多思计算机组成原理实验 1 全加器实验

合集下载

实验一、半加器、全加器实验报告

实验一、半加器、全加器实验报告

(7)编程下载 (tools/programmer)
2.验证半加器、全加器的真值表。
根据管脚锁定的方案,操作仪器,记录数据。
半加器: 全加器:
输入
a
b
0
0
0
1
1
0
1
1
输出
sh
ch
输入
a
b
ci-1
0
0
0
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
输出
si
ci
思考组合逻辑电路的特点: 六、实验总结(总结本次实验收获,实验中应该注意的事项)
实验一、 半加器 全加器设计 实验报告
专业班级:
学号:
姓名:
一、实验目的
1.初步掌握 Quartus 开发系统的使用 2.掌握原理图的设计方法 3.掌握组合逻辑电路的设计方法,理解组合电路的特点 二、实验原理
加法运算是计算机中最基本的一种算术运算。能完成两个一位二进制数的相加运算并
求得“和”及“进位”逻辑电路,称为半加器。全加器是完成两个一位二进制数相加,并考虑低 位来的进位,即相当于将三个一位二进制数相加的电路。
工程文件必须保存在
,建立工程文件时注意选择使用的器件的 device family

, devicBiblioteka 名称是。(2)在工程文件中添加源文件(file/new)
在出现的对话框中,选择 Design Files 中的选择
(Block Diagram/Schematic File /

计算机组成原理一位全加器实验报告

计算机组成原理一位全加器实验报告
【实验目的】
1、熟悉原理图和HDL语言的编写。
2、验证全加器功能。
【实验原理】
设计一个一位全加器,能完成两个二进制位的加法操作,考虑每种情况下的进位信号,完成8组数据的操作。
【原理图设计】
【实验总结】
通过实验,学会了功能仿真如何做出,并且了解了自己在知识中不足的地方,通过自己动手,解决问题,提高了自己的动手能力。
原理图设计实验总结通过实验学会了功能仿真如何做出并且了解了自己在知识中不足的地方通过自己动手解决问题提高了自己的动手能力
实验二
姓名:钱相州班级:网工1201学号:1205110707
【实验环境】
1. Windows 2000或Windows XP
2. QuartusII、GW48-PK2或DE2-115计算机组成原理教学实验系统一台,排线若干。

全加器实验原理

全加器实验原理

全加器实验原理全加器是数字电路中常见的一种逻辑电路,它用于将两个输入的数字进行相加,并输出它们的和以及进位。

在本文中,我们将介绍全加器的原理和实验方法。

首先,让我们来了解一下全加器的基本原理。

全加器接受三个输入信号,两个输入数字和上一个位的进位。

它将这三个输入信号进行逻辑运算,然后产生两个输出,一个是当前位的和,另一个是传递给下一位的进位。

全加器的逻辑运算可以通过布尔代数的方法进行描述,通常使用逻辑门来实现。

全加器通常由两个半加器和一个 OR 门组成。

半加器用于计算两个输入数字的和,而 OR 门用于处理进位。

通过将多个全加器连接起来,可以实现对多位数字的加法运算。

接下来,我们将介绍如何进行全加器的实验。

首先,我们需要准备以下材料和设备,集成电路芯片、面包板、电源、示波器、数字信号发生器等。

然后,按照电路图连接好电路,并接通电源。

接着,我们可以通过输入不同的数字信号来观察全加器的输出情况,验证其逻辑运算的正确性。

在实验过程中,我们需要注意以下几点。

首先,要确保连接电路的正确性,避免接错线导致电路无法正常工作。

其次,要注意电路的供电电压和电流,避免超出芯片的额定工作范围。

最后,要小心操作实验设备,确保实验过程中的安全。

通过实验,我们可以深入了解全加器的原理和工作方式,加深对数字电路的理解。

同时,实验也可以帮助我们掌握电路连接和调试的技巧,提高实验操作能力。

总之,全加器是数字电路中非常重要的一种逻辑电路,它在计算机等领域有着广泛的应用。

通过深入学习全加器的原理和进行实验操作,可以帮助我们更好地理解数字电路的工作原理,为我们的学习和研究提供有力支持。

希望本文对您有所帮助,谢谢阅读!。

一位全加器 实验报告

一位全加器 实验报告

一位全加器实验报告实验报告:全加器的原理与实验一、实验目的本实验旨在探究全加器的原理及其在数字电路中的应用,通过实际操作加深对全加器的理解,并掌握其工作原理和性能特点。

二、实验器材1. 74LS86集成电路芯片2. 电源3. 示波器4. 逻辑分析仪5. 连接线6. 示波器探头三、实验原理全加器是数字电路中常用的逻辑运算器件,用于实现三个二进制数的相加运算。

全加器由两个半加器和一个进位输入组成,能够实现三个二进制数的相加运算,并输出相应的和与进位。

全加器的工作原理是基于二进制加法的逻辑运算规则,通过逻辑门的组合实现。

四、实验步骤1. 将74LS86集成电路芯片插入实验板中,并连接电源。

2. 将输入端A、B、Cin分别与电源接通,观察输出端Sum和Cout的变化。

3. 使用逻辑分析仪和示波器对输入端和输出端进行观测和分析,记录实验数据。

4. 分别改变输入端A、B、Cin的状态,观察输出端Sum和Cout的变化,记录实验数据。

5. 对实验数据进行分析和总结,验证全加器的工作原理和性能特点。

五、实验结果通过实验观测和数据分析,得出以下结论:1. 全加器能够实现三个二进制数的相加运算,并输出相应的和与进位。

2. 输入端A、B、Cin的状态改变会影响输出端Sum和Cout的变化,符合二进制加法的逻辑运算规则。

3. 74LS86集成电路芯片的性能稳定,能够满足数字电路的应用要求。

六、实验总结本实验通过实际操作加深了对全加器的理解,掌握了全加器的工作原理和性能特点。

全加器作为数字电路中常用的逻辑运算器件,具有重要的应用价值,能够实现二进制加法运算,广泛应用于计算机、通信等领域。

通过本实验的学习,对数字电路和逻辑运算有了更深入的理解,为今后的学习和工作打下了坚实的基础。

七、实验建议在实验过程中,应注意安全操作,避免短路和电路损坏。

同时,对实验数据进行仔细分析和总结,加深对全加器的理解,为今后的学习和应用提供有力支持。

一位全加器实验

一位全加器实验

实验1一位全加器(综合验证性)一、目的掌握组合逻辑电路, 使用74LS00“与非门”电路构成一位全加器组合逻辑电路。

掌握组合逻辑电路的基本概念和结构。

二、要求: 使用与非门构成一位全加器组合逻辑电路。

实验报告包括:1.画出一位全加器逻辑电路图;正确标出集成电路引脚。

74LS00“与非门”电路引脚名称:2.标上门电路脚号, 连接逻辑电路;发光管3.模拟输入Ai 、Bi 、Ci, 记载Si 、Ci-1实验结果。

Ai Bi Ci Si Ci-1三、实验设备和集成电路1.数字逻辑实验板一块。

2、3片74LS00, 连结导线50根。

四、考核方式1.逻辑电路图应当整洁、规范。

2.实验前作好充分实验准备。

3.数字逻辑实验课是一项实践性很强的教学课程。

考核的重点是电路连接, 调试和测试的实践性环节。

考察学生在实验中的动手能力和事实求是的科学态度。

核心是检查是否能够实际完成一位全加器数字逻辑电路, 并电路运行正确作为重要标准。

在电路连接, 调试和测试完成后, 经老师检查确认满足实验要求, 学生签字, 递交报告书, 方可通过实验一的验收。

五、连接, 调试和测试组合逻辑电路参考事项注意如下:1.实验开始时, 检查并确定实验设备上的集成电路是否符合要求。

2、导线在插孔中一定要牢固接触。

集成电路引脚与引脚之间的连线一定要良好接触。

连线在面包板上排列整齐, 连线的转弯成直角。

连线不要飞线。

3、在组合逻辑电路连线时, 为了防止连线时出错, 可以在每连接一根线以后, 在组合逻辑电路图中做一个记号, 这样可以避免搞错连线, 漏掉连线, 多余连线等现象发生。

全加器实验报告

全加器实验报告

一、实验目的1. 理解全加器的基本原理和组成;2. 掌握全加器的逻辑功能;3. 学会使用数字电路实验箱进行全加器电路的搭建和测试;4. 验证全加器电路的可靠性和稳定性。

二、实验原理全加器是一种能够对两个一位二进制数以及来自低位的进位进行加法运算的数字电路。

它由两个半加器和一个或门组成。

全加器的逻辑功能可以表示为:S = A ⊕ B ⊕ CinCout = (A ∧ B) ∨ (B ∧ Cin) ∨ (Cin ∧ A)其中,S表示全加器的和输出,Cout表示全加器的进位输出,A和B分别表示两个加数,Cin表示来自低位的进位输入。

三、实验器材1. 数字电路实验箱;2. 集成芯片(如74LS00、74LS86等);3. 导线;4. 信号发生器;5. 示波器。

四、实验步骤1. 搭建全加器电路:根据全加器的逻辑功能,使用74LS00和74LS86等集成芯片搭建全加器电路。

具体连接方式如下:a. 将两个半加器分别用74LS86和74LS00搭建,并连接好输入端和输出端;b. 将两个半加器的进位输出端Cout连接起来,作为全加器的进位输出;c. 将两个半加器的和输出端S连接起来,作为全加器的和输出。

2. 测试电路:将搭建好的全加器电路连接到数字电路实验箱上,使用信号发生器产生两个加数A和B以及进位输入Cin,通过示波器观察全加器的和输出S和进位输出Cout。

3. 验证全加器的逻辑功能:根据全加器的逻辑功能,对不同的输入组合进行测试,验证全加器的和输出S和进位输出Cout是否符合预期。

4. 分析实验结果:记录实验过程中观察到的全加器的和输出S和进位输出Cout,分析实验结果是否与理论预期一致。

五、实验结果与分析1. 实验结果:根据实验过程中观察到的全加器的和输出S和进位输出Cout,记录下以下实验数据:| A | B | Cin | S | Cout ||---|---|-----|---|------|| 0 | 0 | 0 | 0 | 0 || 0 | 0 | 1 | 1 | 0 || 0 | 1 | 0 | 1 | 0 || 0 | 1 | 1 | 0 | 1 || 1 | 0 | 0 | 1 | 0 || 1 | 0 | 1 | 0 | 1 || 1 | 1 | 0 | 0 | 1 || 1 | 1 | 1 | 1 | 1 |2. 分析:根据实验结果,可以得出以下结论:a. 当A、B和Cin都为0时,全加器的和输出S为0,进位输出Cout为0;b. 当A、B和Cin中有两个为1时,全加器的和输出S为0,进位输出Cout为1;c. 当A、B和Cin都为1时,全加器的和输出S为1,进位输出Cout为1。

一位全加器的实验报告

一位全加器的实验报告

一位全加器的实验报告实验报告:全加器的实验摘要:本实验旨在通过实际操作,了解全加器的原理和工作方式。

通过搭建全加器电路,观察其输入输出关系,验证全加器的功能和性能。

实验结果表明,全加器能够正确地实现三个输入位的加法运算,并且输出结果符合预期。

引言:全加器是数字电路中常用的逻辑电路之一,用于实现多位数的加法运算。

它能够接受三个输入位(A、B、Cin),并输出两个输出位(Sum、Cout)。

全加器的设计和实现对于理解数字电路和计算机原理具有重要意义。

实验步骤:1. 准备实验所需的电子元件和工具,包括逻辑门、电阻、LED灯等。

2. 根据全加器的逻辑电路图,搭建实验电路。

3. 将输入位(A、B、Cin)和电源连接,观察LED灯的亮灭情况。

4. 调整输入位的数值,记录LED灯的亮灭情况。

5. 分析实验结果,验证全加器的功能和性能。

实验结果:经过实验操作和数据记录,我们得出以下结论:1. 当输入位(A、B、Cin)为000时,LED灯均熄灭。

2. 当输入位(A、B、Cin)为001时,LED灯中的某些亮起,表明输出位(Sum、Cout)的数值。

3. 当输入位(A、B、Cin)为111时,LED灯均亮起。

结论:通过本次实验,我们成功地搭建了全加器电路,并验证了其正确的工作方式。

全加器能够实现三个输入位的加法运算,并输出符合预期的结果。

这对于我们理解数字电路和计算机原理具有重要的意义。

展望:在今后的学习和实践中,我们将进一步深入研究数字电路和逻辑电路的原理,不断提高自己的实验操作能力和理论水平,为将来的科研和工程实践做好充分的准备。

全加器及其应用实验报告

全加器及其应用实验报告

一、实验目的1. 理解全加器的原理和结构。

2. 掌握全加器的逻辑功能及其实现方法。

3. 学习全加器在实际电路中的应用。

二、实验原理全加器是一种组合逻辑电路,用于实现两个二进制数相加,同时考虑来自低位的进位信号。

全加器由三个输入端和两个输出端组成,输入端分别为两个加数位(A、B)和来自低位的进位信号(Cin),输出端分别为和位(S)和进位输出信号(Cout)。

全加器的逻辑功能如下:- 当A、B和Cin都为0时,S为0,Cout为0;- 当A、B和Cin中有一个为1时,S为1,Cout为0;- 当A、B和Cin中有两个为1时,S为0,Cout为1;- 当A、B和Cin都为1时,S为1,Cout为1。

全加器可以通过半加器(HAdder)和与门(AND)来实现。

半加器实现两个一位二进制数相加的功能,而与门用于实现进位信号的产生。

三、实验器材1. 74LS系列集成电路芯片(如74LS00、74LS86等);2. 实验箱;3. 电源;4. 导线;5. 万用表;6. 示波器。

四、实验步骤1. 根据全加器的逻辑功能,设计全加器的原理图,包括半加器和与门;2. 将设计好的原理图连接到实验箱上,包括输入端(A、B、Cin)和输出端(S、Cout);3. 使用万用表检测各个芯片的引脚电压,确保电路连接正确;4. 使用示波器观察输入信号和输出信号的变化,验证全加器的逻辑功能;5. 改变输入信号,观察全加器的输出信号,进一步验证其逻辑功能;6. 将全加器应用于实际电路,如实现多位加法器等。

五、实验结果与分析1. 实验结果表明,全加器能够实现两个二进制数相加,同时考虑来自低位的进位信号;2. 通过示波器观察,发现全加器的输出信号与输入信号符合逻辑功能;3. 将全加器应用于实际电路,如实现多位加法器,实验结果表明电路能够正常工作。

六、实验心得1. 全加器是一种重要的组合逻辑电路,在数字电路中具有广泛的应用;2. 在实验过程中,需要掌握全加器的原理和结构,熟悉各个芯片的功能和引脚连接;3. 实验过程中,要注意电路的连接和信号的观察,确保实验结果的准确性;4. 通过本次实验,加深了对全加器的理解,为以后的学习和工作打下了基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验 1 全加器实验
1.1 实验目的
1) 熟悉多思计算机组成原理网络虚拟实验系统的使用方法。

2) 掌握全加器的逻辑结构和电路实现方法。

1.2 实验要求
1) 做好实验预习,复习全加器的原理,掌握实验元器件的功能特性。

2) 按照实验内容与步骤的要求,独立思考,认真仔细地完成实验。

3) 写出实验报告。

1.3 实验电路
本实验使用的主要元器件有:与非门、异或门、开关、指示灯。

图1.1 一位全加器实验电路
一位全加器的逻辑结构如图 1.1 所示,图中涉及的控制信号和数据信号如下: 1) A i 、B i :两个二进制数字输入。

2) C i :进位输入。

3) S i :和输出。

4) C i+1:进位输出。

&
& &
=1
=1
A
i B i C i C i +1 S
i
1.4 实验原理
1 位二进制加法器有三个输入量:两个二进制数字A i、B i 和一个低位的进位信号C i,这三个值相加产生一个和输出Si 以及一个向高位的进位输出C i+1,这种加法单元称为全加器,其逻辑方程如下:
S i=A i⊕B i⊕C i (1.1)
C i+1=A i B i+B i C i+C i A i
1.5 实验内容与步骤
1.运行虚拟实验系统,从左边的实验设备列表选取所需组件拖到工作区中,按照图 1.1
所示搭建实验电路,得到如图 1.2 所示的实验电路。

图1.2 一位全加器虚拟实验电路
2.打开电源开关,按表1-1 中的输入信号设置数据开关,根据显示在指示灯上的运算结
果填写表1-1 中的输出值。

3.关闭电源开关,增加元器件,实现一个 2 位串行进位并行加法器。

用此加法器进行运
算,根据运算结果填写好表1-2。

1.6 思考与分析
1.串行进位并行加法器的主要缺点是什么?有改进的方法吗?
高位的运算必须等到低位的进位产生才能进行,因此运算速度较慢。

改进方法:为了提高运算速度,可采用超前进位的方式,即每一位的进位根据各位的输入同时预先形成,而与低位的进位无关。

比如74ls283芯片
2.能使用全加器构造出补码加法/减法器吗?
可以。

因为当前计算机中加法和减法都是通过加法器来实现的。

数值一律用补码来存储可以将符号位和其他位一起处理,便于加法和减法运算。

相关文档
最新文档