红外气体检测分析原理

合集下载

红外光谱分析方法

红外光谱分析方法

红外光谱分析方法红外光谱分析是一种常见的化学分析方法,它通过测量样品在红外光谱区域的吸收和散射来获取样品的结构信息和化学组成。

红外光谱分析方法的原理基于分子与红外光的相互作用,当样品中的化学键振动或分子转动产生能量变化时,会吸收相应波长的红外光。

通过分析吸收峰的位置、相对强度和形状,可以确定样品中的官能团、键的类型和化学结构。

1.样品制备:将待分析的样品制备成均匀的固体、液体或气体样品。

固体样品可以直接放置在红外光谱仪的样品夹中,液体样品则可以放置在透明的红外吸收池中。

2.光谱采集:根据样品状态的不同,选择合适的红外光源和检测器。

红外光源产生的光经过一个干涉仪,分为参考光束和样品光束。

参考光束和样品光束分别通过样品和参考样品后,进入探测器中进行测量。

测量得到的数据会被转换成光谱图形。

3.光谱解析:通过分析光谱图形,确定各吸收峰的位置、相对强度和形状,以确定样品中包含的官能团和化学键的类型。

常用的解析方法包括查找标准库、峰指认和功能组对比。

4.数据分析:对光谱数据进行进一步的处理和分析,可以使用数据分析软件进行峰面积计算、定量分析和比较分析。

此外,还可以进行谱图拟合、降噪处理和谱图修正等。

红外光谱分析方法广泛应用于有机化学、无机化学、生物化学和材料科学等领域。

它可以用于测定物质的纯度、鉴别不同化合物、判断化学键的类型和确定结构等。

例如,在有机化学中,红外光谱可以用于确定醇、酮、醛、羧酸等不同官能团的存在和位置;在无机化学中,红外光谱可以用于研究配位化合物的配位方式和金属氧化态等。

总之,红外光谱分析方法是一种简便、快速、无损的化学分析方法,通过测量样品在红外光谱区域的吸收和散射来获取化学信息和结构信息。

它在化学研究、材料分析和质量控制等方面具有重要的应用价值。

红外光谱技术在气体检测分析中的应用

红外光谱技术在气体检测分析中的应用

红外光谱技术在气体检测分析中的应用气体灾害对人类和自然的危害日益加重,由于气体的物化特性,常规的探测手段很难高效的实现气体检测的目的,红外高光谱遥感探测手段能够反映场景内的温度信息和光谱信息,是灾害气体检测最有效的手段之一,具有极高的军事和民用价值。

本文以研究气体红外高光谱数据的特点为出发点,实现气体红外高光谱数据的建模与检测,为构建灾害气体的监测体系提供帮助和指导。

标签:红外光谱技术;气体检测分析;特征频率引言:灾害气体在环境中会带有独特的温度特征和光谱特征。

利用红外高光谱探测手段能够有效的利用气体的温度信息和光谱信息,从而对气体进行甄别和检测。

传统的高光谱一般指可见光近红外波段,传统高光谱是对地物目标的反射率信息进行分析,以达到相应的检测目的。

而红外高光谱探测手段是利用对远红外波段的辐射能量进行相应的检测分析,这部分信息主要利用的是目标的辐射信息(温度信息)。

从成像机理上,传统的高光谱和红外波段的高光谱有所不同,所以,研究这两者在成像模型、信号模型、检测模型的异同之处有十分重要的研究意义。

另外,软件和硬件的发展是相辅相成的,红外传感器的发展,伴随着红外遥感相关技术的研究。

目前红外高光谱传感器技术壁垒比较大,红外高光谱数据获取比较难,但红外高光谱数据的应用具有极大的意义和价值。

所以研究气体的红外高光谱数据仿真具有十分重要的意义,对气体以及其他目标物体的红外高光谱辐射特性分析与特征提取具有十分重大的指导意义。

一、红外光谱吸收原理众所周知,光是由许多单一颜色的光组成的,由此可知,红外光是由许多处于红外频率以外的光组成的。

每种气体都具有一种性质:可以吸收对应频率的红外光能量,气体吸收红外光能量中频率最高的被称为气体的特征吸收频率。

当光线穿透气体时,气体吸收特征频率谱线光,导致光的能量下降。

研究表明,每种气体在红外辐射波段都有不同数目的特征吸收谱线。

由于特征频率是由一定频率范围内的光组成的,因此特征吸收频率具有一定的带宽,并且带宽中每个频率被吸收的量不尽相同。

红外气体传感器内部结构

红外气体传感器内部结构

红外气体传感器内部结构红外气体传感器是一种通过测量物质吸收或发射红外辐射来检测目标气体浓度的传感器。

其基本工作原理是利用目标气体的特定红外吸收特性来测量其浓度。

下面将介绍红外气体传感器的内部结构。

红外气体传感器通常由以下几个主要组件组成:1.光源:红外气体传感器内部包含一个红外光源,通常使用红外LED作为光源。

这种光源发出的光具有特定的波长范围,能够被目标气体吸收或发射。

光源的选择取决于所要检测的目标气体的红外吸收特性。

2.气体室:红外气体传感器内部还包含一个气体室,用于接收待测气体。

气体室通常由不透明的材料制成,以避免外部光线进入。

在气体室中,目标气体与红外光源之间会发生相互作用,气体会吸收或发射特定的红外辐射。

3.滤光器:红外气体传感器内部还设置有滤光器,用于选择性地过滤特定波长的红外辐射。

滤光器的作用是屏蔽其他波长的光线,只允许目标气体吸收或发射的特定红外辐射通过。

这样可以提高传感器的选择性和灵敏度。

4.探测器:红外气体传感器的核心部件是探测器,探测器能够对通过滤光器过滤的红外辐射进行测量。

常用的探测器包括红外线热电偶(IR thermometer)和红外线光电二极管(IR photodiode)。

这些探测器能够将红外辐射转化为电信号,并通过电路进行放大和处理。

5.控制电路:红外气体传感器内部还包含一组控制电路,用于控制光源的发光时间和频率,以及对探测器输出信号进行放大和处理。

控制电路通常由微处理器或电路芯片组成,具有高速和高精度的信号处理能力。

6.电源:红外气体传感器需要外部电源供电,通常使用直流电源。

电源的选择取决于传感器的工作电压要求。

红外气体传感器的工作原理如下:1.红外光源发出特定波长的红外光。

2.通过气体室中的待测气体时,目标气体吸收或发射特定波长的红外辐射。

3.经过滤光器的选择性过滤后,只有目标气体吸收或发射的红外辐射能够通过。

4.探测器将通过滤光器过滤的红外辐射转化为电信号,并通过控制电路进行放大和处理。

红外分析仪构成、原理

红外分析仪构成、原理

1红外分析仪构成1.1红外线气体分析仪红外线气体分析仪是基于红外检测原理,属于光学分析仪器中的一种。

它是利用不同气体对不同波长的红外线具有特殊的吸收能力来实现气体的组分检测的。

红外线式气体检测主要利用了气体对红外线的波长有选择的可吸收型和热效应两个特点。

红外线气体分析器是一种吸收式的、不分光型的气休分析器。

所谓吸收式即利用气体对电磁波的吸收特性。

不分光型也称为非色散型,即光源发射出连续光谱的射线,全部投射到被分析的气样上去。

利用气体的特征吸收波长及其积分特性进行定性和定量的分析,大部分的有机和无机气体在红外波段内都有其特征吸收峰。

有的气体还有两个或多个特证吸收峰。

具有对称结构的、无极性的双原子分子气体,如O2、H2等,以及单原子分子气体,例如Ar等,在红外线彼段内没有特征吸收峰。

因此红外线气体分析仪对这种双原子和单原子分子气体不能进行分析测量,每一台红外线气体分析器只能分析一种气体,例如一台CO2红外线气体分析器,它可以从一个多组分的混合气体中分析出CO2的体积百分比浓度,如果背景气体中的某一组分在红外线波段内有与CO2的特征吸收峰重迭的部分。

那么我们称这种背景气体为干扰组分,因此在气样进人红外线气体分析仪之前要把这种干拢组分去除掉。

水蒸汽在2.6-10µm这个很宽的波段范圈内有吸收的特性。

因此水蒸汽对红外线气体分析器来讲是一种重要的干扰组分,在分析之前都要对样气进行干燥处理,去除水分,这样才能保证测量的准确性。

红外线气体分析器的工作原理:用人工方法制造一个包括被测气体特征吸收峰波长在内的连续光谱的辐射源,让这个连续光谱通过固定厚度的含有被测气体的混合组分,在混合组分的气体层中,被测气体的浓度不同,吸收固定波长红外线的能量也不相同。

继而转换成的热量也不相同,在一个特制的红外检测器中再将热量转换成温度或压力,测量这个温度或压力就可以准确地测量出被分析气体的浓度,从朗伯特一比耳定律来看,I=I o e-kcl,就是要使红外线气体分析器辐射源的发射能量连续地通过一定厚度的被分析气样,也就是说使I o、K、L确定下来。

红外线气体分析仪的工作原理

红外线气体分析仪的工作原理

红外线气体分析仪的工作原理在现阶段红外线气体分析仪在化工生产中使用已经十分广泛,组分控制的能力直接关系到化工生产的低能耗及高品质产品的关键因素。

如何确保红外线分析仪在生产中做到稳定、迅速、反映工艺数据是目前仪表维护人员需要提高的重要技术。

本文主要对红外分析仪的工作原理进行了剖析。

红外线气体分析仪是利用红外线进行气体分析。

它基于待分析组分的浓度不同,吸收的辐射能不同.剩下的辐射能使得检测器里的温度升高不同,动片薄膜两边所受的压力不同,从而产生一个电容检测器的电信号。

这样,就可间接测量出待分析组分的浓度。

1.比尔定律红外线气体分析仪是根据比尔定律制成的。

假定被测气体为一个无限薄的平面.强度为k的红外线垂直穿透它,则能量衰减的量为:I=I0e-KCL(比尔定律) 式中:I--被介质吸收的辐射强度;I0--红外线通过介质前的辐射强度;K--待分析组分对辐射波段的吸收系数;C--待分析组分的气体浓度;L--气室长度(赦测气体层的厚度)对于一台制造好了的红外线气体分析仪,其测量组分已定,即待分析组分对辐射波段的吸收系数k一定;红外光源已定,即红外线通过介质前的辐射强度I0一定;气室长度L一定。

从比尔定律可以看出:通过测量辐射能量的衰减I,就可确定待分析组分的浓度C了。

2.分析检测原理红外线气体分析仪由两个独立的光源分别产生两束红外线该射线束分别经过调制器,成为5Hz的射线。

根据实际需要,射线可通过一滤光镜减少背景气体中其它吸收红外线的气体组分的干扰。

红外线通过两个气室,一个是充以不断流过的被测气体的测量室,另一个是充以无吸收性质的背景气体的参比室。

工作时,当测量室内被测气体浓度变化时,吸收的红外线光量发生相应的变化,而基准光束(参比室光束)的光量不发生变化。

从二室出来的光量差通过检测器,使检测器产生压力差,并变成电容检测器的电信号。

此信号经信号调节电路放大处理后,送往显示器以及总控的CRT显示。

该输出信号的大小与被渊组分浓度成比例。

气体分析仪不同原理优缺点

气体分析仪不同原理优缺点

一、质谱仪基本原理质谱计,是分离和检测不同同位素的仪器。

它根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。

具体工作过程为:质谱仪以离子源、质量分析器和离子检测器为核心。

离子源是使试样分子在高真空条件下离子化的装置。

电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。

它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。

质量分析器是将同时进入其中的不同质量的离子,按荷质比q/m(q为电荷,m为质量)大小分离的装置。

分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。

优点:测量气体种类多,测试速度快,灵敏度高,结果精确,稳定性和重复性也较高。

缺点:是价格偏高,仪器机构复杂,需要专业人员维护;要求环境高。

二、气相色谱仪的基本原理检测混合物由载气(载气特性为惰性气体,不应与样品和溶剂反应。

一般可选用且常用的载气有氢气,氮气,氦气。

氦气有最好的分离柱效果,氦气用于热导式测量组件,氢气用于当氦气不能使用的场合,另一为氦气和氢气的混合气可得到较快的响应)带入,检测混合物通过色谱柱(通常为填充柱和毛细管柱)与色谱柱内固定相(我们把色谱柱内不移动,起分离作用的填料称为固定相)相互作用,这种相互作用大小的差异使各混合物各组分按先后次序从流出,并且依次导入检测器,从而得到各组分的检测信号。

按照导入检测器的先后次序,经过对比,可以区别出是什么组分,根据峰高度或峰面积可以计算出各组分含量。

主要特点气相色谱仪因为检测器的不同而具有不同的优缺点。

2.1氢火焰检测器气相色谱仪氢火焰检测器(FID, flame ionization detector)是利用氢火焰作电离源,使被测物质电离,产生微电流的检测器。

它是破坏性的、典型的质量型检测器。

优点:对几乎所有的有机物均有响应,特别是对烃类化合物灵敏度高,而且响应值与碳原子数成正比;对H2O、CO2和CS2等无机物不敏感;对气体流速、压力和温度变化不敏感。

红外气体分析测试技术

红外气体分析测试技术
• 烟气的除湿干燥相对比较复杂一些,必须装备特殊的冷凝 装置。烟气中的水分对气体分析的准确性有较大影响,主要 表现在水蒸汽的交叉干扰(cross-sensitivity)以及容积误 差。对于红外型分析仪来讲这种干扰更应该引起重视。
红外光谱技术
检测烟气的方法主要有化学法、电化学法、气相 色谱法等,这些方法普遍存在着价格贵、普适性差 等问题,且测量精度还较低。经典的烟气成分分析 方法都有一定的局限性。用红外吸收法测定烟气中 成分浓度的方法就弥补了这些缺点,红外吸收法测 定气体浓度具有测量范围宽、灵敏度高、准确性高 、响应时间快、选择性好、抗干扰能力强等特点。
简单的双原子分子只有一种键,那就是伸缩。更复杂 的分子可能会有许多键,并且振动可能会共轭出现,导致 某种特征频率的红外吸收可以和化学组联系起来
红外光谱又称分子振动转动光谱。当样品收到频率 连续变化的红外光照射时,分子吸收了某些频率的辐射, 产生分子振动和转动能级从基态到激发态的跃迁,使相应 于这些吸收区域的透射光或反射光强度减弱。记录红外光 的百分透射或反射比与波数或波长关系的曲线,就得到红 外光谱,红外光谱法不仅能够进行定性和定量分析,并且 从分子的特征吸收可以鉴定化合物和分子结构
靠,适用的气体种类较多,是一种基本的分析仪表。但
直接测量气体的导热系数比较困难,所以实际上常把
气体导热系数的变化转换为电阻的变化,再用电桥来
测定。
JRD-1010型热导式氢分析器
烟气分析测试技术
优点:热导式分析仪器是一种结构简单、性能稳定、价廉 、技术上较为成熟。适用的气体种类较多,是一种基本的分 析仪表
烟气分析测试技术
• 由于被分析气体的千差万别和分析原理的多 种多样,气体分析仪的种类繁多。常用的有:
1.热导式气体分析仪

红外线分析仪的工作原理

红外线分析仪的工作原理

红外线分析仪的工作原理参考资料:中国环保网(/news/details12018.htm )红外线分析仪简介气体工业名词术语。

大多数气体分子的振动和转动光谱都在红外波段。

当入射红外辐射的频率与分子的振动转动特征频率相同时,红外辐射就会被气体分子所吸收,引起辐射强度的衰减。

利用这种气体分子对红外辐射吸收的原理而制成的红外气体分析仪,具有测量精度高,速度快以及能连续测定等特点,在钢铁,石油化工,化肥,机械等工业部门,红外气体分析仪是生产流程控制的重要监测手段;在环境污染成分检测和医学生理研究等方面也都有许多成功的应用。

红外线分析仪的工作原理基于某些气体对红外线的选择性吸收。

红外线分析仪常用的红外线波长为2~12µm。

简单说就是将待测气体连续不断的通过一定长度和容积的容器,从容器可以透光的两个端面的中的一个端面一侧入射一束红外光,然后在另一个端面测定红外线的辐射强度,然后依据红外线的吸收与吸光物质的浓度成正比就可知道被测气体的浓度。

本项目中采用的是ABBAO2000系列仪表,配以URAR26红外模块。

朗伯—比尔定律——其物理意义是当一束平行单色光垂直通过某一均匀非散射的吸光物质时,其吸光度与吸光物质的浓度及吸收层厚度成正比。

这就是红外线气体分析仪的测量依据。

红外线便携式分析仪器,是基于某些气体对红外线的选择性吸收原理而制成的,该原理的便携式分析仪器是目前在国内市场上是最为精确,数字显示、操作简单,低返修率的一款仪器。

已经受到国内外众多用户的普遍欢迎。

红外线分析仪的用途卫生防疫部门、环境检测站等部门,对宾馆、商店、影剧院、舞厅、医院、车厢、船舱等公共场合的各种气体浓度的测定。

也可用于实验室分析。

根据用户的不同需求,该原理仪器主要用于测量CO2、CO,CH4、SO2等气体浓度。

红外线分析仪的技术参数1.测量范围:CO2最低:0-50ppm,最高:0-100% CO 最低:0-50ppm,最高:0-100%(其他用户需求自定)2.零点漂移:≤±2%F.S/4h 量程漂移:≤±2%F.S/4h3.线性度:≤±2%F.S4.重复性:≤±1%5.预热时间:15min红外线气体分析仪一般由气路和电路两部分组成,它的气路和电路的联系部件也是核心部分是发送器,发送器是红外分析仪的“心脏”部分,它将被测组分浓度的变化转为某种电参数的变化,并通过相应的电路转换成电压或电流输出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外气体检测分析原理
红外气体检测原理与气体分析仪
红外线气体分析仪,是利用红外线进行气体分析。

它基于待分析组分的浓度不同,吸收的辐射能不同.剩下的辐射能使得检测器里的温度升高不同,动片薄膜两边所受的压力不同,从而产生一个电容检测器的电号。

这样,就可间接测量出待分析组分浓度。

1.比尔定律
红外线气体分析仪是根据比尔定律制成的。

假定被测气体为一个无限薄的平面.强度为k的红外线垂直穿透它,则能量衰减的量为:I=I0e-KCL(比尔定律)式中:I--被介质吸收的辐射强度;
I0--红外线通过介质前的辐射强度;
K--待分析组分对辐射波段的吸收系数;
C--待分析组分的气体浓度;
L--气室长度(赦测气体层的厚度)
对于一台制造好了的红外线气体分析仪,其测量组分已定,即待分析组分对辐射波段的吸收系数k一定;红外光源已定,即红外线通过介质前的辐射强度I0一定;气室长度L一定。

从比尔定律可以看出:通过测量辐射能量的衰减I,就可确定待分析组分的浓度C了。

2.分析检测原理
红外线气体分析仪由两个独立的光源分别产生两束红外线,该射线束分别经过调制器,成为5Hz的射线。

根据实际需要,射线可通过一滤光镜减少背景气体中其它吸收红外线的气体组分的干扰。

红外线穿过两个气室,一个是充满连续流动的待测气体的测量室,另一个是充满不吸收背景气体的参考室。

工作时,测量室内待测气体浓度变化时,吸收的红外光量相应变化,而参考光束(参考室光束)的光量不变。

来自两个腔室的光量差通过探测器,使探测器产生压力差,成为电容探测器的电号。

该号经号调理电路放大后,送至主控制器的显示器和crt显示器。

输出号的大小与被测成分的浓度成正比。

我们所用的检测器是薄膜微音器。

接收室内充以样气中的待测组分,两个接收室中间用一个薄的金属膜隔开,在两测压力不同时膜片可以变形产生位移,膜片的一侧放一个固定的圆盘型电极。

可动膜片与固定电极构成了一个电容变进器的两极。

整个结构保持严格的密封,两接收气室内的气体为动片薄膜隔开,但在结构上安置一个大小为百分之几毫米的小孔,以使两
边的气体静态平衡。

辐射光束通过参比室、测量室后,进入检
测器的接收室。

被接收室里的气体吸收,气体温度升高,气体
分子的热运动加强,产生的热膨胀形成的压力增大。

当测量室
内通入零点气(N2)时,来自两气室的光能平衡,两边的压力相等,动片薄膜维持在平衡位置,检测器输出为零。

当测量室内
通入样气时,测量边进入接收室的光能低于参比边的,使测量
边的压力减小,于是薄膜发生位移,故改变了两极板问的距离,也改变了电容量C。

红外线气体分析仪可以用来分析各种多原子气体,如:C2H2、C2H4、C2H5OH、
1
C3H6、C2H6、C3H8、NH3、CO2、CO、CH4、SO2等。

不能用来分析同一种原子构成的多原子气体以及惰性气体,如:N2、Cl2、H2、O2以及He、Ne、Ar等。

气体分析器
百科名片
气体分析器
测量气体成分的流程分析仪表。

在很多生产过程中,特别
是在存在化学反应的生产过程中,仅仅根据温度、压力、流量
等物理参数进行自动控制常常是不够的。

由于被分析气体的千差万别和分析原理的多种多样,气体分析仪的种类繁多。

常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。

简介
气体分析仪器是测量气体成分的流程分析仪表。

在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。

由于被分析气体的千差万别和分析原理的多种多样,气体分析仪器的种类繁多。

常用的有热导式气体分析仪器、电化学式气体分析仪器和红外线吸收式分析仪等。

气体传感器
主要利用气体传感器来检测环境中存在的气体种类,气体传感器是用来检测气体的成份和含量的传感器。

一般认为,气体传感器的定义是以检测目标为分类基础的,也就是说,凡是用于检测气体成份和浓度的传感器都称作气体传感器,不管它是用物理方法,还是用化学方法。

比如,检测气体流量的传感器不被看作气体传感器,但是热导式气体分析仪却属于重要的气体传感器,尽管它们有时使用大体一致的检测原理。

气体传感器
热导气体分析仪
一种物理类的气体分析仪表。

它根据不同气体具有不同热传导能力的原理,通过测定混合气体导热系数来推算其中某些组分的含量。

这种分析仪表
2
简单、可靠,适用于多种气体,是一种基本的分析仪器。

而气体的导热系数很难直接测量,所以实际上往往是将气体导热系数的变化转化为电阻的变化,然后用电桥测量。

热导式气体分析仪的热敏元件主要包括半导体敏感元件和金属电阻丝。

半导体传感器体积小,热惯性小,电阻温度系数大,所以灵敏度高,时滞小。

串珠状金属氧化物烧结在铂线圈上作为敏感元件,然后用一对非反应性材料缠绕内阻和发热量相等的同一个铂线圈作为补偿元件。

这两个元件构成了一个电桥电路,即测量电路。

半导体金属氧化物传感器吸收被测气体时,电导率和热导率会发生变化,传感器的散热状态也会发生变化。

铂线圈的电阻随元件的温度变化而变化,电桥有不平衡的电压输出,因此可以检测气体浓度。

热导气体分析仪有着广泛的应用。

通常用于分析氢气、氨气、二氧化碳、二氧化硫和低浓度可燃气体的含量,也可用作色谱分析仪中的检测器,分析其他组分。

电化学式气体分析仪
化学气体分析仪。

它根据化学反应引起的离子数量或电流的变化来测量气体成分。

为了提高选择性,防止测量电极表面污染,保持电解液的性能,一般采用隔膜结构。

常用的电化学分析仪有恒电位电解式和原电池式。

恒电位电解分析仪的工作原理是在电极上施加特定的电位,被测气体会在电极表面电解。

只要测量施加在电极上的电位,就可以确定被测气体的具体电解电位,从而使仪器具有选择和识别被测气体的能力。

原电池分析仪对通过隔膜扩散到电解液中的待测气体进行电解,并测量形成的电解电流以确定待测气体的浓度。

通过选择不同的电极材料和电解质来改变电极表面的内部电压,可以实现对不同电解电位气体的选择性。

红外线吸收式分析仪
根据不同组分气体对不同波长的红外线具有选择性吸收的特性而工作的分析仪表。

测量这种吸收光谱可判别出气体的种类;测量吸收强度可确定被测气体的浓度。

红外线分析仪的使用范围宽,不仅可分析气体成分,也可分析溶液成分,且灵敏度较高,反应迅速,能在线连续指示,也可组成调节系统。

工业上常用的红外线气体分析仪的检测部分由两个并列的结构相同的光学系统组成。

一个是测量室,一个是资料室。

两个腔室通过截光板以一定的周期同时或交替开启和关闭光路。

待测气体被引入测量腔后,被测气体的特定波长的光被吸收,使得通过测量腔进入红外接收腔的光通量减少。

气体浓度越高,进入红外接收室的光通量越少。

通过参考室的光通量是恒定的,进入红外接收室的光通量也是恒定的。

因此,被测气体的浓度越高,测量室和参考室之间的光通量差异越大。

这种光通量的差异以周期性振动的振幅投射到红外接收室。

接收腔被一层几微米厚的金属膜分成两半,腔内密封有高浓度的被测组分气体,能吸收吸收波长范围内的所有入射红外线,使脉动光通量成为温度的周期性变化,然后根据气体方程将温度的变化转化为压力的变化,再由电容传感器检测,放大后指示被测气体的浓度。

除了电容式传感器,还可以使用直接检测红外线的量子红外传感器,使用红外干涉滤光片进行波长选择和调节。

3
激光器作光源,形成一种崭新的全固体式红外气体分析仪。

这种分析仪只用一个光源、一个测量室、一个红外线传感器就能完成气体浓度的测量。

此外,若采用装有多个不同波长的滤光盘,则能同时分别测定多组分气体中的各种气体的浓度。

红外分析仪的原理类似于工业上也广泛使用的紫外分析仪和光电比色分析仪。

非分散红外分析
非分散红外分析同时采用窄带滤光片和气体过滤相关法两种非色散光谱分析技术结合,适合于气体不同的测量范围要求。

相关法可以测量低量程气体,有效避免交叉干扰。

这种独特的技术可以消除弱吸收气体如co和高吸收气体co2的交叉干扰。

由热源发射的红外光被旋转的滤光器过滤,导致一系列脉冲号直接穿过包含样气的单元。

当滤光轮转动时,固态探测器反映号变化,并放大、输出和显示号。

操作
需要提供纯氮气来清洁仪器的气室,降低噪音,以保证仪器的最大稳定性。

包装设备顶空气体分析仪器用于密封包装袋、瓶、罐等包装件内氧气、二氧化碳气体含量、混合比例的测定;适合在生产线、仓库、实验室内等场合快速准确地对包装件内的气体组分含量与比例做出评价,从而指导生产,保证产品货架期得以实现。

相关文档
最新文档