分析比较6种最常用恒流源电路

合集下载

压控恒流源电路设计

压控恒流源电路设计

压控恒流源电路设计
压控恒流源电路是一种常用的电子电路,用于实现对负载的恒定电流控制。

它可以根据负载的电流需求,自动调整输出电压,保持电流不变。

设计压控恒流源电路的关键是利用电压和电流之间的关系来实现控制。

以下是一种常见的压控恒流源电路设计:
1.基本电路结构:
该电路由一个可变电阻和一个电流传感器组成。

可变电阻用于调整电流大小,电流传感器用于检测实际电流值。

2.参考电压电路:
在该电路中,使用一个稳定的参考电压源,例如锗二极管或稳压源,来提供一个固定的参考电压。

3.比较放大器电路:
将负载电流与参考电流进行比较,并通过比较放大器将比较结果放大。

比较放大器可以是运算放大器或比较器。

4.反馈回路:
将比较放大器的输出反馈给可变电阻,以调整电流大小。

反馈回路可以使用反馈电阻网络来实现。

5.电流传感器:
为了测量负载电流,可以使用电阻、霍尔效应传感器或电流互感器等。

整个电路的工作原理是:电流传感器检测负载电流,并将其与参考电流进行比较。

比较放大器输出的误差信号通过反馈回路调整可变电阻的阻值,从而自动调整电流大小,以保持负载电流恒定。

需要注意的是,设计压控恒流源电路时,要考虑负载的额定电流范围和电压范围,选择合适的元器件,确保电路的稳定性和可靠性。

此外,还需要进行合适的保护措施,如过流保护、过压保护等,以确保电路和负载的安全运行。

压控恒流源电路分析

压控恒流源电路分析

摘 要:恒定电流源由于具有抗干扰能力强,适合 驱动半导体 器件等优点,在信号传输与信号测量、半导体光源驱动等方面得 到广泛应用。文章介绍74种恒流源电路 ,可以满足多方面需求,在实际应用中具有一定的参考价值 。 关键词:压控恒流源;霍尔电流传感器;开关恒流源
在 日常生活 中,在半导体激光器、LED光压 (ON果反馈值是 电压)或电流 (如果反馈值是
3 大电流恒流 源
电流 )的 目的。
提高恒流源效率主要采用2种 方法:采 用霍尔电流传感
器代替采样电阻;把电流信号反馈到开关电源管理芯片上的
PW M控制器 ,控制开 关管开关 的占空比,使开关 电压源 为
开 关 电流 源 。
图3 降压 型 开 关 电源 原 理
当供 电电压 为5 V时,测量双 向电流 的ACS758,其 零电流输
样 电阻的电流值增加 了一个低通滤波环 节,也使得 电流输出
更加 稳定 ,电阻R6作为 电流负载 ,为恒流源提供了一个小电
流 ,在负载 是LED光源 时,可以防止LED存在 暗亮关不断的
问题 。
图1 常用的恒流源电路
图2 毫安 级 恒 流 源 电 路 图2中运放UI ̄[I电阻组成一个同相放大 电路,U2输 出2.4 V左 右 的基 准 电压 ,通 过 调 节 电位 器VR1,可 以使 运 放 的 正
图1中的输出电流有公式i=VJR , 为运放正输入端 的
此 ,压控恒流源 可以很方便地实现手动或 自动控制 ,压控恒 给定电压 , 电流采样 电阻。值得注意的是实际输出的电
流源 电路也具有广泛的应用价值。
流是三极管的集 电极 电流 ,而采样 电阻采集的是三极管的发
压控恒流源电路从工作状态上分为连续及开关两种,连 射极电流,两者之比值Np/n+i, 是三极管的电流放大倍数 ,

几种镜像恒流源电路分析!

几种镜像恒流源电路分析!
几种镜像恒流源电路分析!
在改进型差动放大器中,用恒流源取代射极电阻RE, 既为差动放大电路设置了合适的静态 工作电流,又大大增强了共模负反馈作用,使电路具有了更强的抑制共模信号的能力,且

不需要很高的电源电压,所以,恒流源和差动放大电路简直是 对绝配!
恒流源既可以为放大电路提供合适的静态电流,也可以作为有源负载取代高阻值的电阻, 从而增大放大电路的电压放大倍数。 这种用法在集成运放电路中有非常广泛的应用,本文 将介绍常见的恒流源电路以及作为有源负载的应用。
广播百科001 — 100期 广播百科101 — 200期 广电术语词旷( 一 ) 广电术语词汇(二)
来源:电子工程专辑
集成运放是 一 个多级放大电路,因而需要多路恒流源电路分别给各级提供合适的静态电 流。 可以利用 一个基准电流去获得多个不同的输出电流,以适应各级的需要。
图 4所示电路是在比例恒流源基础上得到的多路恒流源电路,IR为基准电流,IC1 、 IC2和 IC3为三路输出电流。 由千各管的b-e间电压 UBE数值大致相等,因此可得近似关系
一、 镜像恒流源电路 如圉 1所示为镜像恒流源电路,它由两只特性完全相同的管子VTO和VT1构成,由于VTO管 的c、 b极连接,因此UCEO=UBEO, 即 VTO处于放大状态,集电极电流ICO=�O*IBO。 另 外,管子VTO和VT1的b-e 分别连接,所以它们的基极电流1B0=1B1=1B。 设电流放大系数 �0= 阳=�'则两管集电极电流ICO=IC1=IC=�*IB。 可见,由于电路的这种特殊接法,使 两管集电极IC1和ICO呈镜像关系,故称此电路为镜像恒流源 (IR为基准电流,IC1为输出 电流)。
IEOReO�IE1Re1�1E2Re2�1E3Re3 (2-6)

6种最常用恒流源电路的分析与比较

6种最常用恒流源电路的分析与比较

恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极性恒流电路:类型1:特征:使用运放,高精度输出电流:Iout=Vref/Rs类型2:特征:使用并联稳压器,简单且高精度输出电流:Iout=Vref/Rs检测电压:根据Vref不同(1.25V或2.5V)类型3:特征:使用晶体管,简单,低精度输出电流:Iout=Vbe/Rs检测电压:约0.6V类型4:特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测输出电流:Iout=Vref/Rs检测电压:约0.1V~0.6V类型5:特征:使用JEFT,超低噪声输出电流:由JEFT决定检测电压:与JEFT有关其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压Vs(Vs=Rs×Iout)相等,如图5所示,图5注:Is=IB+Iout=Iout(1+1/h FE)其中1/h FE为误差若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不允许时,可采用图6所示那样采用FET管图6Is=Iout-I G类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利用范围较窄类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe(约0.6V)替代Vref的电路,因此,Vbe的温度变化毫无改变地呈现在输出中,从而的不到期望的精度类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽类型5,这是利用J-FET的电路,改变R gs可使输出电流达到漏极饱和电流I DSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接R GS,则电流值变成I DSS,这样,J-FET接成二极管形式就变成了“恒流二极管”以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的半导体元件,则可以变成电流吐出型电路。

恒流方案大全

恒流方案大全

恒流方案大全恒流源是电路中普遍利用的一个组件,那个地址我整理一下比较常见的恒流源的结构和特点。

恒流源分为流出(Current Source)和流入(Current Sink)两种形式。

最简单的恒流源,确实是用一只恒流二极管。

事实上,恒流二极管的应用是比较少的,除因为恒流二极管的恒流特性并非是超级好之外,电流规格比较少,价钱比较贵也是重要缘故。

最经常使用的简易恒流源如图(1) 所示,用两只同型三极管,利用三极管相对稳固的be电压作为基准,电流数值为:I = Vbe/R1。

这种恒流源优势是简单易行,而且电流的数值能够自由操纵,也没有利用特殊的元件,有利于降低产品的本钱。

缺点是不同型号的管子,其be电压不是一个固定值,即便是相同型号,也有必然的个体不同。

同时不同的工作电流下,那个电压也会有必然的波动。

因此不适合周密的恒流需求。

为了能够精准输出电流,通常利用一个运放作为反馈,同时利用处效应管幸免三极管的be 电流致使的误差。

典型的运放恒流源如图(2)所示,若是电流不需要专门精准,其中的场效应管也能够用三极管代替。

电流计算公式为:I = Vin/R1那个电路能够以为是恒流源的标准电路,除足够的精度和可调性之外,利用的元件也都是很普遍的,易于搭建和调试。

只只是其中的Vin还需要用户额外提供。

从以上两个电路能够看出,恒流源有个定式(寒,“定式”仿佛是围棋术语XD),确实是利用一个电压基准,在电阻上形成固定电流。

有了那个定式,恒流源的搭建就能够够扩展到所有能够提供那个“电压基准”的器件上。

最简单的电压基准,确实是稳压二极管,利用稳压二极管和一只三极管,能够搭建一个更简易的恒流源。

如图(3)所示:电流计算公式为:I = (Vd-Vbe)/R1TL431是另外一个经常使用的电压基准,利用TL431搭建的恒流源如图(4)所示,其中的三极管替换为场效应管能够取得更好的精度。

TL431组成流出源的电路,临时我还没想到:)TL431的其他信息请参考《》和《》电流计算公式为:I = R1事实上,所有的三端稳压,都是很不错的电压源,而且三端稳压的精度已经很高,需要的维持电流也很小。

常用的恒流电路

常用的恒流电路

常用的恒流电路
恒流电路是一种控制电流大小不受负载变化影响的电路。

在实际电路中,常用的恒流电路有电流源电路和晶体管恒流源电路。

一、电流源电路
1. 晶体管基本电流源电路
晶体管基本电流源电路是一种简单的恒流电路,由一个固定电阻和晶体管组成。

其原理是通过晶体管的基极和发射极之间的电压来控制电流。

当输入信号的电压改变时,电流也会相应地改变。

2. 晶体管双向恒流源电路
晶体管双向恒流源电路是一种具有双向输出的恒流电路,其原理是使用两个晶体管和一个电阻网络实现。

当输入信号的电压改变时,输出电流也会相应地改变。

二、晶体管恒流源电路
晶体管恒流源电路是一种高精度、高稳定性的恒流电路,其原理是通
过负反馈控制器将输出电流保持在恒定的值。

该电路通常由一个晶体管、一个稳压电路、一个电阻和一个电容组成。

总之,恒流电路在实际应用中有着广泛的用途,如LED驱动、电机控制、高精度电源等。

通过采用适当的电路设计和元件选择,可以实现高效、稳定的恒流输出,从而为实际应用提供可靠的支持。

单片机恒流源电路

单片机恒流源电路

单片机恒流源电路单片机恒流源电路是一种常见的电路设计,用于控制电流的稳定输出。

它通常由单片机、电流控制芯片和其他辅助元件组成。

我们需要明确什么是恒流源。

恒流源是一种能够以恒定电流输出的电路,它可以根据需要提供稳定的电流给负载。

在很多应用中,需要对负载施加恒定的电流,例如LED驱动、电化学实验等。

而单片机恒流源电路则是通过单片机来控制电流的输出,实现对负载的精确控制。

在单片机恒流源电路中,单片机起到了控制电流的关键作用。

单片机通过与电流控制芯片的配合,可以根据设定的参数来调整电流的大小。

单片机可以通过编程来控制电流源的输出,实现对电流的精确调节。

同时,单片机还可以监测电流的大小,并根据需要进行反馈调整,保证输出电流的稳定性。

除了单片机和电流控制芯片,单片机恒流源电路还需要其他辅助元件来完成电路的设计。

例如,电流采样电阻用于监测电流的大小,电流采样电阻的阻值决定了电流的测量精度;功率放大器用于放大单片机输出的电流信号,以驱动负载;电源电路用于为电路提供稳定的电源等。

在设计单片机恒流源电路时,需要注意以下几点。

首先,选择合适的电流控制芯片和单片机,确保它们的性能和功能满足设计要求。

其次,根据负载的特性和需求来确定电流的大小范围,并选择合适的电流采样电阻。

此外,还需要考虑到电路的稳定性和可靠性,例如添加滤波电容、稳压电路等。

最后,通过编程来实现对电流的控制和监测,确保输出电流的精确性和稳定性。

单片机恒流源电路是一种常见的电路设计,通过单片机的控制和调节,实现对电流的稳定输出。

它在很多应用中都有广泛的应用,例如LED照明、电化学实验等。

设计单片机恒流源电路需要考虑多个因素,包括电流控制芯片的选择、电流采样电阻的确定以及电路的稳定性等。

通过合理的设计和编程,可以实现对电流的精确控制,满足不同应用的需求。

(电源技术)恒流源

(电源技术)恒流源
恒流源电路
概述
恒流源是能够向负载提供恒定电流的电 源 ,因此恒流源的应用范围非常广泛 ,并且 在许多情况下是必不可少的。例如在用通 常的充电器对蓄电池充电时 ,随着蓄电池端 电压的逐渐升高, 充电电流就会相应减少。 为了保证恒流充电 ,必须随时提高充电器的 输出电压,但采用恒流源充电后就可以不必 调整其输出电压 ,从而使劳动强度降低 ,生 产效率得到了提高。恒流源还被广泛用于 测量电路中 ,例如电阻器阻值的测量和分级, 电缆电阻的测量等 ,且电流越稳定,测量就 越准确。
恒流源电路
微电流恒流源电路
为了尽可能降低放大电路的功耗、提高对电源电 压及温度变化的稳定性,在集成电路中常采用微电流 恒流源电路作为放大电路的直流偏置电路。
+UCC
结构特点:
(1)电阻Re引入电流负反馈,使输出电流 R IR
IO
进一步稳定。
IC1
(2)由于UBE2<UBE1,所以IO<IR。
T1
从三极管特性曲线可见,工作区内的IC受 IB影响,而VCE对IC的影响很微。 因此,只要IB值固定,IC亦都可以固定。 输出电流IO即是流经负载的IC。
三极管射极偏压构成恒流源
从左边看起:基极偏压
VE = VB - 0.6 = 1.0V
又因为射极电阻是1K,流经射极电阻的电流是
所以流经负载的电流就就是稳定的1mA
恒流源分为流出(Current Source)和流入(Current Sink)两种形式。
恒流源是输出电流保持不变的电流源,而理想的 恒流源为: a)不因负载(输出电压)变化而改变。 b)不因环境温度变化而改变。 c)内阻为无限大。
理想恒流源
实际恒流源
理想的恒流源,其内阻为无限大,使其电流可以全部流出 外面。实际的恒流源皆有内阻R。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分析比较6种最常用恒流源电路
恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极性恒流电路:
类型1:
特征:使用运放,高精度
输出电流:Iout=Vref/Rs
类型2:
特征:使用并联稳压器,简单且高精度
输出电流:Iout=Vref/Rs
检测电压:根据Vref不同(1.25V或2.5V)
类型3:
特征:使用晶体管,简单,低精度
输出电流:Iout=Vbe/Rs
检测电压:约0.6V
类型4:
特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测输出电流:Iout=Vref/Rs
检测电压:约0.1V~0.6V
类型5:
特征:使用JEFT,超低噪声
输出电流:由JEFT决定
检测电压:与JEFT有关
其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压Vs(Vs=Rs×Iout)相等,如图5所示,
图5
注:Is=IB+Iout=Iout(1+1/h FE)其中1/h FE为误差
若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不
允许时,可采用图6所示那样采用FET管
图6
Is=Iout-I G
类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利用范围较窄
类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe(约0.6V)替代Vref的电路,因此,Vbe的温度变化毫无改变地呈现在输出中,从而的不到期望的精度
类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽
类型5,这是利用J-FET的电路,改变R gs可使输出电流达到漏极饱和电流I DSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接R GS,则电流值变成I DSS,这样,J-FET接成二极管形式就变成了“恒流二极管”
以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的
半导体元件,则可以变成电流吐出型电路。

相关文档
最新文档