最新压控恒流源电路设计资料
压控恒流源电路设计

压控恒流源电路设计
压控恒流源电路是一种常用的电子电路,用于实现对负载的恒定电流控制。
它可以根据负载的电流需求,自动调整输出电压,保持电流不变。
设计压控恒流源电路的关键是利用电压和电流之间的关系来实现控制。
以下是一种常见的压控恒流源电路设计:
1.基本电路结构:
该电路由一个可变电阻和一个电流传感器组成。
可变电阻用于调整电流大小,电流传感器用于检测实际电流值。
2.参考电压电路:
在该电路中,使用一个稳定的参考电压源,例如锗二极管或稳压源,来提供一个固定的参考电压。
3.比较放大器电路:
将负载电流与参考电流进行比较,并通过比较放大器将比较结果放大。
比较放大器可以是运算放大器或比较器。
4.反馈回路:
将比较放大器的输出反馈给可变电阻,以调整电流大小。
反馈回路可以使用反馈电阻网络来实现。
5.电流传感器:
为了测量负载电流,可以使用电阻、霍尔效应传感器或电流互感器等。
整个电路的工作原理是:电流传感器检测负载电流,并将其与参考电流进行比较。
比较放大器输出的误差信号通过反馈回路调整可变电阻的阻值,从而自动调整电流大小,以保持负载电流恒定。
需要注意的是,设计压控恒流源电路时,要考虑负载的额定电流范围和电压范围,选择合适的元器件,确保电路的稳定性和可靠性。
此外,还需要进行合适的保护措施,如过流保护、过压保护等,以确保电路和负载的安全运行。
STM32实现4-20mA压控恒流源电路

STM32实现4-20mA压控恒流源电路为工业场合开发的设备通常情况下都会具有4-20mA输出接口,在以往没有DAC模块的单片机系统,需要外加一主片DAC实现模拟量的控制,或者采用PWM来摸拟DA,但也带来温漂和长期稳定性问题。
在以STM32为中心的设备中,使用它自带的DAC即可非常方便的实现4-20mA的输出接口,具有精度高、稳定性好、漂移小以及编程方便等特点。
在STM32单片机系统中,100脚以下没有外接出VREF引脚,但这样使得DAC的参考端和VCC共用,带来较大误码差,为解决这一问题,可以使用廉价的TL431来解决供电问题,TL431典型温漂为30ppm,所以在一般应用中已非常足够。
选用两只低温漂电阻,调整输出使TL431的输出电压在3V-3.6V之间,它的并联稳压电流可达到30mA,正好能满足一般STM32核心的功耗需求。
利用TL431解决了供电问题,余下的就是4-20mA的转换电路,如下图:上图即为非常精确的转换电路,OPA333是一颗非常优异的单电源轨至轨运算放大器,其工作电压为2.7-5.5V,其失调电压仅为10uV,实测最低输出为30uV,最高输出可达VCC-30uV。
电路组成压控恒流源,其关键在于OPA333这颗芯片的优异性能,使得以上电路获得了极高的精度和稳定性。
DACOUT来自于STM32的DAC1或者DAC2输出,由C25进行数字噪场滤波之后进入运算,进行1:1缓冲,后经过Q2进行电流放大,在R7上形成检测电压,C17进行去抖动处理。
4-20mA信号由AN_OUT+/AN_OUT-之间输出。
上图中,负载中的电流在R7上形成压降,经运放反馈后得到Vdacout=Vr7=I*R7,所以:I=Vdacout/R7,当Vdacout在400mV到2000mV之间变化时,可得到4-20mA的输出。
改变R7的大小,便可改变DACOUT的需求范围。
电路中,R2的基射极之间将有0.7V左右的偏压,所以Vb[MAX]=2V+0.7V=2.7V,这正好在OPA333的输出范围之内。
恒流源设计

恒流源设计摘要:按照设计要求,本文对恒流源的几种方案进行了比较和分析。
本设计采用推挽拓扑结构为恒流源主功率电路,以SG3525为PWM控制器,对输出电流进行差分取样线性放大,进而控制输出电流达到恒流的目的。
单片机部分采用AT89S52芯片,使用带串行控制10位A/D芯片对电路进行采样从而获得输出电压、电流以测量显示,通过对输出电流和输出电压的运算,达到短路保护的目的。
采用TI公司的双路比较器TLC372构成过压保护电路。
测试结果表明,该环路系统稳定可靠,能够达到各项指标要求。
关键字:PWM 推挽差分一、方案论证与比较根据题目要求,设计方框图如下:图一总体方框图(1)主回路选择恒流源的主电路是恒流源的功率部分,主电路的选择主要有两种方案。
方案一:采用全桥拓扑,该拓扑的变压器双向励磁,容易达到大功率,因为半桥上的两个MOS管交替导通关断,开关管断态时承受的峰值电压为电源电压。
这种拓扑结构复杂,成本高,有直通的问题,需要复杂的多组隔离电路,适用于高压大功率的电源。
方案二:采用推挽拓扑,两只MOS管交替导通,驱动简单,输出功率较大。
开关管关断时承受两倍电源电压,基于成本和本题的输入电压、输出功率较小的特点,故选择此方案。
(2)辅助电源的选择由于本题要求只能有一路输入电源,而输入电压为20V~40V。
需要辅助电源,从而有效的保护MOS管,有下面三种方案选择方案一:用7812稳压芯片产生12V 的电压,7812的最大输入电压为35V ,而本题的最大输入电压为40V ,不符合题目要求。
方案二:用SG3525做一个稳压电源,此方案的稳压电源的静态损耗大,小电流的情况下,稳压电源的效率低。
方案三:采用最简单的降压拓扑结构buck ,TI 公司的TL2575HV-12芯片将脉宽调制、功率开关管集成,电路简单,输入电压变化范围大(15V —60V ),输出电压纹波小于10mV 。
综上所述,我们选择方案三。
(3) 电流采样为了恒定输出电流,需要对输出电流采样。
电压控制恒流充电电路设计

电压控制恒流充电电路设计
1.电压稳定性:
电压稳定是保证充电电路正常工作的基础。
为了保证电压稳定,可以
采用线性稳压器或开关稳压器。
线性稳压器简单可靠,但效率较低,潜在
的功率损耗较大。
开关稳压器则具有高效率和较小的功率损耗,通常采用PWM技术进行电压调节。
2.电流控制:
在电流控制方面,可以采用电流反馈控制和PID控制两种方法。
电流
反馈控制通过检测反馈电流与设定电流之间的差值,调节电压输出,使电
流保持在设定值。
PID控制则通过调节比例、积分和微分系数,根据电流
反馈信号来控制输出电压,实现恒流充电。
3.过流保护:
过流保护是保证电池安全充电的重要措施。
在设计电压控制恒流充电
电路时,应设置合适的过流保护电路。
一种常见的过流保护方法是使用可
调电流限制器,当充电电流超过设定范围时,限制器将自动降低输入电压,以避免过大的电流对电池造成损伤。
4.充电控制器:
充电控制器是电压控制恒流充电电路中的核心部件,负责监测电池状态、实时调节电压输出、控制电流等。
充电控制器通常采用微控制器或专
用控制芯片,具有多种保护功能,如过电流保护、过温保护、电压保护等,可以提高充电电路的安全性和可靠性。
综上所述,电压控制恒流充电电路设计需要考虑电压稳定性、电流控制、过流保护等因素。
通过合理选择稳压器、采用电流反馈控制或PID控制、设置过流保护电路等,可以设计出功能完善、性能稳定的电压控制恒
流充电电路。
在设计过程中,还需根据具体应用场景对参数进行合理调整,以满足充电需求,并确保电池的安全性和充电效率。
电子课程设计数显可调稳压恒流源

电子课程设计数显可调稳压恒流源本文介绍的是一种新型的电子课程设计——数显可调稳压恒流源。
在电子技术领域,稳压恒流源是一种常用的电路,不仅应用广泛,而且具有很高的实用价值。
而本文所介绍的数显可调稳压恒流源,则是在传统的稳压恒流源基础上进行升级改进而来的,其主要特点就是增加了数码管,可以方便地通过读数来控制输出电流和电压。
一、稳压恒流源的基本原理稳压恒流源的基本原理就是在稳定输出电压的同时,保持输出电流恒定不变。
电路中主要包含一个集成稳压器和一个恒流电路,通过对输入电压和输出电流的调节,可以实现稳定输出。
二、数显可调稳压恒流源的设计1. 设计目的本次设计的目的是实现一种电子课程设计——数显可调稳压恒流源,旨在提高设计者的动手实践技能和电路设计能力。
2. 设计要求(1)输出电流可调范围大,从0.1A到1A(2)输出电压可调范围大,从1V到30V(3)输出电流和电压都可以通过数码管显示出来(4)具有电路保护功能,能够在输出短路时自动断开电源(5)电路材料价格不超过100元3. 设计过程(1)稳压电路设计稳压电路采用三端稳压器LM317,需要根据输出电压的需求计算其电阻的取值。
根据公式Vout = 1.25V x (1 + R2/R1)计算出R1和R2的值,然后选取合适的电阻并与适当电容一起作为稳压电路的基本元件。
(2)恒流电路设计恒流电路采用NPN晶体管,需根据输出电流需求计算其电阻的选择。
根据公式Iout = Vbe/R1可以计算出R1的值。
需要注意的是,晶体管的功率需要足够大,因此需要使用散热器。
(3)数显显示设计在电路中增加了数码管,可以方便地通过读数来控制输出电流和电压。
采用MAX7219芯片控制数码管显示,可以真正实现数显功能。
(4)保护电路设计为了保证电路的安全,需要增加保险丝和继电器。
当输出短路时,继电器会自动断开电源,并保护电路。
4. 电路实现为了更好的理解电路的实现过程,需要用Protues软件进行仿真实验,并且通过实际硬件实验来测试电路的性能。
恒流源电路设计方法

恒流源电路设计方法1.基于电流镜的恒流源电路设计方法:基于电流镜的恒流源电路是一种常见的实现方式,它通过将负载电流转化为电压信号控制电流源输出的电流,来实现恒流输出的稳定性。
首先,写出恒流源电路基本的分析方程式:Vin = I*Rin,其中Vin 为输入电压,Rin为输入电阻,I为恒流源输出的电流。
其次,选择电流镜的工作模式。
常见的电流镜工作模式有共射和共基模式。
在选择工作模式时需要考虑输出电流的稳定性和电压的要求。
通常情况下,共射模式更常用。
然后,根据电流源电压和目标输出电流的关系,确定电流镜的尺寸。
根据电流镜的工作模式,计算电流源电压和目标输出电流的关系,并选择合适的电流镜尺寸。
最后,根据系统的要求调整电流源电路的参数。
根据具体的负载电流需求和电源电压,确定输入电压和输入电阻的数值。
通过调整输入电压和输入电阻,可以得到所需的恒流源输出电流。
2.基于反馈的恒流源电路设计方法:基于反馈的恒流源电路是另一种常见的实现方式,它通过负反馈将输出电流与参考电流进行比较,并根据比较结果调整输入电压或输入电流,从而实现稳定的恒流输出。
首先,确定参考电流的数值。
参考电流的数值应根据具体的需求来确定,通常需要通过试验或计算来得到合适的数值。
其次,选择比较器。
比较器的作用是将输出电流与参考电流进行比较,并将比较结果输出。
然后,设计反馈回路。
反馈回路的作用是根据比较结果调整输入电压或输入电流,以保持输出电流稳定。
最后,根据系统的要求调整电流源电路的参数。
根据具体的负载电流需求和电源电压,确定输入电压或输入电流的数值。
通过调整输入电压或输入电流,可以得到所需的恒流源输出电流。
总之,恒流源电路设计的关键是根据具体的需求选择合适的实现方式,并根据系统的要求调整电流源电路的参数。
通过合理的设计和参数调整,可以实现稳定的恒流输出。
压控恒流源电路设计

压控恒流源电路设计压控恒流源是一种常用于电子电路设计中的电路,可以提供恒定的电流输出,并且能够根据输入电压的变化自动调节输出电流的大小。
在很多应用中,需要一个稳定的电流源来控制电路的工作,因此压控恒流源被广泛应用于各种电子设备中。
本文将介绍一种常见的压控恒流源电路的设计方法。
首先,我们需要明确压控恒流源电路的基本工作原理。
压控恒流源采用了反馈调节的方法,通过调节电路中的负载电阻,使得输出电流保持稳定。
当输入电压发生变化时,电路会自动调节负载电阻来保持输出电流不变。
下面是一种常见的压控恒流源电路设计方法:1.选择恒流源管件在设计压控恒流源电路时,首先需要选择一个合适的恒流源管件。
常见的恒流源管件有双极型晶体管和场效应管。
双极型晶体管具有较好的线性性能,适用于低电流输出的场合;而场效应管具有较低的输入阻抗和良好的驱动能力,适用于较大电流输出的场合。
根据具体需求,选择适合的恒流源管件。
2.建立基本电流源电路通过使用一个稳定的参考电流源,可以建立一个基本的恒流源电路。
根据所选用的恒流源管件,设计一个合适的基本电流源电路,并通过适当的偏置电路来稳定输出电流。
3.添加负载电压调节电路为了实现电流源的压控功能,需要添加一个负载电压调节电路。
这个电路可以根据输入电压的变化来调节恒流源管件上的负载电阻,从而实现输出电流的调节。
4.优化电路性能在设计过程中,可以通过优化电路的特性来提高压控恒流源电路的性能。
例如,可以采用反馈电路来提高电路的稳定性和线性度;选择合适的电容和电阻来改善电路的频率响应等。
总结:以上是一种常见的压控恒流源电路设计方法。
根据具体的应用需求,可以根据这个基本设计方法进行调整和改进。
在实际设计中,还需要考虑电路的稳定性、可靠性和成本等因素,并进行必要的优化和测试。
通过合理的设计和优化,可以实现一个稳定可靠的压控恒流源电路,满足各种电子设备的需求。
恒流电源方案

恒流电源方案1. 引言恒流电源是一种稳定输出电流的电源方案,广泛应用于各类电子设备和实验中。
本文将介绍恒流电源的基本原理、常见应用场景以及设计要点。
2. 恒流电源的原理恒流电源的基本原理是通过反馈控制,使输出电流保持稳定。
其基本构成包括输入电源、反馈电路、控制电路和输出负载。
当输出电流与设定电流有偏差时,反馈电路将感知到这个差异,并通过控制电路调整电源输出,以使输出电流保持恒定。
3. 恒流电源的设计恒流电源的设计需要考虑多个方面,包括输入电源的稳定性、反馈电路的准确性和控制电路的稳定性。
具体设计流程如下:3.1 确定输出电流需求首先,根据实际需求确定所需的输出电流。
这将作为设计的基础参数。
3.2 选择适当的电源模块根据输出电流需求,选择一个稳定性好、能够满足输出要求的电源模块作为恒流电源的输入电源。
3.3 设计反馈电路设计一个准确度高的反馈电路,用于感知实际输出电流与设定电流之间的差异。
反馈电路通常由一个电流感知元件(例如电流传感器)和一个比较器组成。
3.4 设计控制电路控制电路根据反馈电路的输出调整输入电源的输出,以保持输出电流的稳定。
控制电路可以通过模拟电路或数字电路实现。
3.5 稳定性测试与优化完成电路设计后,进行稳定性测试,并对电路进行参数调整和优化,以确保输出电流的稳定性和准确性。
4. 恒流电源的应用恒流电源广泛应用于各种场景,以下是几个常见的应用场景:4.1 LED控制恒流电源可用于驱动LED灯,在不同工作电压下,通过调整输出电流以达到所需亮度。
4.2 充电设备恒流电源可用于充电设备,通过控制输出电流来确保充电过程中电流的稳定性和充电速度的控制。
4.3 电子负载在实验中,通常需要模拟一个特定的负载,恒流电源可以提供一定的输出电流并保持其稳定性,以满足实验的需求。
4.4 电机控制在某些应用中,需要精确控制电机的转速和扭矩,恒流电源可用于提供恒定的电流供电,从而实现对电机的精确控制。
5. 结论恒流电源是一种常用的电源方案,通过反馈控制可实现输出电流的稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、电流源模块的选择方案
方案一:由晶体管构成镜像恒流源
一缺点在于,集电极最大输出电流约为几百毫安,而题目要求输出电流为200~2000mA,因此由晶体管构成的恒流源不适合采用。
方案二:由运算放大器构成恒流电路
运算放大器构成的恒流电路摆脱了晶体管恒流电路受限于工艺参数的缺点。
但是只由运放构成的恒流电路,输出电流同样只能达到几十毫安,远远不能满足设计要求,因此必须加上扩流电路。
采用运算放大器加上扩流管构成恒流电路,既能利用运算放大器准确的特性,输出又能达到要求。
该电路的缺点之一在于电流的测量精度受到两个晶体管的匹配程度影响,其中涉及到比较复杂的工艺参数。
方案三:由运算放大器加上扩流管构成恒流电路
采用高精度运算放大器OP07,更能增加其准确的性能;采用达林顿管TP127 进行扩流,具有很大的扩流能力,两者结合,可以实现比较精确的恒流电路。
鉴于上面分析,本设计采用方案三。
(3)恒流源电路的设计
恒流源电路如图8.15 所示。
其中,运算放大器U3 是一个反相加法器,一路输入为控制信号V1,另一路输入为运放U1 的输出反馈,R8 是U3 的反馈电阻。
用达林顿管TIP122 和TIP127 组成推挽式电路,两管轮流导通。
U2 是电压跟随器,输入阻抗高,基本没有分流,因此流经R2 的电流全部流入负载RL。
U1 是反相放大器,取R14=R11 时,放大
倍数为-1,即构成反相器。
针对运算放大器输出电流小的不足,该电路加了扩流电路。
采
图8.15 恒流源部分电路
若U3 的输入电压为Vin,根据叠加原理,有
由U2 的电压跟随特性和U1 的反相特性,有
代入得到
即流经R7 的电流完全由输入控制电压Vin 决定
由于U2 的输入端不取电流,流经负载RL 的电流完全由输入控制电压Vin 决定,实现了压控直流电流源的功能。
由于R7 中流过的电流就是恒流源的输出电流,按照题目要求,输出的直流电流需要达到2A,这里采用康锰铜电阻丝作为电阻R7。
2压控恒流源电路设计
压控恒流源是系统的重要组成部分,它的功能是用电压来控制电流的变化,由于系统对输出电流大小和精度的要求比较高,所以选好压控恒流源电路显得特别重要。
采用如下电路:电路原理图如图8.5 所示。
该恒流源电路由运算放大器、大功率场效应管Q1、采样电阻R2、负载电阻RL 等组成。
图8.5 压控恒流源原理图
电路中调整管采用大功率场效应管IRF640。
采用场效应管,更易于实现电压线性控制电流,既能满足输出电流最大达到2A 的要求,也能较好地实现电压近似线性地控制电流。
因为当场效应管工作于饱和区时,漏电流Id 近似为电压Ugs 控制的电流。
即当Ud 为常数时,满足:Id=f(Ugs),只要Ugs 不变,Id 就不变。
在此电路中,R2 为取样电阻,采用康铜丝绕制(阻值随温度的变化较小),阻值为0.35 欧。
运放采用OP-07 作为电压跟随器,UI=Up=Un,场效应管Id=Is(栅极电流相对很小,可忽略不计)所以Io=Is= Un/R2= UI/R2。
正因为Io=UI/R2,电路输入电压UI 控制电流Io,即Io 不随RL 的变化而变化,从而实现压控恒流。
同时,由设计要求可知:由于输出电压变化的范围U〈=10V,Iomax=2A,可
以得出负载电阻RLmax=5欧。