过程外,重要的还有独立增量过程、马尔可夫过程、平稳过程、鞅点过程和分支过程等。
贯穿这些过程类的有两个最重要最基本的过程,布朗运动和泊松过程,它们的结构比较简单,便于研究而应用又很广泛。
从它们出发,可以构造出许多其他过程。
这两种过程的轨道性质不同,前者连续而后者则是上升的阶梯函数。
广义过程正如从普通函数发展到广义函数一样,随机过程也可发展到广义过程。
设D 为R 上全体无穷次可微且支集有界的实值函数φ的集,定义在D 上的连续线性泛函称为广义函数、全体广义函数的集记为x D 。
考虑Ω⨯D 上的二元函数x(Φ,ω),如果对固定的ω,x(·,ω)∈x D 是广义函数,而对固定的Φ,x(Φ,·)是随机变量,则称{x(Φ,ω):Φ∈D}为定义在(Ω,F,p)上的广义过程。
它在n ΦΦΦ,,,21 上的联合分布为全体这种联合分布构成了广义过程x 的"有穷维分布族"。
前两阶矩分别称为均值泛函和相关泛函根据有穷维分布族的性质,也可以定义特殊的广义过程类,象广义平稳过程、广义正态过程等。
例如,若对D 中任意有限个线性独立函数n ΦΦΦ,,,21 有限维分布都是正态分布,则称x={x(φ,ω)}为广义正态过程。
基础理论整理随机过程定义[1]1.设随机试验的样本空间为{}X S = ,对于空间的每一个样本S x i ∈,总有一个时间函数)(t X i 与之对应,而对于空间的所有样本S x ∈ ,可有一组时间函数{})(t X i 与其对应,那么,此时称此组时间函数 {})(,),(),(21t X t X t X n 为随机过程)(t X 。
定义[2]:对于某一固定时刻T t t ∈=1,)(1t X 为时间函数在1t t = 时 的状态,它是一个随机变量,它的样本空间为{})(,),(),(11211t X t X t X n 。
如果把该状态样本空间描述为状态函数的形式,那么我们依赖于时刻t 就有一组这样的状态函数,我们称此组状态函数{})(,),(),(21m t X t X t X 为随机过程)(t X 。
定义1与定义2本质上是一致的,后者常用于做理论分析。
讨论1. 若t 和x 都是变量,则随机过程是一组样本记录,可用全部样本记录的集合描述;2. 若t 是变量,而x 是固定值,则随机过程只是一个样本记发,它可描述为一个确定的时间函数;3. 若t 是固定值,而x 是变量,则随机过程是一个随机变量,它只是全部样本记录中某个固定时刻的点集合;4. 若t 和x 都是固定值,则随机过程是确定值。
显然,只有(1)才反映一个随机变量的完整的随机过程,其他都只是随机过程的一个样本或样点。
随机过程分类1. 按时间和状态是否连续分为:连续型随机过程、离散型随机过程、连续随机序列、离散随机序列;2. 按样本函数形式分为:不确定随机过程和确定随机过程;3. 按随机过程分布函数的特性不同分为:平稳过程、马尔克夫过程、独立增量过程等;4. 按有无平稳性分为:平稳随机过程和非平稳随机过程;5. 按有无各态历经分为:各态历经随机过程和非各态历经随机过程;6. 按功率谱特性分为:白色过程和有色过程,宽带过程和窄带过程。