SSB单边带调制与解调
抑制载波单边带调幅(SSB)和解调的实现

抑制载波单边带调幅(SSB)和解调的实现一、设计目的和意义1、利用MATLAB实现对信号进行抑制载波单边带调幅(SSB)和解调2、有助于理解模拟线性调制中利用相移法实现单边带调幅的调制方法3、有助于理解相干解调的原理4、有助于理解和掌握低通滤波器的设计过程5、有助于理解信号的时频关系6、有助于了解信号的频谱与功率谱的关系7、通过对该题目的设计,巩固了《通信原理》和《数字信号处理》的相关知识,加深了对相关知识点的认识和理解。
二、设计原理利用已学的《通信原理》和《数字信号处理》的相关知识完成对信号进行抑制载波单边带调幅(SSB)和解调。
1、调制通过对《通信原理》这门课程的学习,已经了解到了抑制载波单边带调幅的调制方式有两种:一种是用滤波法实现;一种是利用相移法实现。
所谓滤波法就是将双边带的已调制信号经过一个滤波器实现,如果要保留下边带,则让信号通过一个低通滤波器,如果要保留上边带则让信号通过一个高通滤波器。
滤波法原理图如图1所示。
图1 单边带信号的滤波法形成但是理想滤波特性是不可能做到的,实际滤波器从通带到阻带总有一个过渡带。
如果要把信号调制到很高的频率则需要进行多级调制才能满足指标,增加了调制设备的复杂性和成本;另外,如果调制信号中有直流及低频分量,则必须使用过渡带为零的理想滤波器才能将上、下边带分割开来,而这是不可能用滤波法实现的。
另外一种调制方法——相移法——实现对信号的调制。
由于这是单频调制,设单频调制信号为()cos m m f t A t ω= (1)载波为()cos c C t t ω= (2)则双边带信号的时间波形为()cos cos DSB m m c S t A t t ωω=0.5cos()0.5cos()m m c m m c A t A t ωωωω=++-保留上边带的单边带调制信号为 ()0.5cos()USB m m c S t A t ωω=+0.5(cos cos sin sin )m m c m c A t t t t ωωωω=- (3)同理可得保留下边带的单边带调制信号为()0.5cos()LSB m m c S t A t ωω=-0.5(cos cos sin sin )m m c m c A t t t t ωωωω=+ (4)式(3)、(4)中第一项与调制信号和载波的成绩成正比,称为同相分量;而第二项乘积中则包含调制信号与载波信号分别相移-π/2的结果,称为正交分量。
抑制载波单边带调幅(SSB)和解调的实现

抑制载波单边带调幅(SSB)和解调的实现一、设计目的和意义1、利用MATLAB实现对信号进行抑制载波单边带调幅(SSB)和解调2、有助于理解模拟线性调制中利用相移法实现单边带调幅的调制方法3、有助于理解相干解调的原理4、有助于理解和掌握低通滤波器的设计过程5、有助于理解信号的时频关系6、有助于了解信号的频谱与功率谱的关系7、通过对该题目的设计,巩固了《通信原理》和《数字信号处理》的相关知识,加深了对相关知识点的认识和理解。
二、设计原理利用已学的《通信原理》和《数字信号处理》的相关知识完成对信号进行抑制载波单边带调幅(SSB)和解调。
1、调制通过对《通信原理》这门课程的学习,已经了解到了抑制载波单边带调幅的调制方式有两种:一种是用滤波法实现;一种是利用相移法实现。
所谓滤波法就是将双边带的已调制信号经过一个滤波器实现,如果要保留下边带,则让信号通过一个低通滤波器,如果要保留上边带则让信号通过一个高通滤波器。
滤波法原理图如图1所示。
图1 单边带信号的滤波法形成但是理想滤波特性是不可能做到的,实际滤波器从通带到阻带总有一个过渡带。
如果要把信号调制到很高的频率则需要进行多级调制才能满足指标,增加了调制设备的复杂性和成本;另外,如果调制信号中有直流及低频分量,则必须使用过渡带为零的理想滤波器才能将上、下边带分割开来,而这是不可能用滤波法实现的。
另外一种调制方法——相移法——实现对信号的调制。
由于这是单频调制,设单频调制信号为()cos m m f t A t ω= (1)载波为()cos c C t t ω= (2)则双边带信号的时间波形为()cos cos DSB m m c S t A t t ωω=0.5cos()0.5cos()m m c m m c A t A t ωωωω=++-保留上边带的单边带调制信号为 ()0.5cos()USB m m c S t A t ωω=+0.5(cos cos sin sin )m m c m c A t t t t ωωωω=- (3)同理可得保留下边带的单边带调制信号为()0.5cos()LSB m m c S t A t ωω=-0.5(cos cos sin sin )m m c m c A t t t t ωωωω=+ (4)式(3)、(4)中第一项与调制信号和载波的成绩成正比,称为同相分量;而第二项乘积中则包含调制信号与载波信号分别相移-π/2的结果,称为正交分量。
实验3 SSB信号的调制与解调

实验3 SSB信号的调制与解调1、实验目的掌握单边带调制(SSB)的调制和解调技术,了解其实现原理;通过实验,学习利用AM、AGC、高通滤波器和频率合成技术实现SSB调制和解调;熟练掌握实验中使用的各种仪器的使用方法。
2、实验原理2.1 单边带调制(SSB)单边带调制(SSB),也称单边带抑制(SSB-SC),是通过在AM调制信号中去掉一个边带来实现压缩信息信号带宽的一种调制方式。
通过单边带调制技术可以实现带宽压缩、频谱效率高等优点。
将带宽压缩到原来的一半或更少,或增加频带的利用率,提高信号的传输品质。
单边带解调是指将带有单边带的信号,通过解调电路恢复出原始的AM调制信号。
在单边带解调电路中一般采用同相和正交相两路解调,最后合成成为原始AM调制信号。
3、实验器材和仪器信号源、AM调制解调装置、示波器、函数发生器、多用电表、高通滤波器、信号发生器、频率计等。
4、实验步骤步骤一:将信号源中的20 kHz正弦波经过3.5 kHz高通滤波器滤波后,接入AM调制解调装置中的输入端;步骤二:调节AM调制解调装置中的AM深度到40%,打开AGC自动增益控制电路;步骤三:调节AM调制解调装置中的LO频率为115.5 kHz,选择LSB单边带发射;步骤四:调节信号源中的20 kHz正弦波频率,使频率计读数达到19.5 kHz左右,观察示波器上的信号;步骤五:检查示波器上的波形是否满足LSB单边带的特点。
步骤一:将频率为115.5 kHz的SSB信号接入同相解调电路及正交解调电路中,将解调信号分别接入示波器观察;步骤二:调节同相解调电路中的LO频率为115.5 kHz,调节正交解调电路中的LO频率为115.505 kHz;步骤三:对示波器上的同相、正交解调信号分别进行滤波,将滤波后的信号再次输入AM调制解调装置中进行合成;步骤四:调节合成后的信号深度为40%,观察示波器上的波形,判断SSB解调是否成功。
5、实验注意事项5.1 保护好实验仪器和设备。
单边带调制与解调

s p (t )
LPF
mo (t )
cos c t
SSB信号的相干解调
03.SSB信号的解调
乘法器输出为:
s p (t ) s SSB (t ) cos c t 1 [m(t ) cos c t m(t ) sin c t ] cos c t 2 1 1 2 ˆ (t ) cos c t sin c t m(t ) cos c t m 2 2 1 1 1 m(t ) m(t ) cos 2 c t m(t ) sin 2 c t 4 4 4
M ( ) 1
S DSB ( )
1/2
●频谱
H
0
H
c
上边带
0
S USB ( )
c
上边带
HUSB ( )
1
1/2 0
SLSB ( )
c
0
1
c H LSB ( )
c
下边带
c
1/2
下边带
c
0
c
c
0
c
形成SSB信号的滤波器
SSB信号的频谱
设单频调制信号为 m(t ) Am cos m t 载波为
c(t ) cos c t
则DSB信号的时域表示式为
s DSB (t ) Am cos m t cos c t 1 1 Am cos( c m )t Am cos( c m )t 2 2
两式仅正负号不同
若保留下边带,则有
01.SSB信号的产生
将上两式合并:
1 1 s SSB (t ) Am cos m t cos c t Am sin m t sin c t 2 2
浅谈单边带调幅( SSB)的调制与解调

浅谈单边带调幅(SS B )的调制与解调邹德东,刘立民,王国辉(煤炭科学研究总院抚顺分院,辽宁抚顺113122)摘 要:阐述了单边带调幅的定义及其通信原理。
详细介绍了单边带调幅的调制与解调的方法。
关键词:单边带;调制;解调中图分类号:T D65+5.2 文献标识码:B 文章编号:1003-496X (2008)01-0086-021 概 述随着国家对煤矿安全生产管理力度的逐步加大,灾后救援也就越来越受到人们的关注。
救灾通讯设备可以使井上井下进行良好的沟通,能够使决策者及时了解灾区情况并做出合理的决策。
然而由于煤矿井下地形复杂,环境恶劣,常规的通信方式及设备很难达到预期的效果。
所以,寻求一种稳定可靠并能适应煤矿井下恶劣环境的通信方式就显得尤为重用。
本文介绍一种新型的通信方式,即单边带调幅。
它具有稳定可靠,节省带宽,传输距离远等特点。
2 定 义单边带信号(SS B ),从本质上来说也是一种调幅信号,它出自于调幅又区别于调幅。
调幅波是一个载波幅度跟随调制音频幅度变化而变化的调制方式。
只有清楚的知道调幅波的特征才能准确的掌握SS B 的产生方法,我们可以根据混频的原理来说明调幅波的频谱特征。
由于非线性元件的特点,两个不同频率的信号频率1和频率2通过非线性元件会出现4个频率:两个频率的和、两个频率的差、频率1、频率2。
通常我们把两个频率的和、两个频率的差称为上边带信号和下边带信号。
而这两个信号所包含的信息相同,因此只传送一个边带即可以传送信号的全部信息。
只传送一个边带信号的调制方式成为单边带调制。
3 单边带信号(SS B )的调制上面提到两个不同频率的信号通过非线性元件可以产生四种频率的信号。
假定我们有两种频率的信号:载波M (t )=A m cos ωc t 、音频信号m (t )=a m cos Ωc t 。
通过非线性元件可以产生频率分别为ωc 、Ωc 、的信号。
我们通过带通滤波器滤掉Ωc ,通过低通滤波器滤掉ωc 。
单边带的解调原理

单边带的解调原理单边带调频(Single Sideband Modulation,简称SSB)是一种广泛应用于通信领域的调制技术。
它在调制信号频谱中,只保留了一边带,减少了信号传输所需的频带宽度,提高了信号传输效率。
而单边带的解调则是将接收到的单边带信号转换回原始信号的过程。
本文将详细介绍单边带的解调原理。
单边带的解调过程主要包括三个步骤:频率转换、上变频和低通滤波。
下面将逐一介绍这三个步骤的基本原理。
首先是频率转换。
在单边带的解调中,需要将接收到的单边带信号转换到基带频率进行处理。
这一步骤通常采用载波相干解调的方式实现。
具体来说,解调器中首先通过本地振荡器生成一个与接收信号频率相同的本地振荡信号。
然后,将本地振荡信号和接收到的单边带信号进行乘法运算。
这样可以将接收信号的频谱向下移动到基带频率附近。
在乘法运算之后,需要将信号通过带通滤波器滤除其他频率分量,只保留转换到基带频率的分量。
这样就完成了频率转换的过程。
接下来是上变频。
上变频的目的是为了将基带信号的频谱向上移动到可处理的中频范围。
在单边带解调中,上变频是通过将转换到基带频率的信号与中频振荡器输出的信号相乘实现的。
在这一步骤中,需要将中频振荡器的频率和相位与本地振荡器同步,以保证乘法运算的正确性。
乘法运算之后,通过带通滤波器滤除其他频率分量,只保留转换到中频的分量。
上变频之后,可以将信号送往后续的处理模块进行进一步的信号处理。
最后是低通滤波。
由于解调过程中引入了一些高频分量,所以需要进行低通滤波。
低通滤波的目的是去除高频分量,只保留原始信号的基带分量。
一般来说,选择一个适当的滤波器,将高频分量滤除即可。
滤波后的信号即为原始信号,完成了单边带的解调过程。
单边带的解调原理是将接收到的单边带信号转换回原始信号的过程,需要进行频率转换、上变频和低通滤波三个过程。
通过频率转换,将接收信号转换到基带频率进行处理;通过上变频,将基带信号的频谱向上移动到可处理的中频范围;通过低通滤波,去除高频分量,只保留原始信号的基带分量。
基于matlab的ssb的调制与解调设计依据

基于matlab的ssb的调制与解调设计依据一、概述在通信领域中,调制与解调是一种重要的信号处理技术。
单边带调制(SSB)是一种常见的调制方式,它在频谱利用率和功率效率方面具有优势,因此被广泛应用于通信系统中。
为了实现SSB的调制与解调,需要设计相应的算法和实现方案。
而Matlab作为一种强大的工程软件,也被广泛用于数字信号处理领域。
本文将围绕基于Matlab的SSB调制与解调的设计依据展开阐述。
二、SSB调制的原理1. SSB调制的概念单边带调制(SSB),是将调制信号的频谱移到正频率轴或负频率轴上的其中一侧而不产生另一频谱的一种调制方式。
SSB调制有上下两种形式,分别称为上边带和下边带。
在实际应用中,常采用抑制载波的方式实现SSB调制。
2. SSB调制的数学表示对于一般的调制信号m(t),经过SSB调制后得到的调制信号s(t)可表示为:s(t) = m(t)cos(2πfct) - jH[m(t)]sin(2πfct)其中,H[m(t)]为m(t)的希尔伯特变换。
三、SSB调制的设计依据1. 基带信号及滤波SSB调制的第一步是对基带信号进行处理,通常需要进行低通滤波以限制频谱范围。
Matlab提供了丰富的信号处理工具箱,可以方便地实现基带信号的生成和滤波处理。
2. 载波抑制和频谱转移在SSB调制中,需要实现对载波的抑制,从而得到单边带信号。
频谱转移可以通过Matlab中的频谱分析和变换函数来实现。
3. SSB调制系统的搭建基于Matlab,可以通过编写代码来搭建SSB调制系统,包括信号处理、频谱分析、滤波和调制等步骤。
四、SSB解调的原理1. SSB解调的概念SSB解调过程是对接收到的单边带信号进行处理,从而得到原始的基带信号。
解调过程中需要进行频谱转移和滤波,以还原原始信号。
2. SSB解调的数学表示对于接收到的SSB信号s(t),经过解调后得到的解调信号m(t)可表示为:m(t) = s(t)cos(2πfct) - jH[s(t)]sin(2πfct)其中,H[s(t)]为s(t)的希尔伯特变换。
SSB调制及解调-matlab仿真

n0 0.1 ,重新解
二、 实验原理
1.单边带调制只传送一个边带的调制方式,SSB信号的带宽是与调制信号 m(t)相同, 对信号采取先调制搬频, 再过低通 (高通) 滤波器取上 (下) 边带的方法进行调制。 2. 单边带信号解调方法:相干解调法
三、 实验结果与分析 1. SSB 调制信号的时域波形
0
50
100
150 t
200
250
300
350
由图可知,经相干解调后的单边带信号时域波形不变,但幅度变为 原信号的一半。
相 干 解 调 后 的 SSB信 号 频 域 波 形 120
100
80
60
40
2000源自50100150 w
200
250
300
350
3. SSB 已调信号的功率谱
SSB已 调 信 号 的 功 率 谱 250
SSB 调制及解调
一、 实验内容
用 matlab 产生一个频率为 1Hz,功率为 1 的余弦信源,设载波频率 c 10Hz ,试画出: 1、SSB 调制信号的时域波形; 2、采用相干解调后的 SSB 信号波形; 3、SSB 已调信号的功率谱; 4、在接收端带通后加上窄带高斯噪声,单边功率谱密度 调。
SSB调 制 信 号 的 时 域 波 形 1.5
1
0.5
0
-0.5
-1
-1.5
0
0.1
0.2
0.3
0.4
0.5 t
0.6
0.7
0.8
0.9
1
2. 采用相干解调后的 SSB 信号波形
相 干 解 调 后 的 SSB信 号 时 域 波 形 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1 设计目的与要求 (1)1.1 设计目的 (1)1.2 设计要求 (1)2 设计方案 (1)2.1 设计原理 (1)2.1.1滤波法 (2)2.2.2 相移法 (3)2.2 相干解调 (4)3 系统设计 (5)3.1 Simulink工作环境 (5)3.2 SSB信号调制 (5)3.2.1 调制模型构建与参数设置 (5)3.2.2 仿真结果与分析 (6)3.3 SSB相干解调 (8)3.3.1 解调模型构建与参数设置 (8)3.3.2 仿真结果及分析 (9)3.4 加入高斯噪声的调制与解调 (11)3.4.1模型构建 (11)3.4.2 仿真结果及分析 (12)3.5 不同噪声对信道影响 (16)4心得体会 (17)参考文献 (17)1 设计目的与要求1.1 设计目的本课程设计是实现SSB的调制与相干解调,以及在不同噪声下对信道的影响。
信号的调制与解调在通信系统中具有重要的作用。
调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置。
解调是调制的逆过程,即是将已调制的信号还原成原始基带信号的过程。
信号的接收端就是通过解调来还原已调制信号从而读取发送端发送的信息。
因此信号的解调对系统的传输有效性和传输可靠性有着很大的影响。
调制与解调方式往往决定了一个通信系统的性能。
单边带SSB信号的解调采用相干解调法,这种方式被广泛应用在载波通信和短波无线电话通信中。
Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。
Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。
为了创建动态系统模型,Simulink提供了一个建立模型方块图的图形用户接口(GUI) ,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。
1.2 设计要求(1)用simulink对系统建模(2)输入模拟信号观察其输出波形(3)在理想信道和加入高斯噪声的信道下比较各系统性能;记录相关数据并分析2 设计方案2.1 设计原理单边带调制是幅度调制中的一种。
幅度调制是由调制信号去控制高频载波的幅度,使之随调制信号作线性变化的过程。
在波形上,幅度已调信号的幅度随基带信号的规律而呈正比地变化;在频谱结构上,它的频谱完全是基带信号频谱在频域内的简单搬移。
常见的调幅(AM)、双边带(DSB)、残留边带(VSB)等调制就是幅度调制的几种典型的实例。
单边带调制(SSB)信号是将双边带信号中的一个边带滤掉而形成的。
根据滤除方法的不同,产生SSB信号的方法有:滤波法和相移法。
2.1.1滤波法单边带调制就是只传送双边带信号中的一个边带(上边带或下边带)。
产生单边带信号最直接、最常用的是滤波法,就是从双边带信号中滤出一个边带信号,图1是滤波法模型的示意图。
图1 滤波法SSB信号调制单边带信号的频谱如图2所示,图中H SSB(ω)是单边带滤波器的系统函数,即的傅里叶变换。
若保留上边带,则H SSB(ω)应具有高通特性如图2(b)所示。
H)(tSSB单边带信号的频谱如图2(c)所示。
若保留下边带,则应具有低通特性如图2(d)所示。
单边带信号的频谱如图2(e)所示。
图2 滤波法形成单边带信号频谱图2.2.2 相移法单边带信号的时域表达式为:这里是的希尔伯特变换。
从表达式可以得到单边带调制信号相移法的一般模型框图,如图3所示。
图 3 SSB移相法模型希尔伯特变换H(w)及有关特性为:定义式中显然,信号通过传递函数为的滤波器,即可得到。
具有传递函数的滤波器称为希尔伯特滤波器。
传递函数的模和相位特性如图4所示。
从图4可见,希尔伯特滤波器是一个宽带90o移相网络,是正交变换网络。
图4希尔伯特滤波器的传递函数2.2 相干解调解调就是把接收到的SSB信号经过处理,滤掉载波成分,使之还原成发射之前的有用的信息。
SSB信号的解调方法主要有两种,一个是相干解调法,另一个是包络检波。
相干解调也叫同步检波。
解调与调制的实质一样,均是频谱搬移。
调制是把基带信号的谱搬到了载频位置,这一过程可以通过一个相乘器与载波相乘来实现。
解调则是调制的反过程,即把在载波位置的已调信号的谱搬回到原始基带位置,因此同样可以用相乘器与载波相乘来实现。
相干解调器的一般模型如图5所示。
图5 相干解调一般模型相干解调时,为了无失真地恢复原基带星信号,接收端必须提供一个与接收的已调载波严格同步(同频同相)的本地载波(称为相干载波),它与接收的已调信号相乘后,经低通滤波器取出低频分量,即可得到原始的基带信号。
3 系统设计3.1 Simulink工作环境在MATLAB命令窗口,单击工具栏上的按钮可进入Simulik。
模块库按功能进行分为以下8类子库:Continuous(连续模块)Discrete(离散模块)Function&Tables(函数和平台模块)Math(数学模块)Nonlinear(非线性模块)Signals&Systems(信号和系统模块)Sinks(接收器模块)Sources(输入源模块)用户可以根据需要混合使用歌库中的模块来组合系统,也可以封装自己的模块,自定义模块库、从而实现全图形化仿真。
Simulink模型库中的仿真模块组织成三级树结构Simulink子模型库中包含了Continous、Discontinus等下一级模型库Continous模型库中又包含了若干模块,可直接加入仿真模型。
图6为Simulink工具模块页面图6 Simulink工具页面3.2 SSB信号调制3.2.1 调制模型构建与参数设置在MATLAB 的集成仿真环境Simulink中建立单边带调制与解调系统模型并实现对它的动态仿真,SSB调制系统模型如图7,调制信号m(t)参数设置为,幅值为2,频率为1。
载波信号c(t)参数为幅值为2,频率为10。
图7 SSB调制边带滤波器参数设置如图8所示图8 边带滤波器参数设置3.2.2 仿真结果与分析调制模块的仿真波形图如图9所示。
第1路是调制信号波形,第2路是载波信号波形,第3路是DSB调制后信号波形,第4路是SSB调制后信号波形。
图9 仿真结果图调制模块中各阶段波形的功率谱如图10—图13所示。
图10 输入信号功率谱图11 载波信号功率谱图12 DSB信号功率谱图13 SSB调制信号功率谱分析可知,调制信号频率为载波的频率为10。
调制信号先与载波相乘得双边带信号,再通过带通滤波器得上边带信号。
调制过程中信号功率谱的形状不变,只是频率的搬移,符合线性调制的原理。
3.3 SSB相干解调3.3.1 解调模型构建与参数设置相干系统模型如图14图14 相干解调低通滤波器参数设置如图15所示图15 相干解调低通滤波器参数设置3.3.2 仿真结果及分析SSB相干解调仿真波形如图16所示。
第1路是输入信号波形,第2路是已调信号波形,第3路是通过相乘器后波形,第4路是解调后的波形图。
图16 SSB相干解调信号波形分析可知,解调后的波形和原输入信号波形一样,符合设计要求。
相干解调模块中各过程信号功率谱如图17—图19所示。
图17 输入信号功率谱图18 SSB已调信号功率谱图19 相干解调信号功率谱调制实现了功率谱的搬移,解调后的信号功率谱和原信号功率谱一样,实现了设计要求。
3.4 加入高斯噪声的调制与解调3.4.1模型构建高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。
在理想信道调制与解调的基础上,在调制信号上加入高斯噪声,把Simulink噪声源下的高斯噪声模块(Gaussian Noise Generator)加入到模型中。
图20中加了两个高斯噪声模块,为比较高斯噪声均值不同或方差不同时对信道的影响,将两个高斯噪声模块参数设置不同,以作比较。
加入高斯噪声后调制与解调系统模型如图20所示,图20 加入噪声后系统模型3.4.2 仿真结果及分析(1)波形失真与高斯噪声均值的关系各低通滤波器均设置为频带边缘频率为10,仿真结果如图21所示,图21 方差相同、不同均值对信号影响第1路为相干解调信号波形(理想通道下),第2路为加入均值为0.5方差为0的高斯噪声时解调信号波形,第3路为均值为1方差为0的高斯噪声时解调信号波形。
由仿真结果分析得分析得,加入高斯噪声方差相同,均值越大,解调后失真越大。
图22—24为相干解调模块中加入不同高斯噪声后各过程信号功率谱。
图22 理想信道下输出信号功率谱图23 噪声均值为0.5方差为0输出信号功率谱图24 噪声均值为1方差为0输出信号功率谱由仿真结果得,高斯噪声均值为0.5,方差为0时,波形相对原波形失真较小。
在功率谱上产生了一个比原信号功率小得多的分量。
高斯噪声均值为1,方差为0时,波形较大。
在功率谱上产生了一个较大的分量。
当高斯噪声均值大于2时,波形几乎完全失真,在功率谱上产生了一个比原信号功率大的分量。
分析可知,高斯噪声的均值越大,输出信号失真越大。
(2)波形失真与高斯噪声方差的关系不同方差下仿真结果如图25所示,第一路为理想信道下输出信号波形。
第2路为加入噪声均值为0,方差为0.1时输出噪声波形。
第3路为加入噪声均值为0方差为1时输出噪声波形。
图25 均值相同不同方差噪声对信号影响图26—27为相干解调模块中加入不同高斯噪声后各过程信号功率谱图26 噪声均值为0 方差为0.1时输出信号功率谱图27 噪声均值为0方差为1时输出信号功率谱高斯噪声均值为0,方差为0.1时,输出信号波形相对原波形失真较小。
功率谱如图26所示,在功率谱上产生了一些比原信号功率小得多的分量。
高斯噪声均值为0,方差为1时输出信号波形失真增大。
其功率谱如图27所示,在功率谱上产生了一些比较大的功率分量。
当噪声方差大于2时,波形输出信号波形几乎完全失真,在功率谱上产生了很多比原信号功率大的杂波分量。
分析可知,高斯噪声的方差越大,输出信号失真越大。
(3)滤波器参数对信道的影响当滤波器边缘频率设置不同值时,加入高斯噪声参数相同,在此条件下比较边缘频率设置值对滤波性能影响,仿真结果如图28所示,图28 不同滤波器参数参数对信道影响第1路为理想信道下信号输出波形,第2路为高斯噪声均值为1,方差为0.1,滤波器边缘频率为10时信输出信号波形,第3路为高斯噪声均值为1,方差为0.1,滤波器边缘频率为8时信输出信号波形,可见,滤波器边缘频率设置越小,即滤除高频成分越多,则滤波效果越好。
两种设置下输出信号功率谱如图29所示。
图29.1 滤波器边缘频率为10时输出信号功率谱图29.2 滤波器边缘频率为8时输出信号功率谱由图知,滤波器边缘频率为10时,在功率谱上产生了一个较大的分量,当滤波器边缘频率设置减小时,频谱上分量减小。