岩石硬度及塑性系数的测定(实验报告)

合集下载

岩石力学实验报告

岩石力学实验报告

岩石力学实验报告岩石力学实验报告引言岩石力学实验是研究岩石的物理力学性质和力学行为的重要手段。

通过实验可以探索岩石的力学特性,为工程建设和地质灾害防治提供依据。

本文将介绍一次岩石力学实验的过程和结果,以及对实验结果的分析和讨论。

实验目的本次实验的目的是研究不同岩石样本在不同加载条件下的力学特性,包括强度、变形和破裂行为。

通过实验结果,可以了解岩石在实际工程中的承载能力和稳定性,为工程设计和施工提供参考。

实验方法1. 样本准备:从现场采集不同类型的岩石样本,经过加工和处理后制备成标准试样,确保试样的尺寸和质量符合实验要求。

2. 强度试验:将试样放置在强度试验机上,施加逐渐增加的加载,记录试样的应力-应变曲线。

通过分析曲线,可以确定试样的弹性模量、屈服强度和抗拉强度等力学参数。

3. 变形试验:在加载过程中,观察试样的变形情况,包括弹性变形和塑性变形。

通过测量试样的应变和变形量,可以计算出试样的变形模量和变形能力等指标。

4. 破裂试验:在试样达到极限承载能力时,观察试样的破裂形态和破裂面的特征。

通过分析破裂面的形貌和结构,可以了解试样的破裂机制和破裂韧性。

实验结果与分析1. 强度试验结果:不同类型的岩石样本在强度试验中表现出不同的力学特性。

例如,花岗岩样本的强度较高,具有较高的抗压和抗拉强度;而砂岩样本的强度较低,容易发生破裂。

通过对不同样本的应力-应变曲线进行比较分析,可以得出不同岩石类型的强度参数,为岩石工程设计提供依据。

2. 变形试验结果:在加载过程中,不同岩石样本表现出不同的变形特性。

弹性模量较高的岩石样本具有较小的弹性变形,而塑性变形较大的岩石样本具有较低的弹性模量。

通过测量试样的应变和变形量,可以计算出岩石的变形模量和变形能力,为岩石的变形预测和变形控制提供参考。

3. 破裂试验结果:不同岩石样本的破裂形态和破裂面特征各异。

有些岩石样本呈现出韧性破裂,破裂面较为平滑;而有些岩石样本呈现出脆性破裂,破裂面较为粗糙。

油页岩性能检测及其结果分析

油页岩性能检测及其结果分析

油页岩性能检测及其结果分析朱文鉴1王镇泉2(1.北京探矿工程研究所,北京,100083;2.中国石油大学(北京),北京,102249)摘要:本文介绍了吉林扶余矿区和辽宁野马套海矿区的油页岩物理特性和力学特性的检测结果,结合油页岩的物理力学特性数据,作者分析了在油页岩矿区进行钻探施工采用PDC钻头的适应性和泥浆体系的优选结果。

为油页岩矿区进行地质勘探施工的钻头选型和泥浆体系优选提供一定的参考。

关键词:油页岩、适应性、试验分析油页岩是一种高灰分(>40%)的固体可燃有机矿产,低温干馏可获得类似天然石油。

它由无机物和有机物组成,常见的无机物有石英、粘土、长石碎屑物、碳酸盐等,有时还含有铜、钴、镍、钛、钒等化合物。

含油率>3.5%,有机质含量较高,主要为腐泥质、腐殖质或混合型,其发热量一般大于4186.8kJ/kg,仅次于煤的发热量。

油页岩是一种重要的能源,又属非常规油气资源,在提供动力燃料和热电等方面发挥着较大的作用。

我国油页岩资源丰富,居世界第4位。

我国油页岩主要分布在20个省和自治区、47个盆地,共有80个含矿区。

全国油页岩资源为7199.37亿T,如果将油页岩折算成页岩油,全国页岩油资源为476.44亿T,如果扣除油页岩开发和干馏过程中的损失,全国页岩油可回收资源为119.79亿T。

随着我国经济社会高速的发展,能源需求日益增大,油气资源又相对缺乏,急切需要寻找和开发可替代能源,因此开发利用油页岩是重要的可行的发展之路。

1 油页岩力学特性测试解决油页岩地层的钻探工程问题是加快油页岩勘探开发进程的必要条件。

为解决油页岩钻探中存在的技术问题,采集了吉林和辽宁省油页岩矿区的油页岩(见表1、图1),进行了油页岩的物理化学性质、力学性能等指标严格测试。

为油页岩钻井液优选、破岩工具研制、钻进规程优化、油页岩开采等提供基础数据。

图1 野外采集的油页岩样品1.1 压入硬度、塑性系数测试岩石硬度是岩石抵抗其他物体刻划或压入其表面的能力,其衡量单位是Pa(帕)或者MPa (兆帕)。

岩石矿物实验报告

岩石矿物实验报告

一、实验目的1. 通过对岩石和矿物的观察,了解其基本特征和分类;2. 培养实验操作技能,提高对岩石矿物学知识的掌握;3. 培养观察、分析、总结和归纳的能力。

二、实验时间与地点实验时间:2023年10月26日实验地点:地质实验室三、实验仪器与材料1. 实验仪器:显微镜、放大镜、岩石薄片、矿物薄片、条痕板、硬度计、岩石样品、矿物样品等;2. 实验材料:岩石、矿物、岩石薄片、矿物薄片、条痕板、硬度计等。

四、实验内容与步骤1. 观察岩石(1)观察岩石的颜色、硬度、风化程度等宏观特征;(2)观察岩石的断口、裂隙、层理等结构特征;(3)观察岩石的矿物成分。

2. 观察矿物(1)观察矿物的颜色、条痕、光泽、透明度等物理性质;(2)观察矿物的形态、晶体结构、解理等特征;(3)观察矿物的矿物学分类。

3. 岩石薄片观察(1)观察岩石薄片的光学显微镜图像,分析岩石的结构、构造、矿物成分等;(2)记录观察到的特征,进行岩石分类。

4. 矿物薄片观察(1)观察矿物薄片的光学显微镜图像,分析矿物的形态、晶体结构、解理等特征;(2)记录观察到的特征,进行矿物分类。

五、实验结果与分析1. 岩石观察结果本次实验观察到的岩石主要为花岗岩、片麻岩、砂岩等。

其中,花岗岩呈灰白色,硬度较高,风化程度较轻;片麻岩呈灰色,硬度较低,风化程度较重;砂岩呈灰色,硬度较低,风化程度较重。

2. 矿物观察结果本次实验观察到的矿物主要有石英、长石、云母、方解石等。

石英呈无色、白色,硬度7,透明度较高;长石呈白色、灰色,硬度6,透明度较高;云母呈白色、灰色,硬度2.5,透明度较高;方解石呈无色、白色,硬度3,透明度较高。

3. 岩石薄片观察结果观察到的岩石薄片主要为花岗岩、片麻岩、砂岩等。

其中,花岗岩薄片呈块状构造,矿物成分主要为石英、长石、云母等;片麻岩薄片呈片麻状构造,矿物成分主要为石英、长石、云母等;砂岩薄片呈层状构造,矿物成分主要为石英、长石、云母等。

岩石的几种试验法

岩石的几种试验法

实验一 岩石的抗拉强度实验一、原理抗拉强度是岩石力学性质的重要指标之一。

由于岩石的抗接强度远小于其抗压强度,故在受载时,岩石往往首先发生拉伸破坏,这一点在地下工程中有着重要意义。

由于直接拉伸试验受夹持条件等限制,岩石的抗拉强度一般均由间接试验得出。

在此采用国际岩石学会实验室委员会推荐并为普遍采用的间接拉伸法(劈裂法,又舟巴西法)测定岩样的抗拉强度。

由弹性理论可以证明,圆柱或立方形试件劈裂时的抗拉强度由下式确定DtP ubt πσ2=式中:P u —试件破坏时的荷载;D —圆柱体试件的直径或立方体试件高度; t —圆柱体试件厚度或立方体试件宽度。

止式认为在试件破裂面上的应力为均匀拉应力,实际上在试件受压接触点处,压应力值大于均匀拉应力值的12倍以上,然后迅速下降,以圆柱试件为例,在距圆柱试件中心大约0.8r (半径)处,应力值变为零,然后变为拉应力,至圆板中心附近拉应力取最大值,因此做劈裂试验时常在圆柱样中心附近首先产生拉伸断裂,圆柱体试件受压直径面上的应力分布如图1-1所示。

12.试样加工设备:钻石机、切石机、磨光机、卡尺、角尺、测量平台、放大镜、金刚砂、玻璃板、烘箱、干燥器等;3.垫条:直径为1.5mm 或为2.0mm 的钢丝。

三、操作步骤 1.试样制备规格为φ5厘米或5×5厘米的岩样,每组3个,加工允许尺寸误差小于0.2mm,两端面平行度小于0.1mm,端面应垂直于试样轴线,最大偏差小于0.25度。

对于非均质粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径比应满足标准试样的要求。

2.试样安装将准备好的试样连同垫条按图1-1所示的形式旋转在压力机上下压板间,然后调整压力机的横梁或活塞,使试样固定,应注意使试样上、下两垫条刚好位于包含压力机加荷板中心线的垂直面内,以避免荷载的偏心作用。

3.施加荷载以每秒3~5kg/cm2的加荷速率加压,直至试样破坏,记录最大破坏荷载,并描述试样破坏情况。

研究岩石的实验报告(3篇)

研究岩石的实验报告(3篇)

第1篇一、实验目的本次实验旨在通过岩石力学实验,研究岩石的力学性质,包括抗压强度、抗拉强度、变形性能、水理性质等,为岩土工程设计和施工提供理论依据。

二、实验原理岩石力学实验主要包括以下几种:1. 岩石单轴抗压强度试验:在岩石试件上施加轴向压力,当试件破坏时,记录破坏时的最大轴向压力,以此确定岩石的单轴抗压强度。

2. 岩石抗拉强度试验(劈裂试验):将岩石试件沿劈裂面进行拉伸,当试件破坏时,记录破坏时的最大拉伸力,以此确定岩石的抗拉强度。

3. 岩石变形试验:通过施加轴向压力,观察岩石的变形情况,分析岩石的变形规律。

4. 岩石水理性质试验:测定岩石的吸水性、软化性、抗冻性和透水性等水理性质。

三、实验仪器与材料1. 实验仪器:岩石力学试验机、万能试验机、岩样制备设备、量筒、天平等。

2. 实验材料:岩石试件、砂、水等。

四、实验步骤1. 岩石单轴抗压强度试验:(1)将岩石试件加工成标准尺寸,并对试件表面进行打磨。

(2)将试件放入岩石力学试验机,调整试验机夹具,使试件轴向压力方向与试件轴线一致。

(3)启动试验机,以一定的加载速度对试件施加轴向压力,当试件破坏时,记录破坏时的最大轴向压力。

2. 岩石抗拉强度试验(劈裂试验):(1)将岩石试件加工成标准尺寸,并对试件表面进行打磨。

(2)将试件放入万能试验机,调整试验机夹具,使试件劈裂面与试验机轴线一致。

(3)启动试验机,以一定的拉伸速度对试件施加拉伸力,当试件破坏时,记录破坏时的最大拉伸力。

3. 岩石变形试验:(1)将岩石试件加工成标准尺寸,并对试件表面进行打磨。

(2)将试件放入岩石力学试验机,调整试验机夹具,使试件轴向压力方向与试件轴线一致。

(3)启动试验机,以一定的加载速度对试件施加轴向压力,记录试件的变形情况。

4. 岩石水理性质试验:(1)测定岩石的吸水性:将岩石试件放入量筒中,加入一定量的水,记录试件吸水后的质量。

(2)测定岩石的软化性:将岩石试件浸入水中,记录试件饱和后的抗压强度。

实验一 材料的硬度测试 材料硬度实验报告

实验一 材料的硬度测试 材料硬度实验报告

实验一材料的硬度测试材料硬度实验报告一、实验目的本次实验的主要目的是通过对不同材料进行硬度测试,了解材料硬度的概念和测量方法,掌握硬度测试仪器的使用,比较不同材料的硬度差异,并分析影响材料硬度的因素。

二、实验原理材料的硬度是指材料抵抗局部变形,特别是塑性变形、压痕或划痕的能力。

硬度测试的方法多种多样,常见的有布氏硬度测试法、洛氏硬度测试法和维氏硬度测试法等。

布氏硬度测试法是通过一定直径的硬质合金球,在规定的试验力作用下压入试样表面,经规定保持时间后卸除试验力,测量试样表面压痕的直径。

布氏硬度值就是试验力除以压痕球形表面积所得的商。

洛氏硬度测试法则是采用顶角为 120 度的金刚石圆锥体或直径为1588mm 的淬火钢球作为压头,在初始试验力和主试验力的先后作用下,将压头压入试样表面,然后卸除主试验力,测量残余压痕深度增量。

维氏硬度测试是用相对面夹角为 136 度的正四棱锥金刚石压头,在规定的试验力作用下压入试样表面,保持规定时间后,卸除试验力,测量压痕两对角线长度的平均值。

三、实验仪器与材料1、实验仪器布氏硬度计洛氏硬度计维氏硬度计读数显微镜抛光机2、实验材料45 号钢试样铝合金试样黄铜试样四、实验步骤1、试样制备用切割机将材料切割成合适的尺寸,确保试样表面平整、无缺陷。

使用砂纸对试样表面进行打磨,依次使用较粗的砂纸到较细的砂纸,直到试样表面光滑。

最后使用抛光机对试样表面进行抛光,使其达到镜面效果。

2、布氏硬度测试选择合适的压头和试验力。

对于较软的材料,通常选择较大直径的压头和较小的试验力;对于较硬的材料,则选择较小直径的压头和较大的试验力。

将试样平稳地放置在工作台上,调整压头位置,使其对准试样表面的中心。

缓慢加载试验力,保持规定的时间。

卸除试验力,使用读数显微镜测量压痕的直径。

3、洛氏硬度测试根据材料的预计硬度,选择合适的标尺。

将试样放置在工作台上,施加初始试验力,然后施加主试验力。

保持规定时间后,卸除主试验力,读取表盘上的硬度值。

岩石试验检测报告

岩石试验检测报告

岩石试验检测报告一、引言本报告旨在对所测岩石的物理力学性质进行检测与分析。

为了确保数据的准确性和可靠性,我们进行了相关试验并计算了试验结果。

试验对象为一块来自地下矿区的岩石样本。

本报告将详细介绍试验过程、结果和结论。

二、试验方法1.压缩试验采用标准压缩试验机对岩石样本进行压缩试验。

首先,将岩石样本放置在试验台上,固定好后施加压力。

试验过程中将记录压力与变形的关系,以绘制应力-应变曲线。

2.弯曲试验采用标准弯曲试验机对岩石样本进行弯曲试验。

将岩石样本放置于试验台上,以一定的速度施加弯曲力。

试验过程中将记录应力与变形的关系,以绘制应力-应变曲线。

3.剪切试验采用标准剪切试验机对岩石样本进行剪切试验。

将岩石样本放置于试验台上,施加垂直方向的力,试验过程中将记录应力与变形的关系,以绘制应力-应变曲线。

三、试验结果1.压缩试验结果根据压缩试验结果绘制的应力-应变曲线显示,岩石样本在初期变形阶段应变增加速度较快,之后应变增加速度逐渐减慢,直至达到极限强度。

极限强度为XXXMPa。

此外,岩石样本在达到极限强度后发生破坏。

2.弯曲试验结果根据弯曲试验结果绘制的应力-应变曲线显示,岩石样本在应力较低的情况下出现线性弯曲变形,之后弯曲变形速度逐渐加快。

最大应力为XXXMPa。

当应力超过一定值后,岩石样本出现断裂破坏。

3.剪切试验结果根据剪切试验结果绘制的应力-应变曲线显示,岩石样本在剪切荷载作用下呈现出较明显的塑性变形。

剪切强度为XXXMPa。

剪切试验结束后,岩石样本出现剪切破坏。

四、试验分析与结论通过分析试验结果,我们可以得出以下结论:1.岩石样本的极限强度为XXXMPa,属于XXX等级。

2.岩石样本的最大应力为XXXMPa,属于XXX等级。

3.岩石样本的剪切强度为XXXMPa,属于XXX等级。

综上所述,本次岩石试验结果表明,所测岩石样本在压缩、弯曲和剪切试验中具有较好的强度和稳定性。

此外,这些数据对岩石结构设计和施工具有重要参考价值。

岩石压入硬度的试验研究

岩石压入硬度的试验研究

岩石压入硬度的试验研究
岩石的硬度是指岩石抵抗外力侵蚀、破碎和磨损能力的性质。

为了研究岩石的硬度,通常会进行岩石的压入硬度试验。

岩石的压入硬度试验是通过对岩石样本进行压缩加载,测量岩石在加载过程中的变形和应力,以确定岩石的抗压能力。

压入硬度试验通常使用万能材料试验机来进行,该机器可以模拟实际的应力和变形情况。

试验过程中,在样本外表面施加一定的压力载荷,然后通过加载仪器测量加载力和变形情况。

根据加载力和变形的关系,可以得到岩石的应力-应变曲线,从而确定它的硬度。

在进行岩石压入硬度试验时,需要注意以下几点:
1. 样本准备:岩石样本应该具有代表性,尺寸适中,表面平整。

同时,样本的边缘应当经过精心的加工,以免在试验过程中发生不均匀破坏。

2. 试验参数:根据岩石的具体特性,确定合适的试验参数,包括加载速率、加载范围、循环次数等。

3. 数据采集:试验过程中,需要及时记录加载力和变形数据,以便后续分析处理。

通过进行压入硬度试验,可以得到岩石的压缩强度、弹性模量等重要指标,对评估岩石的稳定性、耐久性和可用性等方面具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国石油大学(钻井工程)实验报告
实验日期:2010/10/17 成绩:
班级:石工07-12学号:07133224 姓名:王舒华教师:
同组者:白佳石巍
实验1 岩石硬度及塑性系数测定
一、实验目的
1. 通过实验了解岩石的物理机械性质。

2.通过实验学习掌握岩石硬度、塑性系数的测定方法
二、实验原理
利用手摇油泵加压,将液压传递给压模(硬质合金压头),推动活塞上升,使岩样与压模、位移传感器接触。

用手摇泵慢速均匀加载,随着载荷的增加,压模将逐渐压入岩样直至破碎,位移传感器测出压入深度,压力传感器测出作用在岩石上的载荷。

测出的载荷、位移信号传给函数记录仪,函数记录仪便自动记录下岩石的载荷与压入深度数据,利用专用软件将该数据导入计算机中进行数据处理,画出载荷与位移的关系曲线计算岩石硬度和塑性系数。

三、实验仪器
1.手摇油泵2.压模(d=1.2~2.5mm)3.位移传感器、载荷传感器
4.液压罐5.函数记录仪
图1仪器设备示意图图2压膜结构
四、数据处理
1.根据每点作出的曲线求出岩石硬度
P
y
表1原始数据表
表2处理数据表
根据表2作出吃入深度与载荷的关系曲线图如下图3:
岩石的硬度为: S
P =y P 其中: P —破碎时最大载荷,单位kg ;S —压模面积,单位2mm 。

由图3知: 在B 点破碎时最大载荷为P =639kg ,压模的d =2mm 。

所以, )(32.1993)/(40.203214.34
163941P 22
2y MPa mm kg d P S P ==⨯⨯===
π 按我国岩石硬度六类12级分类,该岩石为中硬6级。

2. 求塑性系数
ODEO OABCO E F S S K ==A A p
其中:AF —岩石破碎前耗费的总功,相当于OABCO S ;
AE —弹性变形功,相当于面积ODEO S ;
O P —屈服极限,kg ;
OC —压入岩样深度,mm 。

由图3可得:OABCO S 所占的格数约为29格,ODEO S 所占的格数约为21格。

所以,38.121
29S S K ODEO OABCO E F ====A A p 由塑性三类6级分类可知,该岩石为低塑性2级。

五、 实验结果
表3 实验结果数据表
六、 思考题
1.在塑性岩石中,它没有破碎点,如何求它的硬度?
答:对于塑性岩石,取产生屈服(从弹性变形开始向塑性变形转化)时的载荷OY P 代替P ,即: S
P P OY Y = 。

2.为什么要求被测岩样两端必须平行?
答:要求岩样两端面平整是保证在进行压入实验时,压头端面均匀压入岩石,即让压头端面压入的面积始终是S,避免由于不平整造成的压入面积小于S,否则会造成计算的岩石硬度的不准确。

3.画出的曲线有不规则的现象是何原因?
答:(1)手摇油泵加压时加载不均匀;
(2)岩样内部的非均质性。

相关文档
最新文档