一次函数与方程和不等式讲义(经典)
沪科版一次函数、一次方程、一次不等式关系课件

y
A(0,6) ●
解:作出函数y=-3x+6的图象,如 图所示,图象与x轴交于点B的坐标为(2, 0)
●
B(2,0)
x (1)由图象可知方程-3x+6=0的解就 O 是B点的横坐标:x=2; (2)由图象可知,不等式-3x+6>0 的解集是图 象位于 x轴上方的x的取值范围:x<2; 不等式 -3x+6<0的解集是图象位于 x轴下方的 x的取值范围:x>2;
根据上面一次函数 y=2x+6的 图象, 因为函数y=2x+6的图象与x轴交于点(-3,0), 你能说出一元一次不等式 所以,要使y<0,即2x+6<0,应有x<-3。 一元一次不等式 2x+6<0的解集就是直线y=2x+6 2x+6<0 的解集吗?
位于x轴下方时x的取值范围 类比知:一元一次不等式kx+b<0的解集就是直线 y=bx+b位于x轴下方时x的取值范围
2015—09---30
y=2x+6中函数值y>0,观察图象可 知,当图象在x轴上方时y>0。
• 请作出函数y=3x-9的图象,结合图象求: • 不等式3x-9≥0的解集
2015—09---30
y=2x+6
归纳三:当2x+6<0,就
是函数y=2x+6中函数值y<0,观察 图象可知,当图象在x轴下方时y<0。
2015—09---30
o
x
y=0 y<0
归纳一:
请画出一次函数 y=2x+6的图象
y=2x+6
问题 1、解方程:2x+6=0。 类比知:方程kx+b=0的解就是一次函数 2 、已知一次函 y=2x+6,问x y=kx+b的图象与x轴交点的横坐标的值 取什么值时,y=0? 这两个问题之间有何联系呢?请同学们结 结合一次函数y=2x+6的图象分组讨论、交流。
2014519最新人教版19.2.3一次函数与方程、不等式(第1课时)1

x
从数的角度看
求ax+b>0(a≠0)的解 x为何值时y=ax+b的值大于0
从形的角度看
求ax+b>0(a≠0)的解 确定直线y=ax+b在x轴上方
的图象所对应的x的取值范围
练习:根据图象来解决:2x-4>0
一次函数与一元一次方程的联系
探究: 如图 1 ,求直线 y =2x +1与 x 轴的交点,可令 y=0 ,得到一元一次方程 2x+1=0,解得________ ________ x=-0.5,即交
(-0.5,0) 点为________ .因此-0.5 就是直线 y=2x+1与 x 轴的交点的 横 坐标,也是一元一次方程__________ 2x+1=0 的解. ______
图1是函数 y=2x+1的图象, 根据图象回答方程 2x+1=0 的 解是什么?
y 1
y=2x+1
图1
-0.5
0
x
一元一次方程都可以转化为_________ kx+b=0 的形式.
求方程kx+b=0的解
当一次函数y=kx+b的值为 0 时,求相应的_______ 自变量x 的值.
求直线y=kx+b与 x轴 的交点的 横 坐标.
19.2.3 一次函数与方程、不等式 第1课时
关坝中学
对于函数中的两个变量x和y,我们可以从 哪些方面理解它们的含义呢?
变量名称 平面直角坐标系 坐标系中的点 函数解析式 x x轴 横坐标 自变量 y y轴 纵坐标 函数
思考:平面直角坐标系中,点p(x,y),当y=0时,P在什么位置? 当y>0时,P在什么位置?当y<0时,P在什么位置?
一次函数与一元一次方程、不等式

19.2.3 一次函数与方程、不等式第1课时一次函数与一元一次方程、不等式基础题知识点1 一次函数与一元一次方程1.(1)一元一次方程-2x+4=0的解是;(2)函数y=-2x+4,当x=时,函数值y=0;(3)直线y=-2x+4与x轴的交点坐标是;(4)由上述问题可知,一元一次方程ax+b=0的解就是一次函数y=ax+b当y=0时所对应的的值;从图象上看,就是一次函数y=ax+b的图象与轴交点的.2.已知关于x的方程mx+n=0的解为x=-3,则直线y=mx+n与x轴的交点坐标是.3.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.4.如图所示,已知直线y=ax-b,则关于x的方程ax-b=1的解是.5.若一次函数y=ax+b(a,b为常数且a≠0)中x 与y的部分对应值如下表,则方程ax+b=0的解是( )x -2 -1 0 1 2 3y 6 4 2 0 -2 -4C.x=2 D.x=36.已知方程kx+b=0的解是x=3,则函数y=kx +b的图象可能是( )A B C D7.已知关于x的方程kx+b=3的解为x=7,则直线y=kx+b的图象一定过点( )A.(3,0) B.(7,0)C.(3,7) D.(7,3)知识点2 一次函数与一元一次不等式(组)8.如图,直线y=kx+3经过点(2,0),(0,3),则关于x的不等式kx+3>0的解集是( ) A.x>2B.x<2C.x≥2D.x≤29.(2019·遵义)如图所示,直线l1:y=32x+6与直线l2:y=-52x-2交于点P(-2,3),则不等式32x+6>-52x-2的解集是( )A.x>-2B.x≥-2C.x<-2D.x≤-210.如图,已知一次函数y=kx+b的图象分别与x 轴、y轴交于点(2,0)、点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②当x>2时,y<0;③当x<0时,y<3.其中正确的是( )A.①②B.①③C.②③D.①②③11.(2020·遵义)如图,直线y=kx+b(k,b是常数,k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为.12.已知函数y =kx +b 的图象如图所示,利用函数图象回答:(1)当x 取何值时,kx +b =0? (2)当x 取何值时,kx +b =1.5? (3)当x 取何值时,kx +b <0? (4)当x 取何值时,0.5<kx +b <2.5?中档题13.如图是直线y =x -5的图象,点P(2,m)在该直线的下方,则m 的取值范围是( )A .m >-3B .m >-1C .m >0D .m <-314.(2020·湘潭)如图,直线y =kx +b(k <0)经过点P(1,1),当kx +b ≥x 时,则x 的取值范围为( )A .x ≤1B .x ≥1C .x <1D .x >115.(2019·娄底)如图,直线y =x +b 和y =kx +2与x 轴分别交于点A(-2,0)、点B(3,0),则⎩⎪⎨⎪⎧x +b >0,kx +2>0的解集为( )A .x <-2B .x >3C .x <-2或x >3D .-2<x <316.已知一次函数y =-2x +4,完成下列问题: (1)在所给的平面直角坐标系中画出此函数的图象. (2)根据函数图象回答:①方程-2x +4=0的解是 .②当x 时,y >2.③当-4≤y ≤0时,相应x 的取值范围是 .17.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y =k 1x +b 1和y =kx +b 的图象,分别与x 轴交于点A ,B ,两直线交于点C.已知点A(-1,0),B(2,0),观察图象并回答下列问题:(1)关于x 的方程k 1x +b 1=0的解是 ,关于x 的不等式kx +b <0的解集是 .(2)直接写出关于x 的不等式组⎩⎪⎨⎪⎧kx +b >0,k 1x +b 1>0的解集.(3)若点C(1,3),求关于x 的不等式k 1x +b 1>kx +b 的解集和△ABC 的面积.答案1.(1)x=2;(2)2;(3)(2,0);(4)x;x 横坐标.2.(-3,0).3.x=2.4.x=4.5.A6.C7.D8.B9.A10.A11.x<4.12.解:(1)x=-0.5.(2)x=1.(3)x<-0.5.(4)0<x<2. 13.D14.A15.D16.(1)(2)①x=2.②x<1.③2≤x≤4.17.解:(1)x=-1,x>2.(2)-1<x<2.(3)∵点C(1,3),∴由图象可知,不等式k1x+b1>kx+b的解集是x >1.∵AB=3,∴S△ABC=12AB·y C=12×3×3=92.。
人教版八年级数学课《 一次函数与方程、不等式》

二元一次方程组的解就是相应的 两个一次函数图象的交点坐标.
A(20,25)
30
25
20
15
10
5
10
20
y =x+5
y =0.5x+15
15
5
O
x
y
从形的角度看,二元一次方程组与一次函数有什么关系?
知识精讲
一般地,任何一个二元一次方程都可以转化为一次函数y=kx+b(k、b为常数,且k≠0)的形式,所以每个二元一次方程都对应一个一次函数,也对应一条直线.
典例解析
如图,已知直线y=kx+b与x轴交于点(- 4,0),则当y>0时,x的取值范围是( ) A.x>-4 B. x>0 C. x<-4 D. x<0
C
针对练习
求kx+b>0(或<0)(k≠0)的解集
y=kx+b的值大于(或小于)0时, x的取值范围
从“函数值”看
求kx+b>0(或<0)(k≠0)的解集
确定直线y=kx+b在x轴上方(或下方)的图象所对应的x取值范围
从“函数图象”看
一次函数与一元一次不等式的关系
知识精讲
问题3 1号探测气球从海拔5 m 处出发,以1 m/min 的速度上升.与此同时,2 号探测气球从海拔15 m 处出发,以0.5 m/min 的速度上升.两个气球都上升了1 h.(1)请用解析式分别表示两个气球所在位置的海拔 y(m)与气球上升时间 x(min)的函数关系.
典例解析
问题2 下面三个不等式有什么共同特点?你能从函数的角度对解这三个不等式进行解释吗?能把你得到的结论推广到一般情形吗? (1)3x+2>2;(2)3x+2<0;(3)3x+2<-1.
第3节 一次函数与方程(组)及一元一次不等式

第三节一次函数与方程(组)及一元一次不等式二、核心纲要直线:y = kx+b(k≠0)与x轴交点的横坐标,就是一元一次方程kx+b = 0 (k≠0)的解.求直线y = kx+b与x轴交点时,可令y = 0,得到方程k + B = 0,解方程得x=bk-,直线y=kx+b交x轴于点(bk-,0),bk-就是直线y =kx+b与x轴交点的横坐标,可令y轴交点的横坐标.注:(1)从“数”看:kx+b=0(k≠0)的解⇔在一次函数y=kx+b(k≠0)中,令y=0时,x的值.(2)从“形”看:kx+b=0(k≠0)的解⇔一次函数y=kx+b(k≠0)的图像与x轴交点的横坐标.2.—次函数与一元一次不等式的关系(1) 任何一次一次不等式都可以转化为ax+b>0或ax + b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围.(2) 函数图像的位置决定两个函数值的大小关系①函数y1的图像在函数y2的图像的上方⇔y1>y2,如下图所示;②函数y1的图像在函数y2的下方⇔y1<y2,如下图所示;③特别说明:函数y 的图像在x 轴上方⇔y >0;函数y 的图像在X 轴下方y <0.3.一次函数与二元一次方程(组)的关系(1)一次函数的解析式:y =kx +b (k ≠0)本身就是一个二元一次方程,直线y =kx +b (k ≠0)上有无数个点,每个点的横纵坐标都满足二元一次方程y =kx +b (k ≠0),因此二元一次方程的解也就有无数个. (2) —次函数:y = kx +b (k ≠0)① 从“数”看,它是一个二元一次方程; ② 从“形”看,它是一条直线。
4.两条直线的位置关系与二元一次方程组的解 (1) 二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有唯一的解⇔直线y =k 1x +b 1不平行于直线y =k 2x +b 2⇔k 1≠k 2.(2) 二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩无解⇔直线y =k 1x +b 1平行于直线y =k 2x +b 2⇔k 1=k 2,b 1≠b 2. (3) 二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有无数多个解⇔直线y =k 1x +b 1与y =k 2x +b 2重合⇔k 1=k 2,b 1=b 2.5.比较两个函数值大小的方法 (1) 画图像,求交点.(2) 过交点作平行于y 轴的直线. (3) 谁高谁大.6.数学思想数形结合和转化思想.本节重点讲解:一个定理,一个证明,两个思想.三、全能突破1.若直线y =(m -3)x +6与x 轴交于点(3,0),则m 的值为( ) A. 1 B. 2 C. 3 D. 42.如图19-3-1所示,一次函数y =kx +b 的图像经过A 、B 两点,则kx +b ≥0的解集是( ) A. x >0 B. x ≥—3 C. x >2 D. -3≤x ≤23.已知ax +b =0的解是2,则直线y =ax +b 与x 轴的交点坐标是______。
第1讲-用一次函数看方程、不等式

y2 1 1 O -2 -1x第1讲-用一次函数看方程、不等式序号知识点典型练习1从函数的角度看解一元一次方程:以x 为未知数的一元一次方程可以变形为ax +b =0(a ≠0)的形式,解一元一次方程相当于在一次函数y =ax +b 的函数值为0时,求自变量x 的值.1.若关于x 的方程kx +b =0的解是x =2,则一次函数y =kx +b 与x 轴的交点坐标是 .2从函数的角度看解一元一次不等式:以x 为未知数的一元一次不等式可以变形为ax +b >0或ax +b <0(a ≠0)的形式,解一元一次不等式相当于在一次函数y =ax+b 的值大于0或小于0时,求自变量x 的取值范围.一般地,已知函数值范围求自变量x 的范围或者已知自变量范围求函数值范围时,可以通过观察图象得到(数形结合). 2.如图,一次函数y =kx +b 的图象与x 轴交于点A (-1,0)则关于x 的不等式kx +b >0的解集是 .3从函数的角度看解二元一次方程组: 由含有未知数x 和y 的两个二元一次方程组成的二元一次方程组对应两个一次函数,也对应两条直线.从“数”的角度看,相当于求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从“形”的角度看,相当于确定两条相应的直线的交点坐标. 3.已知直线y =k 1x +b 1与y =k 2x +b 2的交点坐标为(1,4),则方程组⎩⎨⎧y =k 1x +b 1,y =k 2x +b 2的解为 .4.(1)直线y =x +3与x 轴的交点坐标 ,所以相应的方程x +3=0的解是 .(2)如图,直线y =kx +b :①关于x 的方程kx +b =0的解是 , ②关于x 的不等式kx +b <0的解集是 ; ③当x <0时,函数值y 的取值范围是 .5.若关于x 的方程kx +b =0的解是x =-4,则一次函数y =kx +b 的图象与x 轴的交点坐标为 .-21O yx-3Oxy -6 y 1=kx yy 2=ax+bx -2O -4 P6.已知一次函数y =kx +b 的图象,如图所示,当x <0时,y 的取值范围是( ).A .y >0B .y <0C .-2<y <0D .y <-27.如图,已知一次函数图象y =-2x -6,利用图象回答: (1)不等式-2x -6>0解集是 ,不等式-2x -6<0解集是 ;(2)函数图象与坐标轴围成的三角形的面积为 ; (3)当y =-4时,则x = ,当y =2时,则x = ;(4)如果y 的取值范围-4<y ≤2,则x 的取值范围 ;(5)如果x 的取值范围-3≤x ≤3,则y 的最大值是 ,最小值是 ; (6)若直线y =3x +4和直线y =-2x -6交于点A ,则点A 的坐标 .8.如图所示,已知直线y 2=ax +b 和直线y 1=kx 的图象交于点P ,利用图象回答:(1)关于二元一次方程组⎩⎨⎧y =ax+b ,y =kx的解是 ,则两直线的交点坐标是 ;(2)当y 2<y 1时,则x 的取值范围是 ; (3)当ax +b ≥kx 时,则x 的取值范围是 ; (4)当ax ≤kx -b 时,则x 的取值范围是 .9.(15海珠期末)直线y =x +1与直线y =-2x +a 的交点在第一象限,则a 的取值可以是( ). A .2B .1C .0D .-110.(15一中期末)如图,已知函数y1=3x+b和y2=ax-3的图象交于点P(-2,-5),则不等式3x+b>ax-3的解集为.11.(13太原期末改编)如图,直线l1:y1=x+1与直线l2:y2=mx+n相交于点P(1,b),直线y2与x轴交于点A(4,0).(1)求b的值并直接写出关于x,y的方程组1y xy mx n=+⎧⎨=+⎩的解;(2)求直线l2的表达式;(3)判断直线l3:y3=nx+m是否也经过点P?请说明理由.(4)若y3>y2>0,则x的取值范围是________________.12.已知一次函数y =kx+b的图象,如图所示,当y<0时,x的取值范围是().A.x>0B.x<0C.0<x<1D.x<113.(11广州)当实数x的取值使得x-2有意义时,函数y=4x+1中y的取值范围是().A.y≥-7B.y≥9 C.y>9D.y≤9 14.(15海珠期末)如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确的是().A.B.C.D.15.如图,1l反映了某公司的销售收入与销售量的关系,2l反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量().A.小于3t B.大于3t C.小于4t D.大于4t第14题第15题16.(16天河期末)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<4时,y1<y2;④b<0.其中正确的结论的个是().A.4个B.3个C.2个D.1个-2yO1x17.(16南充)小朱和爸爸从家步行去公园,爸爸先出发一直匀速前行,小朱后出发.家到公园的距离为2500m,如图是小明和爸爸所走的路程s(m)与步行时间t(min)的函数图象.(1)直接写出小朱所走路程s与时间t的函数关系式;(2)小朱出发多少时间与爸爸第三次相遇?(3)在速度都不变的情况下,小朱希望比爸爸早20min到达公园,则小朱在步行过程中停留的时间需作怎样的调整?18.(15衢州)高铁的开通,给衢州市民出行带来了极大的方便,“五一”期间,小卓卓和小越越相约到杭州市的某游乐园游玩,小卓卓乘私家车从衢州出发1小时后,小越越乘坐高铁从衢州出发,先到杭州火车站,然后再转出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示.请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米?(2)当小越越达到杭州火车东站时,小卓卓距离游乐园还有多少千米?(3)若小卓卓要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?y (千米)游乐园t(小时)19.(14海珠期末)今年龙舟赛甲乙两队同时出发,其中甲、乙两队在比赛时,路程y (千米)与时间x (小时)的函数关系如图所示.甲队在出发2.5小时到达终点.(假设乙队速度不变)(1)写出比赛全程多少千米?谁先到达终点?乙队花多少时间到达终点? (2)求乙队何时追上甲队?(3)求在比赛过程中,甲乙两队何时相距最远?20.(1)(12恩施州)如图,直线y =kx +b 经过A (3,1)和B (6,0)两点,则不等式组0<kx +b<13x 的解集为 .(1) (2)(2)如图,直线y =kx +b 经过A (2,1),B (-1,-2)两点,则不等式组12x >kx +b >-2的解集为 .21.(15广雅期末)若直线y =-2x +m 与直线y =2x -1的交点在第四象限,则m 的取值范围是( ). A .m >-1 B .m <1C .-1<m <1D .-1≤m ≤1yA 2 1 xB 0 -1 -2 -3 -2-1 1 2 322.依照题意,解答下列问题:(1)如图①,已知直线y =2x +4与x 轴,y 轴分别交于A ,B 两点,请在图①中画出直线y =-12x +4,并探究两函数的图象与x 轴围成的三角形的特点;(2)如图②,已知点M 和点N 的坐标分别为(3,4)和(-2,-1),问在y 轴上是否存在一点P ,使△MNP 是以点M 或点N 为直角顶点的直角三角形?若存在,请求出P 的坐标;若不存在,请说明理由.y xB AO(图①))yx MN O(图②))第一讲-参考答案1.(2,0) 2.x >-13.⎩⎨⎧x =1,y =44.(1)(-3,0),x =-3; (2)①x =-2;②x <-2;③y <1. 5.(-4,0)6.D 7.(1)x <-3,x >-3; (2)9;(3)-1,-4; (4)-4≤x <-1;(5)0,-12;(6)(-2,-2).8.(1)⎩⎨⎧x =-4,y =-2,(-4,-2);(2)x >-4;(3)x ≤-4;(4)x ≥-4.9.A10.x >-211.(1)b =2,12x y =⎧⎨=⎩; (2)2833y x =-+;(3)由(2)可知m =23-,n =83,∴ y =83x -23,当x =1时,y =2.∴直线l 3:y =nx +m 也经过点P . (4)1<x <4.12.D 13.B 14.A 15.D 16.D17.解:(1)s =50(020)1000(2030)50500(3060)t t t t t ⎧⎪⎨⎪-⎩≤≤<≤<≤;(2)设小朱的爸爸所走的路程s 与步行时间t 的函数关系式为:s =kt +b ,则251000250k b b +=⎧⎨=⎩,解得30250k b =⎧⎨=⎩,则小朱的爸爸所走的路程与步行时间的关系式为:s =30t +250, 当50t -500=30t +250,即t =37.5min 时,小朱与爸爸第三次相遇; (3)30t +250=2500,解得,t =75,则小朱的爸爸到达公园需要75min , ∵小朱到达公园需要的时间是60min ,∴小朱希望比爸爸早20min 到达公园,则小朱在步行过程中停留的时间需减少5min .18.解:(1)v =2402-1=240(km/h ).答:高铁的平均速度是每小时240千米; (2)设乘坐高铁时路程与时间的关系式为y =kt +b ,当t =1时,y =0,当t =2时,y =240,得:⎩⎨⎧0=k +b 240=2k +b ,解得:⎩⎨⎧k =240b =-240,故把t =1.5代入y =240t -240,得y =120, 设乘坐私家车时路程与时间的关系式为y =at , 当t =1.5,y =120,得a =80,∴y =80t , 当t =2,y =160,216-160=56(千米), ∴小卓卓距离游乐园还有56千米; (3)把y =216代入y =80t ,得t =2.7,2.7-1860=2.4(小时),216 2.4=90(千米/时).∴小卓卓要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.19.解:(1)35千米;乙;3516小时; (2)对于乙队,x =1时,y =16,所以y =16x ,对于甲队,出发1小时后,设y 与x 关系为y =kx +b ,把x =1,y =20和x =2.5,y =35代入,得⎩⎨⎧20=k +b35=2.5k +b,则y =10x +10.联立方程组,⎩⎨⎧y =16x y =10x +10,得x =53,即:出发1小时40分钟后,乙队追上甲队; (3)1小时之内,两队相距最远距离是4千米,即当x =3516时,y 甲=10×3516+10=31.875,y 乙=35,y 甲-y 乙=35-31.875=3.125; 当x =1时,y 甲-y 乙=20-16=4;∵3.125<4,所以比赛过程中,甲、乙两队在出发后1小时相距最远.20.(1)3<x <6;(2)-1<x <2. 21.C22.(1)图略;用勾股定理的逆定理可以证明两函数与x 轴围成的三角形是一个直角三角形; (2)设P (0,y ),①当PM为斜边时,PN2+MN2=PM2,即(-2)2+(-1-y)2+25+25=32+(4-y)2,解得:y=-3,即P为(0,-3);②当PN为斜边时,PM2+MN2=PN2,即32+(4-y)2+25+25=(-2)2+(-1-y)2,解得:y=7,即P为(0,7);综上所述,在y轴上存在一点P,使△MNP是直角三角形,P为(0,-3)或(0,7).。
一次函数与一元一次方程、不等式

8、人们常用“心有余而力不足”来为自 己不愿 努力而 开脱, 其实, 世上无 难事, 只怕有 心人, 积极的 思想几 乎能够 战胜世 间的一 切障碍 。 9、如果你希望成功,当以恒心为良友, 以经验 为参谋 ,以当 心为兄 弟,以 希望为 哨兵。 ——爱 迪生
1 知识小结
任何一元一次方程都可以转化为ax+b=0(a,b为常 数,a≠0)的形式,所以解一元一次方程可以转化为当某 个一次函数的函数值为0时,求相应的自变量的值.从图 象上看,相当于已知直线y=ax+b,确定它与x轴的交点 的横坐标.即“形”题用“数”解,“数”题用“形”解, 充分体现了数形结合的思想.
1 【2016·桂林】如图,直线y=ax+b过点A(0,2) 和点B(-3,0),则方程ax+b=0的解是( D ) A.x=2 B.x=0 C.x=-1 D.x=-3
2 【中考·合肥】已知方程 1 x+b=0的解是x=
2 -2,下列可能为直线y=
1 2
x+b的图象的是
( C)
3 如图,若一次函数y=-2x+b的图象交y轴于点
因为任何一个以x为未知数的一 元一次方程都可以变形为ax+b=0(a≠0)的形式,所以解 一元一次方程相当于在某个一次函数y=ax+b的函数值为 0时,求自变量x的值.
一次函数与一元一次方程的联系: 任何一个以x为未知数的一元一次方程都可以变
形为ax+b=0(a≠0,a,b为常数)的形式,所以解一 元一次方程可以转化为:求一次函数y=ax+b(a≠0, a,b为常数)的函数值为0时,自变量x的取值;反映 在图象上,就是直线y=ax+b与x轴的交点的横坐标.
一次函数与方程、不等式

第9讲一次函数与方程、不等式考点·方法·破译1.一次函数与一元一次方程的关系:任何一元一次方程都可以转化成kx+b=0(k、b 为常数,k≠0)的形式,可见一元一次方程是一次函数的一个特例.即在y=kx+b中,当y =0时则为一元一次方程.2.一次函数与二元一次方程(组)的关系:⑴任何二元一次方程ax+by=c(a、b、c为常数,且a≠0,b≠0)都可以化为y=a cxb b -+的形式,因而每个二元一次方程都对应一个一次函数;⑵从“数”的角度看,解方程组相当于求两个函数的函数值相等时自变量的取值,以及这个函数值是什么;从“形”的角度看,解方程组相当于确定两个函数图像交点的坐标.3.一次函数与一元一次不等式的关系:由于任何一元一次不等式都可以转化成ax+b >0或ax+b<0(a、b为常数,a≠0)的形式,所以解一元一次不等式可以看成是当一次函数的函数值大于或小于0时,求相应自变量的取值范围.经典·考题·赏析【例1】直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解为()A.x>-1 B.x<-1 C.x<-2 D.无法确定【解法指导】由图象可知l1与l2的交点坐标为(-1,-2),即当x=-1时,两函数的函数值相等;当x>-1时,l2的位置比l1高,因而k2x>k1x+b;当当x<-1时,l1的位置比l2高,因而k2x<k1x+b.因此选A.【变式题组】01.(咸宁)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为________.第1题图第2题图第3题图第4题图02.(浙江金华)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a >0;③当x<3时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.3 03.如图,已知一次函数y=2x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式2x+b>ax-3的解集是________.04.(武汉)如图,直线y=kx+b经过A(2,1),B(-1,-2)两点,则不等式12x>kx+b>-2的解集为_________.【例2】若直线l1:y=x-2与直线l2:y=3-mx在同一平面直角坐标系的交点在第一象限,求m的取值范围.【解法指导】直线交点坐标在第一象限,即对应方程组的解满足00x y >⎧⎨>⎩,从而求出m 的取值范围.解:23y x y mn =-⎧⎨=-⎩,∴51321x m m y m ⎧=⎪⎪+⎨-⎪=⎪+⎩,∵00x y >⎧⎨>⎩,∴5013201mm m⎧>⎪⎪+⎨-⎪>⎪+⎩,即10320m m +>⎧⎨->⎩,∴-1<m <32.【变式题组】01. 如果直线y =kx +3与y =3x -2b 的交点在x 轴上,当k =2时,b 等于( )A .9B .-3C .32-D .94-02. 若直线122y x =-与直线14y x a =-+相较于x 轴上一点,则直线14y x a =-+不经过( )A .第四象限B .第三象限C .第二象限D .第一象限 03. 两条直线y 1=ax +b ,y 2=cx +5,学生甲解出它们的交点坐标为(3,-2),学生乙因抄错了c 而解出它们的交点坐标为(34,14),则这两条直线的解析式为____________. 04. 已知直线y =3x 和y =2x +k 的交点在第三象限,则k 的取值范围是________.【例3】(四川省初二数学联赛试题)在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点,设k 为整数,当直线y =x -2与y =kx +k 的交点为整点时,k 的取值可以取( )A .4个B .5个C .6个D .7个 【解法指导】两直线的交点为整点即对应方程组的解均为整数.解:由2y x y kx k =-⎧⎨=+⎩得21221k x kk y k +⎧=⎪⎪-⎨+⎪=-⎪-⎩,∵两直线交点为整数, ∴x 、y 均为整数,又当x 为整数时,y 为整数, ∴21k k +-为整数即可,2213311111k k k k k k k ++-+=-=-=------, ∵k -1是整数,∴k -1=±1,±3时,x 、y 为整数, ∴k =-2,0,2,4. 所以选A .【变式题组】01. (广西南宁)从2,3,4,5这四个数中,任取两个数p 和q (p ≠q ),构成函数y =px -2和y =x +q ,并使这两个函数图象的交点在直线x =2的右侧,则这样的有序数对(p ,q )共有( ) A .12对 B .6对 C .5对 D .3对 02. (浙江竞赛试题)直线l :y =px (p 是不等于0的整数)与直线y =x +10的交点恰好是整点(横坐标和纵坐标都是整数),那么满足条件的直线l 有( ) A .6条 B .7条 C .8条 D .无数条 03. (荆州竞赛试题)点A 、B 分别在一次函数y =x ,y =8x 的图像上,其横坐标分别是a 、b (a >0,b >0).若直线AB 为一次函数y =kx +m 的图象,则当ba是整数时,求满足条件的整数k 的值. 【例4】已知x 、y 、z 都为非负数,满足x +y -z =1,x +2y +3z =4,记ω=3x +2y +z .求ω的最大值与最小值.【解法指导】将x 、y 、z 中的三个未知量选定一个看成已知,则关于x 、y 、z 的三元方程可变成关于x 、y 的二元方程,从而求出x 与y ,然后代入ω=3x +2y +z 中,可得ω与z 的一次函数关系式,然后再求出z 的取值范围,即可求出ω的最大值与最小值.解:由已知得:1243x y z x y z +=+⎧⎨+=-⎩,∴5234x z y z =-⎧⎨=-⎩,∴ω=3x +2y +z =3(5z -2)+2(3-4z )+z =8z .∵x 、y 、z 都为非负数,∴5203400z z z -⎧⎪-⎨⎪⎩≥≥≥,∴2354z ≤≤,∴ω的最大值为8×34=6,ω的最小值为8×25=165.【变式题组】01. (荆州竞赛试题)已知x 满足不等式:31752233x xx -+--≥,|x -3|-|x +2|的最大值为p ,最小值为q ,则pq 的值是( )A .6B .5C .-5D .-102. 已知非负数a 、b 、c 满足条件:3a +2b +c =4,2a +b +3c =5.设S =5a +4b +7c 的最大值为m ,最小值为n ,则n -m =________.03. (黄冈竞赛试题)若x +y +z =30,3x +y -z =50,x 、y 、z 均为非负数,则M =5x +4y+2z 的取值范围是( ) A .100≤M ≤110 B .110≤M ≤120 C .120≤M ≤130 D .130≤M ≤140【例5】已知直线l 1经过点(2,5)和(-1,-1)两点,与x 轴的交点是点A ,将直线y =-6x +5的图象向上平移4个单位后得到l 2,l 2与l 1的交点是点C ,l 2与x 轴的交点是点B ,求△ABC 的面积.【解法指导】设直线l 1的解析式为y =kx +b ,∵l 1经过(2,5),(-1,-1)两点, ∴251k b k b +=⎧⎨-+=-⎩,解得21k b =⎧⎨=⎩,∴y =2x +1,∴当y =0时,2x +1=0,x =12-,∴A (12-,0).又∵y =-6x +5的图象向上平移4个单位后得l 2,∴l 2的解析式为y =-6x +9, ∴当y =0时,-6x +9=0,x =32,∴B (32,0).∴2169y x y x =+⎧⎨=-+⎩,∴13x y =⎧⎨=⎩,∴C (1,3),∴AB =32-(12-)=2,∴S △ABC =12×2×3=3.演练巩固·反馈提高01. 已知一次函数y =32x +m ,和y =12-x +n 的图象交点A (-2,0),且与y 轴分别交于B 、C 两点,那么△ABC 的面积是( )A .2B .3C .4D .602. 已知关于x 的不等式ax +1>0(a ≠0)的解集是x <1,则直线y =ax +1与x 轴的交点是( )A .(0,1)B .(-1,0)C .(0,-1)D .(1,0)第3题图 第6题图03. 如图,直线y =kx +b 与x 轴交于点A (-4,0),则y >0时,x 的取值范围是( )A .x >-4B .x >0C .x <-4D .x <0 04. 直线kx -3y =8,2x +5y =-4交点的纵坐标为0,则k 的值为( )A .4B .-4C .2D .-205. 直线y =kx +b 与坐标轴的两个交点分别为A (2,0)和B (0,-3).则不等式kx +b +3≥0的解集为( ) A .x ≥0 B .x ≤0 C .x ≥2 D .x ≤206. 如图是在同一坐标系内作出的一次函数y 1、y 2的图象l 1、l 2,设y 1=k 1x +b 1,y 2=k 2x+b 2,则方程组111222y k x b y k x b ⎧⎨⎩=+,=+的解是( )A .22x y =-⎧⎨=⎩B .23x y =-⎧⎨=⎩C .33x y =-⎧⎨=⎩D .34x y =-⎧⎨=⎩07. 若直线y =ax +7经过一次函数y =4-3x 和y =2x -1的交点,则a =_________. 08. 已知一次函数y =2x +a 与y =-x +b 的图象都经过A (-2,0),且与y 轴分别交于B 、C 两点,则S △ABC =_________.09. 已知直线y =2x +b 和y =3bx -4相交于点(5,a ),则a =___________. 10.已知函数y =-x +m 与y =mx -4的图象交点在x 轴的负半轴上,则m 的值为__________.11.直线y =-2x -1与直线y =3x +m 相交于第三象限内一点,则m 的取值范围是___________. 12.若直线122a y x =-+与直线31544y x =-+的交点在第一象限,且a 为整数,则a =_________.13.直线l 1经过点(2,3)和(-1,-3),直线l 2与l 1交于点(-2,a ),且与y 轴的交点的纵坐标为7.⑴求直线l2、l1的解析式;⑵求l2、l1与x轴围成的三角形的面积;⑶x取何值时l1的函数值大于l2的函数值?14.(河北)如图,直线l1的解析式为y=-3x+3,l1与x轴交于点D,直线l2经过点A(4,0),B(3,32 ).⑴求直线l2的解析式;⑵求S△ADC;⑶在直线l2上存在异于点C的另一点P,使得S△ADP=S△ADC,求P点坐标.l2第14题图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数与方程和不等式讲义函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
1、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
2、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
3、正比例函数及性质一般地,形如y =kx (k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y =kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零当k >0时,直线y =kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k <0时,•直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y =kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k )(3) 走向:k >0时,图像经过一、三象限;k <0时,•图像经过二、四象限 (4) 增减性:k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小 (5) 倾斜度:|k |越大,越接近y 轴;|k |越小,越接近x 轴 4、一次函数及性质一般地,形如y =kx +b (k ,b 是常数,k ≠0),那么y 叫做x 的一次函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y =kx +b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y =kx +b 的图象是经过(0,b )和(-kb,0)两点的一条直线,我们称它为直线y =kx +b ,它可以看作由直线y =kx 平移|b |个单位长度得到.(当b >0时,向上平移;当b <0时,向下平移)(1)解析式:y =kx +b (k 、b 是常数,k ≠0 (2)必过点:(0,b )和(-kb,0) (3)走向: k >0,图象经过第一、三象限;k <0,图象经过第二、四象限 b >0,图象经过第一、二象限;b <0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限 (4)增减性: k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小.(5)倾斜度:|k | 越大,图象越接近于y 轴;|k | 越小,图象越接近于x 轴.(6)图像的平移: 当b >0时,将直线y =kx 的图象向上平移b 个单位; (上加下减,左加右减) 当b <0时,将直线y =kx 的图象向下平移b 个单位.当b <0时,向下平移).5、直线y =k 1x +b 1与y =k 2x +b 2的位置关系(1)两直线平行:k 1=k 2且b 1 ≠b 2 (2)两直线相交:k 1≠k 2 (3)两直线重合:k 1=k 2且b 1=b 2 (4)两直线垂直:k 1·k 2= –16、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式. 7、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax +b =0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y =ax +b 确定它与x 轴的交点的横坐标的值. 8、一次函数与一元一次方程的关系:任何一元一次方程都可以转化为kx+b=0(k ,b 为常数,k≠0)的形式,可见一元一次方程是一次函数的一个特例,这就是说,在y=kx+b 中,当y=0时,即为一元一次方程. 9、一次函数与二元一次方程(组)的关系:(1)任何二元一次方程ax+by=c (a ,b ,c 为常数,且a≠0,b≠0)都可以化为y=-abx+ c b 的形式,所以每个二元一次方程都对应着一个一次函数;(2)从“数”的角度看,解方程组相当考虑求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从“形”的角度看,解方程组相当于确定两条相应直线的交点坐标.10、一次函数的图像与两坐标轴所围成三角形的面积一次函数y =kx +b 的图象与两条坐标轴的交点:与y 轴的交点(0,b ),与x 轴的交点(kb-,0). 直线(b ≠0)与两坐标轴围成的三角形面积为s =kb b k b 2212=⨯⨯ 例题讲解:探究类型之一 一次函数与一元一次方程综合【例1】 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( )A .2-B .2C .1-D .0【例2】 已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______.【例3】 已知一次函数y kx b =+的图象经过点()20,,()13,,则不求k b ,的值,可直接得到方程3kx b +=的解是x =______.类似性问题1、把直线y=-x+3向上平移m 个单位后,与直线y=2x+4的交点在第一象限,则m 的取值范围是( )A.1<m<7B.3<m<4C.m>1D.m<4 探究类型之二 一次函数与一元一次不等式【例4】 已知一次函数25y x =-+.(1)画出它的图象;(2)求出当32x =时,y 的值;(3)求出当3y =-时,x 的值;(4)观察图象,求出当x 为何值时,0y >,0y =,0y <【例5】 当自变量x 满足什么条件时,函数41y x =-+的图象在:(1)x 轴上方; (2)y 轴左侧; (3)第一象限.(2)已知15y x =-,221y x =+.当12y y >时,x 的取值范围是( ) A .5x >B .12x <C .6x <-D .6x >-【例6】 已知一次函数23y x =-+(1)当x 取何值时,函数y 的值在1-与2之间变化?(2)当x 从2-到3变化时,函数y 的最小值和最大值各是多少?类似性问题1、 如图,函数1y =|x |,2y =13x+43,当1y >2y 时,x 的取值范围是( ) A. x <-1 B. -1<x <2 C. x <-1或x >2 D. x >22、如图,直线y=kx+b交坐标轴于A(-3,0),B(0,5)两点,则不等式-kx-b <0的解集为()A. x>-3B. x<-3C. x>3D. x<33、如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx-2的解集是________.探究类型之三一次函数、方程(组)、不等式(组)与几何等知识的综合例3、已知一次函数y=kx+b的图象经过点(-1,-5),且与函数y=12x+1的图象相交于点A(83,a).(1)求a的值;(2)求不等式组0<kx+b<12x+1的正整数解;(3)若函数y=kx+b图象与x轴的交点是B,函数y=12x+1的图象与y轴的交点是C,求四边形ABOC的面积.例4、如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求直线l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.类似性问题1.某单位急需用车,但又不准备买车,他们准备和一个个体车主或一国营出租车公司签订月租车合同.设汽车每月行驶x(cm),应付给个体车主的月费用为y1元,•应付给汽车出租公司的月费用为y2元,y1,y2分别与x之间的函数关系的图像(两条射线)如图所示,观察图像回答下列问题:(1)每月行驶的路程在什么范围内,租出租公司的车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300km,那么这个单位租哪家车合算?2.某学校计划购买若干台电脑,•现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收费,其余每台优惠25%,那么甲商场的收费y1(元)与所买电脑台数x之间的关系式是________.乙商场的优惠条件是:每台优惠20%,那么乙商场的收费y2(元)与所买电脑台数x 之间的关系式是_________.(1)什么情况下到甲商场购买更优惠?(2)什么情况下到乙商场购买更优惠?(3)什么情况下两家商场的收费相同?探究应用拓展性训练1.(与现实生活联系的应用题)某单位要制作一批宣传材料.甲公司提出:每份材料收费20元,另收3000元设计费;乙公司提出:每份材料收费30元,不收设计费.问:让哪家公司制作这批宣传比较合算?2.(学科内综合题)下图表示学校浴室淋浴器水箱中的水量y(L)•与进水时间x(min)的函数关系.(1)求y与x之间的函数关系式.(2)进水多少分钟后,水箱中的水量超过100L?3.小明准备将平时的零用钱节约一些储存起来,他已存有50元,从现在起每个月存12元.(1)试写出小明的存款数与从现在开始的月份数之间的函数关系式.(2)小明的同学小丽以前没有存过零用钱,听到小明在存零用钱,•表示从现在起每个月存18元,争取超过小明.请你在同一平面直角坐标系中分别画出小明和小丽存款数和月份数的函数关系的图像.半年以后小丽的存款数是多少?能否超过小明?•至少几个月后小丽的存款数超过小明?4.(探究题)某企业急需一辆汽车,但无资金购买,公司经理决定租一辆汽车,•使用期限为一个月.甲汽车出租公司的出租条件为每千米的租车费为1.2元,•乙汽车出租公司的条件是每月须支付司机800元的工资,另外每千米的租车费为1元,设在这一个月中汽车行驶x(km),租用甲公司的费用为y1(元),租用乙公司的费用为y2(元).(1)试分别写出y1,y2与x之间的函数关系式.(2)当汽车行驶路程为多少千米时,租用乙公司的汽车合算?一次函数与方程和不等式课后练习1:一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2 B.y=2 C.x=1-D.y=1-2:一次函数y=ax+b的图象如图所示,则不等式ax+b>0的解集是()A.x<-2 B.x>-2 C.x<1 D.x>13:已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a (x-1)-b>0的解集为()A.x<-1 B.x>-1 C.x>1 D.x<14:如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组y ax by kx=+=⎧⎨⎩的解是.5:如图,以两条直线l1,l2的交点坐标为解的方程组是()A.121x yx y-=-=⎧⎨⎩B.121x yx y-=--=-⎧⎨⎩C.121x yx y-=--=⎧⎨⎩D.121x yx y-=-=-⎧⎨⎩6:(1)已知关于x的方程mx+n=0的解是x=-2,那么,直线y=mx+n与x轴的交点坐标是.(2)如图,在平面直角坐标系中,直线AB:y=kx+b与直线OA:y=mx相交于点A(-1,-2),则关于x的不等式kx+b<mx的解是.(3)如图,直线l1和l2的交点坐标为()A.(4,-2) B.(2,-4) C.(-4,2) D.(3,-1)7:(1)已知方程2x+1=-x+4的解是x=1,那么,直线y=2x+1与直线y=-x+4的交点坐标是__ __ .(2)在平面直角坐标系中,直线y=kx+1关于直线x=1对称的直线l刚好经过点(3,2),则不等式3x>kx+1的解集是__ __ .(3)如图,直线l1、l2交于点A,试求点A的坐标.8:已知一次函数y1=kx+b和正比例函数y2=12-x的图象交于点A(-2,m),又一次函数y1=kx+b的图象过点B(1,4).(1)求一次函数的解析式;(2)根据图象写出y1>y2的取值范围.9:如图,已知一次函数的图象经过点A(-1,0)、B(0,2).(1)求一次函数的关系式;(2)设线段AB的垂直平分线交x轴于点C,求点C的坐标.10:如图,已知直线y=kx+b经过点A(1,4),B(0,2),与x轴交于点C,经过点D(1,0)的直线DE平行于OA,并与直线AB交于点E.(1)求直线AB的解析式;(2)求直线DE的解析式;(3)求△EDC的面积.11:随着人们节能环保意识的增强,绿色交通工具越来越受到人们的青睐,电动摩托成为人们首选的交通工具,某商场计划用不超过140000元购进A、B两种不同品牌的电动摩托40辆,预计这批电动摩托全部销售后可获得不少于29000元的利润,A、B两种品牌电动摩托品牌A品牌电动摩托B品牌电动摩托价格进价(元/辆) 4000 3000售价(元/辆) 5000 3500设该商场计划进A品牌电动摩托x辆,两种品牌电动摩托全部销售后可获利润y元.(1)写出y与x之间的函数关系式;(2)该商场购进A品牌电动摩托多少辆时?获利最大,最大利润是多少。