抑制载波单边带调幅和解调的实现
实验三模拟乘法器调幅及解调实验

实验三模拟乘法器调幅〔AM、DSB、SSB〕及解调实验〔包络检涉及同步检波实验〕一、实验目的1.掌握用集成模拟乘法器实现全载波调幅、抑止载波双边带调幅和单边带调幅的方法。
2.研究已调波与调制信号以及载波信号的关系。
3.掌握调幅系数的测量与计算方法。
4.通过实验比照全载波调幅、抑止载波双边带调幅和单边带调幅的波形。
5.了解模拟乘法器〔MC1496〕的工作原理,掌握调整与测量其特性参数的方法。
6.进一步了解调幅波的原理,掌握调幅波的解调方法。
7.掌握二极管峰值包络检波的原理。
8.掌握包络检波器的主要质量指标,检波效率及各种波形失真的现象,分析产生的原因并思考克制的方法。
9. 掌握用集成电路实现同步检波的方法。
二、实验内容1.调测模拟乘法器MC1496正常工作时的静态值。
2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。
3.实现抑止载波的双边带调幅波。
4.实现单边带调幅。
5.完成普通调幅波的解调。
6.观察抑制载波的双边带调幅波的解调。
7.观察普通调幅波解调中的对角切割失真,底部切割失真以及检波器不加高频滤波时的现象。
三、实验原理及实验电路说明1、调幅局部幅度调制就是载波的振幅〔包络〕随调制信号的参数变化而变化。
本实验中载波是由晶体振荡产生的465KHz高频信号,1KHz的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
1.集成模拟乘法器的内部构造集成模拟乘法器是完成两个模拟量〔电压或电流〕相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用别离器件如二极管和三极管要简单得多,而且性能优越。
所以目前无线通信、播送电视等方面应用较多。
集成模拟乘法器常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。
(1)MC1496的内部构造在本实验中采用集成模拟乘法器MC1496来完成调幅作用。
抑制载波单边带调幅(SSB)和解调的实现

抑制载波单边带调幅(SSB)和解调的实现一、设计目的和意义1、利用MATLAB实现对信号进行抑制载波单边带调幅(SSB)和解调2、有助于理解模拟线性调制中利用相移法实现单边带调幅的调制方法3、有助于理解相干解调的原理4、有助于理解和掌握低通滤波器的设计过程5、有助于理解信号的时频关系6、有助于了解信号的频谱与功率谱的关系7、通过对该题目的设计,巩固了《通信原理》和《数字信号处理》的相关知识,加深了对相关知识点的认识和理解。
二、设计原理利用已学的《通信原理》和《数字信号处理》的相关知识完成对信号进行抑制载波单边带调幅(SSB)和解调。
1、调制通过对《通信原理》这门课程的学习,已经了解到了抑制载波单边带调幅的调制方式有两种:一种是用滤波法实现;一种是利用相移法实现。
所谓滤波法就是将双边带的已调制信号经过一个滤波器实现,如果要保留下边带,则让信号通过一个低通滤波器,如果要保留上边带则让信号通过一个高通滤波器。
滤波法原理图如图1所示。
图1 单边带信号的滤波法形成但是理想滤波特性是不可能做到的,实际滤波器从通带到阻带总有一个过渡带。
如果要把信号调制到很高的频率则需要进行多级调制才能满足指标,增加了调制设备的复杂性和成本;另外,如果调制信号中有直流及低频分量,则必须使用过渡带为零的理想滤波器才能将上、下边带分割开来,而这是不可能用滤波法实现的。
另外一种调制方法——相移法——实现对信号的调制。
由于这是单频调制,设单频调制信号为()cos m m f t A t ω= (1)载波为()cos c C t t ω= (2)则双边带信号的时间波形为()cos cos DSB m m c S t A t t ωω=0.5cos()0.5cos()m m c m m c A t A t ωωωω=++-保留上边带的单边带调制信号为 ()0.5cos()USB m m c S t A t ωω=+0.5(cos cos sin sin )m m c m c A t t t t ωωωω=- (3)同理可得保留下边带的单边带调制信号为()0.5cos()LSB m m c S t A t ωω=-0.5(cos cos sin sin )m m c m c A t t t t ωωωω=+ (4)式(3)、(4)中第一项与调制信号和载波的成绩成正比,称为同相分量;而第二项乘积中则包含调制信号与载波信号分别相移-π/2的结果,称为正交分量。
单边带幅度调制

单边带幅度调制
单边带幅度调制(Single Sideband Amplitude Modulation,简称SSB-AM)是一种调制技术,用于将基带信号调制到高频载波上。
与传统的调幅(AM)技术不同,SSB-AM只传输载波带的一侧(上侧或下侧)的信号,从而减少了频谱资源的占用,提高了系统的带宽利用率。
在SSB调制中,采用滤波的方式将原始信号频谱中的负频率(下侧带)或正频率(上侧带)滤除。
这样做的目的是使得传输的信号只占用一半的频谱资源,减少了所需的传输带宽。
SSB-AM可以通过以下步骤实现:
1. 使用带通滤波器将基带信号的频域范围限制在感兴趣的频率范围内。
2. 将滤波后的信号与高频载波进行乘法运算,得到调制信号。
3. 将调制信号通过带通滤波器,只保留上侧带或下侧带。
4. 将滤波后的信号放大,得到最终的调制信号。
SSB-AM具有以下优点:
1. 提高了频谱利用率,节省了频谱资源。
2. 减少了传输功率和系统复杂度。
3. 抑制了载波干扰和噪声,提高了系统的抗干扰性能。
然而,SSB-AM也存在一些问题:
1. SSB-AM的调制和解调需要复杂的滤波器和频率转换器,增加了系统的复杂性和成本。
2. 调制和解调过程中可能引入失真和相位失调,影响信号质量。
综上所述,单边带幅度调制是一种有效的调制技术,可以提高频谱利用率和系统性能,但也需要在设计和实现过程中解决一些技术难题。
抑制载波单边带调幅(SSB)和解调的实现

抑制载波单边带调幅(SSB)和解调的实现一、设计目的和意义1、利用MATLAB实现对信号进行抑制载波单边带调幅(SSB)和解调2、有助于理解模拟线性调制中利用相移法实现单边带调幅的调制方法3、有助于理解相干解调的原理4、有助于理解和掌握低通滤波器的设计过程5、有助于理解信号的时频关系6、有助于了解信号的频谱与功率谱的关系7、通过对该题目的设计,巩固了《通信原理》和《数字信号处理》的相关知识,加深了对相关知识点的认识和理解。
二、设计原理利用已学的《通信原理》和《数字信号处理》的相关知识完成对信号进行抑制载波单边带调幅(SSB)和解调。
1、调制通过对《通信原理》这门课程的学习,已经了解到了抑制载波单边带调幅的调制方式有两种:一种是用滤波法实现;一种是利用相移法实现。
所谓滤波法就是将双边带的已调制信号经过一个滤波器实现,如果要保留下边带,则让信号通过一个低通滤波器,如果要保留上边带则让信号通过一个高通滤波器。
滤波法原理图如图1所示。
图1 单边带信号的滤波法形成但是理想滤波特性是不可能做到的,实际滤波器从通带到阻带总有一个过渡带。
如果要把信号调制到很高的频率则需要进行多级调制才能满足指标,增加了调制设备的复杂性和成本;另外,如果调制信号中有直流及低频分量,则必须使用过渡带为零的理想滤波器才能将上、下边带分割开来,而这是不可能用滤波法实现的。
另外一种调制方法——相移法——实现对信号的调制。
由于这是单频调制,设单频调制信号为()cos m m f t A t ω= (1)载波为()cos c C t t ω= (2)则双边带信号的时间波形为()cos cos DSB m m c S t A t t ωω=0.5cos()0.5cos()m m c m m c A t A t ωωωω=++-保留上边带的单边带调制信号为 ()0.5cos()USB m m c S t A t ωω=+0.5(cos cos sin sin )m m c m c A t t t t ωωωω=- (3)同理可得保留下边带的单边带调制信号为()0.5cos()LSB m m c S t A t ωω=-0.5(cos cos sin sin )m m c m c A t t t t ωωωω=+ (4)式(3)、(4)中第一项与调制信号和载波的成绩成正比,称为同相分量;而第二项乘积中则包含调制信号与载波信号分别相移-π/2的结果,称为正交分量。
实验二 单边带幅度调制与解调_

实验二单边带幅度调制与解调实验目的:基于Matlab平台,通过对单边带和残留边带幅度调制过程的构建,理解信号频谱变化中的滤波处理,通过信道噪声的加入和解调实现,深刻理解一个基本通信过程中的信号变化情况。
实验内容:1.单边带调幅2.残留边带调幅3.幅度调制与解调的实现实验设备:笔记本电脑、Matlab7.1开发环境预备知识:1. Matlab基本操作2. 单边带调幅的数学运算过程3. 残留边带调幅的数学运算过程4. 噪声5. 信号频谱表示实验步骤:1. 单边带调幅1)。
打开Matlab,新建M文件;2)。
键入SSB程序,生成调制信号、载波信号,按照模拟调制的数学运算过程合成已调信号;3)。
编译程序,运行,获得各信号时域波形及其频谱;4)。
比较原理波形与实验结果,分析调制前后的信号幅值与频率变化;实验结果:(1)SSB调制信号;(2)该调制信号的功率谱密度;实验结论:SSB单边带抑制了一个边带,相对DSB减少了一半带宽,从而致使带宽效率翻番。
2. 残留边带调幅1)。
打开Matlab,新建M文件;2)。
完善残留边带调制VSB程序,生成调制信号、载波信号,按照模拟调制的数学运算过程合成已调信号;3)。
编译程序,运行,获得各信号时域波形及其频谱;4)。
比较原理波形与实验结果,分析调制前后的信号幅值与频率变化;5)。
比较实验步骤1 2的结果实验结果:(1)残留边带为0.2fm的VSB调制信号;(2)调制信号的功率谱密度实验结论:VSB残留边带只是显示出部分的宽带,功率谱与DSB没有太大的变化。
3. 幅度调制的解调1)。
打开Matlab,新建M文件;2)。
键入基本幅度调制AM、抑制载波幅度调制DSB以及单边带幅度调制SSB程序,生成调制信号、载波信号,在信道中引入各自经过带通滤波器后的窄带白噪声,进而完成解调程序;3)。
编译程序,运行,获得各信号时域波形及其频谱;4)。
比较原理波形与实验结果,分析调制前和被解调后的信号幅值与频率变化;实验结果:1)设A0=2,画出AM调制信号的相干解调后的信号波形;(2)设A0=1 ,画出DSB-SC调制信号的相干解调后的信号波形;(3)设A0=1 ,画出SSB调制信号的相干解调后的信号波形。
单边带双边带残留边带调幅

残留边带调幅(VSB)
由于单边带调制复杂,解调质量较差,低频衰减很大,无法传送直流成分, 故在单边带调幅和双边带调幅间折衷为残留边带调幅。 残留边带:传送被抑制边带(下边带)的一部分 (I) ,
抑制被传送边带(上边带)的一部分 (II) , 且两部分互相对称。 物理意义:上下边带之和构成完整信息。 残留边带信号带宽比单边带略宽,实际只传送上边带信息,但可传直流成份。
双边带调幅(DSB)
2、双边带(抑制载波)调幅,DSB 调制信息全部包含在上下边带内, 载波信号中不包含任何信息,且占有绝大部分发射功率。 因此抑制载波不影响信息传输,且可节省发射功率。
调制:V (t)
VC (t)
VDSB (t) V (t) VC (t)
乘法器可产生 DSB 信号
VDSB (t) V (t) VC (t) cos t cosCt
选非互补两彩色(保证方程独立)计算压缩系数:
黄: [kU (0 0.89)] 2 [kV (1 0.89)] 2 1.33 0.89 得: kU 0.493
青: [kU (1 0.70)] 2 [kV (0 0.70)] 2 1.33 0.70
kV 0.877
PAL 制对红色差信号FV 逐行倒相来克服色调失真:
将红蓝色差信号进行幅度压缩 (见后面) :
红色差 V 0.877 (R Y )
蓝色差 U 0.493 (B Y )
将色差信号 U、V 对副载波 SC 进行正交凋幅,形成色度信号: F FU FV U sin SCt V cosSCt Fm sin(SCt )
Fm U 2 V 2 色饱和度(深浅)
我国电视制式:PAL - D
黑白制式 彩色制式
PAL 制色度信号
信号的调制与解调实验报告-数字信号处理

u
i0
结合上面电路图,有sRi
Sus
=?
?=+?,所以,可以推出,
0,
sSVthwhenSVth
swhenSVth
=?≥?
?=≤?
⑵ 实验波形图:
E=1
E=1.2
E=2
Eα=2ACmEα==
2
20
1/10ACm
Eα===故有,110ACAC
DCDCEE
m
EEα
α==
++
(0.1α=)
若5ACE
=,2DCE=,则5
0.5
102
m=≈
+
假设二极管是理想的,有如下特性 (0)(0)
ACE=2
ACE=7
⑵ 由图示可以观察出,改变ACE的值,调制后的波形仅在幅值上有差异,其他均相同。
⑶ 不可能产生过调状态的原因:
整理得:
假设要产生一个过调制状态,必须有:
结合实际情况,以上情况不可能发生,因为信号发生器中电压最大值一般要与数字系统
αααα
απαπ=+=+
=++22
0()(1)cos2[1cos2]DCFsStEEftmftααππ=++1AC
DCE
m
E
α=
+22
0
2
0
2
0
2
0()(1)cos2[1cos2]
(1)
(1cos2(2))[1cos2]
幅度调制及解调实验2

幅度调制及解调实验一、实验目的1、理解幅度调制与检波的原理;2、掌握用集成乘法器构成调幅与检波电路的方法。
二、实验原理实验电路图如图2-2所示调幅就是用低频调制信号去控制高频载波信号的幅度,使高频载波信号的振幅按调制信号变化。
而检波则是从调幅波中取出低频信号。
振幅调制信号按其不同频谱结构分为普通调幅(AM )信号,抑制载波的双边带调制(DSB )信号,单边带调制(SSB )信号。
此实验主要涉及普通调幅(AM )及检波原理。
三、实验设备1、测控电路(二)实验挂箱2、函数信号发生器3、虚拟示波器 四、实验内容及步骤1、“测控电路二”实验挂箱接入12V ±直流电源;2.调幅波的观察(1)把“U12信号产生单元”电源开关拨到“开”方向,调节此单元的电位器(电位器W1调节信号幅度,电位器W2调节信号频率),使之输出频率为Z 3KH .1、幅值为P P 1V -的正弦波信号,接入“U1调幅单元”的调制波输入端;(2)调节实验屏上的函数信号发生器,使之输出频率为Z 100KH 、幅值为P P 4.0V -的正弦波信号,接入“U1调幅单元”的载波输入端。
0tUs图2-1 普通调幅(AM )波波形 (3)“U1调幅单元”的输出端接入示波器CH1,调节“U1调幅单元”的电位器W ,在示波器上观测到如图2-1所示的普通调幅(AM )波。
3.解调波的观察(1)在保持调幅波的基础上,将“U1调幅单元”的输出端接入“U2解调单元”的调幅波输入端,把输入“U1调幅单元”的载波信号接入“U2解调单元” 载波输入端; (2)“U2解调单元”的输出端接入虚拟示波器的CH2,调节“U2解调单元“的电位器W1,观测到解调信号。
五、实验注意事项1、实验挂箱中的直流电源正负极切忌接反,否则就会烧坏实验箱上的集成芯片。
2、为了得到更好的实验效果,实验时,外加信号的幅度不宜过大,请按照“实验内容及步骤”说明部分做实验。
8101423145612MC1496C20.1u FR5750R6750R71K R81KR251R11KC30.1u FR41KR31K R103.3KR113.3KC50.1u FR96.8KW147K-8V+12V132V VGNDINOUT 79L08-12V8101423145612MC1496C10.1u FC20.1u FR5910R6910R71KR81KC40.1u FR251R11KC30.1u FR41KR31K R103.3KR113.3KC60.01uF R96.8KW147K+12VR1310KC50.01uFR1210KR1451K R16200KR17200KR1551K3261574U?TL081+VCC -VEE0.33uF0.1u F调制信号输入载波输入C?10u F载波输入调幅波输出调幅波输入解调输出图2-2 幅度调制与解调单元六、思考题集成乘法器调幅及解调电路有何特点?试简述它们的工作原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抑制载波单边带调幅和解调的实现
抑制载波单边带调幅 (Single Sideband Suppression Carrier, SSB-SC) 是无线通信中常用的调制技术之一,它具有高效利用频谱资源的优点。
在实现抑制载波单边带调幅和解调时,需要经过以下几个步骤:
1.生成载波信号:载波信号可以使用振荡器产生,其频率需要高于信号频率。
载波信号与待调制信号之间存在一定的相位关系,可以通过移相器来实现。
2.提取基带信号:将待调制信号通过低通滤波器提取出基带信号。
低通滤波器可以滤除高于信号频率的无用频率成分。
3.调制信号与载波信号相乘:将基带信号与载波信号相乘,得到调制信号。
乘法器是实现这一步骤的常用电路。
4.滤除载波信号:通过带阻滤波器滤除调制信号中的载波信号,从而得到抑制载波单边带调幅信号。
带阻滤波器通常选择其截止频率在载波频率附近。
5.传输抑制载波单边带调幅信号:将抑制载波单边带调幅信号传送给接收端。
传输可以通过无线电波、光纤等方式进行。
6.接收端的载波信号生成:接收端需要重建与发送端的载波信号相同的载波信号,这可以通过锁相环、鉴相器等方式实现。
7.同步解调:将接收到的抑制载波单边带调幅信号与接收端的载波信号相乘。
由于载波信号已与发送端保持同步,所以可以恢复出基带信号。
8.基带信号恢复:通过低通滤波器对解调信号进行滤波,以去除高频噪声,并重新提取出基带信号。
以上是抑制载波单边带调幅和解调的基本步骤。
在实际应用中,还需要考虑信号的调制指数、相位补偿等问题。
此外,还可以使用数字信号处理等方法对抑制载波单边带调幅信号进行进一步处理,以提高系统性能和抗干扰能力。