高中数学人教A版第三章概率几何概型

合集下载

2015学年高中数学(人教A版必修三)配套课件 第3章 3.3.2 均匀随机数的产生 教师配套用书课件(共32张ppt)

2015学年高中数学(人教A版必修三)配套课件 第3章 3.3.2 均匀随机数的产生 教师配套用书课件(共32张ppt)
第三章 概 率
§3.3 几何概型
3.3.2 均匀随机数的产生
本节知识目录
3.3.2
明目标、知重点
均匀
填要点、记疑点
探究点一 均匀随机数的产生
随机
数的
探要点、究所然
探究点二 随机模拟方法 探究点三 用模拟法估计面积型的几何概率
产生
当堂测、查疑缺
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
(3)统计出试验总次数N,落在阴影部分的次数N1.
N1 (4)计算频率fn(A)= N 就是飞镖落在小正方形内的概率的近似值.
明目标、知重点 填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
3.3.2
探究点二:随机模拟方法
例2 假设你家订了一份报纸,送报人可能在早上 6:30~7:30 之间把报纸送到你
家,你父亲离开家去上班的时间在早上 7:00~8:00 之间,如果把“你父亲在离 开家之前能得到报纸”称为事件 A,则事件 A 的概率是多少? 思考 1 设 X、Y 为[0,1]上的均匀随机数,6.5+X 表示送报人到达你家的时间,7
+Y 表示父亲离开家的时间,若事件 A 发生,则 X、Y 应满足什么关系?
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
3.3.2
探究点一:均匀随机数的产生
思考1 我们常用的是[0,1]上的均匀随机数,如何利用计算器产生0~1之间的均 匀随机数?如何利用计算机产生0~1之间的均匀随机数?
答 用计算器产生0~1之间的均匀随机数的方法见教材;用计算机的方法如
下:用Excel演示. (1)选定A1格,键入“=rand()”,按Enter键,则在此格中的数是随机产生的 [0,1]上的均匀随机数; (2)选定A1格,点击复制,然后选定要产生随机数的格,比如A2~A100,点击 粘贴,则在A1~A100的数都是[0,1]上的均匀随机数.这样我们就很快就得到 了100个0~1之间的均匀随机数,相当于做了100次随机试验.

【全程复习方略】高中数学 3.3.1 几何概型课件2 新人教A版必修3

【全程复习方略】高中数学 3.3.1 几何概型课件2 新人教A版必修3
5
【归纳】解答本题1,2需注意的问题. 解答本题1注意准确求解不等式|x|≤1; 解答本题2注意理解截距的意义.
与面积有关的几何概型问题
【技法点拨】
1.与面积有关的几何概型的概率公式
如果试验的结果所构成的区域的几何度量可用面积表示,则其 概率的计算公式为:
P(A) 构成事件A的区域面积 . 试验的全部结果所构成的区域面积
2 故选D. P( x 1) . 3
2.选A.所有的基本事件构成的区间长度为 3-(-2)=5, ∵直线在y轴上的截距b大于1, ∴直线横截距小于-1, ∴“直线在y轴上的截距b大于1”包含的基本事件构成的区间 长度为-1-(-2)=1,由几何概型概率公式得直线在y轴上的截
距b大于1的概率为 P 1 , 故选A.
2.概率为0的事件是否一定是不可能事件? 提示:不一定.设Ω={(x,y)|x2+y2≤4},A={(x,y)|x2+y2=4},
Ω为圆域,而A为圆周,向区域Ω内投点,则点落在A上的概率
P(A) A的面积 0 0,而点落在圆周上的情况是可能发生 的面积 4
的.故概率为0的事件不一定是不可能事件.
2.解与面积相关的几何概型问题的三个关键点 (1)根据题意确认是否是与面积有关的几何概型问题; (2)找出或构造出随机事件对应的几何图形,利用图形的 几何特征计算相关面积; (3)套用公式,从而求得随机事件的概率.
【典例训练】
1.(2011·福建高考)如图,矩形ABCD中,点E为边CD的中点,
若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概
3.3.1 几何概型
1.理解几何概型的定义及其特点. 2.会用几何概型的概率公式求几何概型的概率.

2015学年高中数学(人教A版必修三)配套课件 第3章 3.3.1 几何概型 课堂教学素材1

2015学年高中数学(人教A版必修三)配套课件 第3章 3.3.1 几何概型 课堂教学素材1
3
练习
3.欧阳修《卖油翁》中写道:“乃 取一葫芦置于地,以钱覆其口,徐以 杓酌油沥之,自钱孔入,而钱不湿。” 可见“行行出状元”,卖油翁的技艺 让人叹为观止。若铜钱的直径是3cm的 圆,中间有边长为1cm的正方形孔,若 你随机向铜钱上滴一滴油,则油正好 4 落入孔中的概率是 (假设油 9π
滴落在铜钱上且油滴的大小忽略不计)
1米
1米
1米
1 事件A发生的概率 P(A) = 3
知识串联:两种概型 概率公式的联系 古典概型 共同点 不同点 基本事件发生 的等可能性 几何概型 基本事件发生 的等可能性 基本事件个数 的无限性
基本事件个数 的有限性 古典概型概率计算公式:
P(A)=
A包含的基本事件的个数 基本事件的总数
几何概型概率计算公式:
3
(3-2)2 1 = = 9 32
解题方法小结:对于复杂的实际问题,解题的关键 是要建立模型,找出随机事件与所有基本事件相对 应的几何区域,把问题转化为几何概率问题,利用 几何概率公式求解.
练习
1.一个路口的红绿灯,红灯的 时间为30秒,黄灯的时间为5 秒,绿灯的时间为40秒。当 你到达路口不用停直接通过 的概率为 8/15
例2. 抛阶砖游戏“抛阶砖”是国外游乐场的典型游戏 之一.参与者只须将手上的“金币”(设“金币” 的半径为1)抛向离身边若干距离的阶砖平面上, 抛出的“金币”若恰好落在任何一个阶砖(边长为 3的正方形)的范围内(不与阶砖相连的线重叠), 便可获奖,许多人纷纷参与此游戏,却很少有人得 到奖品,你能用今天所学的数学知识解释这是为什 么吗?(假设每次抛的金币都落在阶砖上)
解:
设A= 等待的时间不多于10分钟
则事件A发生恰好是打开收音机的 时刻位于[50,60]时间段内,因此 由几何概型的求概率公式得

高中数学第三章概率3.3几何概型3.3.1几何概型3.3.2几何概型均匀随机数的产生课件新人教A版

高中数学第三章概率3.3几何概型3.3.1几何概型3.3.2几何概型均匀随机数的产生课件新人教A版

记“等车时间超过 10 min”为事件 A,则当乘客到达车 站的时刻 t 落在线段 T1T 上(不含端点)时,事件 A 发生.
∴P(A)=TT11TT2的的长长度度=155=13, 即该乘客等车时间超过 10 min 的概率是31.
拓展提升 1.解几何概型概率问题的一般步骤 (1)选择适当的观察角度(一定要注意观察角度的等可能 性); (2)把基本事件转化为与之对应的区域 D; (3)把所求随机事件 A 转化为与之对应的区域 I; (4)利用概率公式计算.
【跟踪训练 2】 如图,在圆心角为直角的扇形 OAB
中,分别以 OA,OB 为直径作两个半圆.在扇形 OAB 内随
机取一点,则此点取自阴影部分的概率是( )
A.1-π2 B.21-π1
2
1
C.π
D.π
解析 设扇形的半径为 2,则其面积为π×422=π.阴影部 分的面积可转化为扇形的面积减去△AOB 的面积,即阴影 部分的面积为 π-12×2×2=π-2.因此任取一点,此点取自 阴影部分的概率为π-π 2=1-2π.
拓展提升 1.解与体积有关的几何概型的关键点 分清题中的条件,提炼出几何体的形状,找出总体积是 多少以及所求的事件占பைடு நூலகம்的几何体是什么几何体,并计算出 体积. 2.与体积有关的几何概型概率的求法 如果试验的结果所构成的区域的几何度量可用体积表 示,则其概率的计算公式为 P(A)=试验的构全成部事结件果A所的构区成域的体区积域体积.
所以作 AC′=AC,且∠ACC′=180°2-45°=67.5°.
如图,当 CM 在∠ACC′内部的任意一个位置时,皆有 AM<AC′=AC,即 P(AM<AC)=6970.5°°=34.
探究 5 用随机模拟法估计图形的面积

2015学年高中数学(人教A版必修三)配套课件 第3章 3.3.1 几何概型 教师配套用书课件(共32张ppt)

2015学年高中数学(人教A版必修三)配套课件 第3章 3.3.1 几何概型 教师配套用书课件(共32张ppt)

1.了解几何概型的定义及其特点. 2.了解几何概型与古典概型的区别. 3.会用几何概型的概率计算公式求几何概型的概率.
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
填要点、记疑点
1.几何概型的定义
3.3.1
如果每个事件发生的概率只与 构成该事件区域的长度(面积或体积)成比例 ,则 称这样的概率模型为几何概率模型,简称几何概型. 2.几何概型的特点 (1)试验中所有可能出现的结果(基本事件)有 无限多个 . (2)每个基本事件出现的可能性 相等 . 3.几何概型的概率公式
探究点一:几何概型的概念
例1 判断下列试验中事件A发生的概型是古典概型,还是几何概型. (1)抛掷两颗骰子,求出现两个“4点”的概率;(2)思考3中,求甲获胜的概率.
解 (1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因 此属于古典概型; (2)游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在阴影部 分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域面积有关,因 此属于几何概型.
第三章 概 率
§3.3 几何概型
3.3.1 几何概型
本节知识目录
3.3.1
明目标、知重点

填要点、记疑点


探要点、究所然
探究点一 探究点二 探究点三
几何概型的概念 几何概型的概率公式 几何概型的应用

当堂测、查疑缺
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
明目标、知重点
3.3.1
明目标、知重点
填要点、记疑点
主目录
探要点、究所然

人教A版高中数学必修三课件:第三章章末小结

人教A版高中数学必修三课件:第三章章末小结
个白球和 3 个黑球,从袋中任取两球,两球颜色为一红一黑的概率
等于(
).
1
2
3
4
A.5 B.5 C.5 D.5
【方法指导】选出的两球只与颜色有关,与顺序无关,可把不
同颜色的小球分别进行编号,无序列举出基本事件,利用古典概
型计算.
【解析】把 1 个红球记为 a,2 个白球分别记为 b1,b2,3 个黑
满足两球颜色为一红一黑的基本事件有(a,c1),(a,c2),(a,c3),共
3 1
3 个,故所求事件的概率为15 =5,故选 A.
【答案】A
【小结】在进行摸球活动中,所求概率一般只与球的颜色有
关,而与先后顺序无关,列举时只需把摸出的球的编号列举出来
即可,无需再颠倒顺序.如果按照有序性列举基本事件,那么个数
两种,则甲、乙两同学各自所选的两种水果相同的概率

.
【解析】将四种水果每两种分为一组,有 6 种方法,则甲、乙
1
两位同学各自所选的两种水果相同的概率为6.
1
【答案】
6
3.(2015 年福建卷)如图,矩形 ABCD 中,点 A 在 x 轴上,点 B 的坐标
+ 1, ≥ 0,
为(1,0),且点 C 与点 D 在函数 f(x)= 1
函数.
(2)Excel 软件产生区间[0,1]上的均匀随机数的函数为
“rand()”.
题型一:概率与频率
某险种的基本保费为 a(单位:元),继续购买该险种的投保人
称为续保人,续保人本年度的保费与其上年度出险次数的关联如
下:
上年度
出险次 0 1 2 3 4 ≥5

1.2 1.5 1.7
0.8

高中数学 第三章第3节几何概型 理 知识精讲人教新课标A版必修3

高中数学 第三章第3节几何概型 理 知识精讲人教新课标A版必修3

高二数学 第三章第3节几何概型 理 知识精讲人教新课标A 版必修3一、学习目标:(1)了解几何概型的概念及基本特点 (2)熟练掌握几何概型中概率的计算公式 (3)会进行简单的几何概率计算(4)能运用模拟的方法估计概率,掌握模拟估计面积的思想二、重点、难点:重点:掌握几何概型中概率的计算公式;并能进行简单的几何概率计算。

难点:将实际问题转化为几何概型,并能正确应用几何概型的概率计算公式解决问题。

三、考点分析:本部分内容是新增的内容,对几何概型的要求仅限于体会几何概型的意义,所以在练习时,侧重于一些简单的试题即可。

(1)区别古典概型与几何概型(2)理解随机模拟求几何概型的概率1、几何概型的概念: 对于一个随机试验,我们将每个基本事件理解为从某个特定的可以几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则可以理解为恰好取到上述区域内的某个指定区域中的点。

这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型。

2、几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个; (2)每个基本事件出现的可能性相等。

3、几何概型的概率:一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率()d P A D的测度的测度。

说明:(1)D 的测度不为0;(2)其中“测度”的意义依D 确定,当D 分别是线段,平面图形,立体图形时,相应的“测度”分别是长度,面积和体积。

(3)区域为“开区域”;(4)区域D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关。

4、模拟计算几何概型的步骤: (1)构造图形(作图);(2)模拟投点,计算落在阴影部分的点的频率m n; (3)利用()m d P A n D ≈=的测度的测度算出相应的量。

高中数学 第三章概率 第三节几何概型 课件 新人教a版必修3

高中数学 第三章概率 第三节几何概型 课件 新人教a版必修3
复习引入:
古典概型:
特点(1)试验中所有可能出现的基本事件
只有有限个 (2)每个基本事件出现的可能性相等 事件A发生的概率为 P(A)=
A包含的基本事件个数 基本事件总数
如图,甲乙两人玩转盘游戏,规定当指针 指到B区域时,甲获胜,否则乙获胜,如果你 是甲,你会选择哪个指针进行游戏。
定义:
如果每个事件发生的概率只与构成事件区域的 长度(面积或体积)成比例,则称这样的概率 模型为几何概率模型,简称几何概型。
• 几何概型的概率只和构成事件的区域面 积占总体的比例有关,与分布位置无关
一元几何概型问题
• 涉及长度(剪绳子,时间等) • 涉及面积(射飞镖等) • 涉及体积(物体混合等)
练习: 1、取一根长3m的绳子,拉直后在任意 位置剪断,那么剪得两段的长都不少于 1m的概率有多大? 1/3 2、取一根长3m的绳子,拉直后在任意 位置剪断,那么剪得两段的长度差不少 于1m的概率有多大? 2/3 3、在长为12cm的线段AB上任取一点M, 并以线段AM为边,试求这个正方形的面 积介于36cm2与81cm2之间的概率.
事件A的概率为:
P(A)=
构成事件A的区域长度(面积或体积)
试验的全部结果构成的区域长度(面积或体积)
特点:1.试验中的基本事件有无限多个 2.每个基本事件出现的可能性相等 3.概率与构成事件区域的长度(面积或体积) 比例有关,与位置无关
练习
• 观察下列图像,若指针指导红色区域, 则甲获胜,否则乙获胜,求甲获胜的概 率
0.03
变式2:射中八环以上(包括八环)的概率是 多少? 0.09
练习
• 取一个边长是2a的正方形及其 内切圆如图所示,随机向正方形 内丢一粒豆子,则豆子落入圆内 的概率是 4 • 有一枚半径为4的圆,现将一枚直径为2 的硬币投向其中(硬币与圆面有公共点算 有效试验),求硬币完全落入圆内的概率 9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.3.1 几何概型(一)
【课题】几何概型
【教材】普通高中课程标准实验教科书人民教育出版社 A版数学必修3
【授课教师】兰州一中刘雪峰
【教材分析】
几何概型是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸.几何概型的基本特点是:在每次随机试验中,不同的试验结果有无限多个,即基本事件有无限个;在这个随机试验中,每个试验结果出现的可能性相等,即基本事件是等可能的.几何概型与古典概型的区别在于,几何概型是无限个等可能事件的情况,而古典概型中的等可能事件只有有限个.
【学情分析】
学生通过古典概型的学习初步形成了解决概率问题的思维模式,但还不是很成熟.学生在学习本节课时特别容易和古典概型相混淆,究其原因是思维不严谨,对几何概型的概念理解不清.另外,在解决几何概型的问题时,几何度量的选择也需要特别重视,在实际授课时,应当引导学生发现规律,找出适当的方法来解决问题.
【教学目标】
知识与技能:初步体会几何概型的意义,会用公式求解简单的几何概型的概率.
过程与方法:通过试验,与已学过计算概率的方法进行比较,提出新问题,师生共同探究,提出可行性解决问题的建议或想法.
情感态度与价值观:感知生活中的数学,培养学生用随机的观点来理解世界,加强与现实生活的联系,以科学的态度评价身边的随机现象,学会用科学的方法去观察世界和认识世界.
【重点难点】
教学重点: 几何概型的基本特征及如何求几何概型的概率.
教学难点: 如何判断一个试验是否是几何概型,如何将实际背景转化为几何度量.
【教法学法】问题解决的教学模式,分层实现教学目标.
【教学基本流程】温故知新

创设情境

新知探究

形成概念

典例分析

巩固深化

课堂梳理

布置作业
【教学情景设计】


提问2:古典概型的概率个公式?一步引入几何概型做铺垫.
创设情境问题情境:下图是卧室和书房地板的示意图,图中每
一块方砖除颜色外完全相同.一只小猫分别在卧室和
书房自由地走动,随意地停留在地板上.请问,在哪个
房间小猫停留在黑砖上的概率大?为什么?
卧室书房
设置学生思维的最近发
展区,创设适宜于学生探究、
生成新知识的问题情境.
新知探究引导学生思考探究
探究1:上述问题的概率与什么相关?
(学生很容易联想到几何图形的面积.)
探究2:这是古典概型吗?
(教师引导学生通过古典概型的两个特征进行判断,让
学生初步体会古典概型和几何概型区别和联系)
探究3:怎样确定几何概型的概率?
图中有两个转盘.甲乙两人玩转盘游戏,规定当指
针指向B区域时,甲获胜,否则乙获胜.在两种情况下分
别求甲获胜的概率是多少?
学生分析:
1、指针指向的每个方向都是等可能性的,但指针所指
的位置却是无限个的,因而无法利用古典概型;
2、利用B区域的所对弧长、所占的角度或所占的面积
与整个圆的弧长、角度或面积成比例研究概率;
学生求解:法一(利用B区域所占的弧长)
法二(利用B区域所占的圆心角)
法三(利用B区域所占的面积)
引导学生初步认识几何
概型的等可能性和无限性.
引导学生发现试验的
结果是无限的,似乎不能解
决此问题,从而激励学生寻
求解决问题的方法.
让学生体会解决问题的
实质就是将原来具有无限性
的基本事件集合进行了度
量,
形成概念几何概型的概念:
如果每个事件发生的概率只与构成该事件区域的
长度(面积或体积)成比例,则称这样的概率模型为
几何概率模型,简称为几何概型.
几何概型的特征:
⑴试验中所有可能出现的基本事件有无限多个——基
本事件具有无限性.
⑵每个基本事件出现的可能性相等——基本事件发
明确概念的内涵和外
延,抓住概念的本质属性,
这是探究活动的重要环节,
有助于培养学生的语言表达
能力、归纳概括能力与辩证
思维能力.
生具有等可能性.
在几何概型中,事件A的概率计算公式:
典例分析典例1:某人午觉醒来,发现表停了,他打开收音机,想
听电台报时,求他等待的时间不多于10分钟的概率.
采取以学生自主学习的方式,学生独立完成.让学生
板演,教师巡视学生的做题情况.
教师对巡视时发现的问题通过实物投影仪进行点评.
典例2:在棱长为2的正方体ABCD—A1B1C1D1的棱
AB上任取一点P,求P到点的距离小于等于1的概率.
变式1:在棱长为2的正方体ABCD—A1B1C1D1的面
ABCD上任取一点P,求P到点的距离小于等于1的概
率.
变式2:在棱长为2的正方体ABCD—A1B1C1D1内任取
一点P,求P到点的距离小于等于1的概率.
典例3:已知点A为圆周上一定点,在圆周上等可能的任
取一点与A连结,求弦长超过半径的概率.
围绕概念选择典型例
题,设置问题.学生完成后,
教师组织学生进行点评,引
导学生总结解题的方法步
骤,以及应注意的问题,达
到更好的掌握知识和数学思
想方法的目的.
通过设计一系列变式练
习,让学生进一步体会如何
在几何概型中选择恰当的几
何度量来确定概率.
()
P A
构成事件A的区域的长度(面积或体积)
试验的全部结果所构成的区域的长度(面积或体积)
【教学反思】
本节课的定位是几何概型的建构及其应用,我采用了“问题解决”的教学模式,分层实现教学目标。

在对比分析过程中,激发学生的学习兴趣,使其初步感受从有限到无限,从古典概型到几何概型的过渡,同时也在学生的思维中呈现了“面积”这一几何测度,引出课题—几何概型。

在此教学环节中,我将旧知识的检查有机融合在学生对新知识的探求过程中,力求新知导入的自然、快捷、高效。

实例能让学生在感受数学源
自生活的同时,体会已有知识不足以解决新问题的“窘迫”,从而产生内源性的驱动力,极力参与到概念的构建、形成、巩固和应用等环节中,提高主体参与的深度与广度 .
为了让学生更好地把握几何概型的本质,教学时着重强调“每个事件的发生可以看成在某个特定区域上取上一个点”和“等可能性”,突出问题的几何特性和随机性,这样不但可以“几何概型”中的“几何”一词来头,
引导学生从多角度思考问题,意识到解决问题方法的不唯一性.可以用弧长、角度、面积等不同的几何度量去求解,加深学生对几何概型的理解,拓展学生思维.
巩固深化 练习1:在区间[-1,2]上任取一个整数,恰好取在区间[0,1]上的概率为 .
练习2:在区间[-1,2]上任取一个实数,恰好取在区间[0,1]上的概率为 .
练习3:如下图,假设你在每个图形上随机地撒一粒黄豆,分别计算它落在阴影部分的概率.
练习4:一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率.
通过比较让学生进一步体会古典概型和几何概型的区别和联系.
课堂练习让学生尝试自主解决,以达到巩固概念,强化应用的目的.
课 堂 梳 理 让学生自己总结:
①我们这节课你学到了什么?
②通过这节课你掌握了哪些方法?应该注意些什么问题?
③有哪些思想是在以后的学习中可以借鉴? 课堂梳理,可以把课堂探究生成的知识尽快转化为学生的素质,巩固深化这节课的内容.
思考拓展 思考拓展:
甲乙两人相约上午8:00到9:00在某地会面,先到者等候另一个人20分钟,过时即可离去,求甲乙两人能会面的概率.
思维拓展题满足不同学生发展的需要.
布 置 作 业
1. 习题3.3A 组:1,2,3.
2. <<红对勾>>第31课时.
3. <<数学导学案>>几何概型第二课时.
适度的作业可以帮助学生巩固所学的知识,并为下一阶段学习做好准备.
而且在遇到相关的几何概型实际问题时有“抓手”,能自觉将问题转化成找“点”、找“点所形成的区域”,从而自觉把实际问题抽象成几何问题.这主要体现在例题和练习反馈教学中.
为了让学生更好地掌握新知,本课设计从学生已有的认知水平出发,遵照知识的发生发展过程,对教材做了必要的加工,分散难点,突出重点,使学生能参与、可交流,使课堂民主、和谐、高效.。

相关文档
最新文档