分离定律
遗传规律--分离定律

遗传定律一、基因分离定律1、一对相对性状的杂交实验及解释2、解释的验证以及假说演绎法3、分离定律的实质:等位基因随同源染色体的分离而分离4、证明某性状的遗传是否遵循分离定律的方法—自交或测交5、判断某显性个体是纯合子or杂合子(1)植物:自交,测交,检测花粉类型,单倍体育种(2)动物:测交5、显隐性判断6、概率计算:叉乘法;配子法;是否乘1/2的问题;杂合子连续自交的子代的各基因型概率,7、分离定律中的异常情况(1)不完全显性(2)致死现象:基因型致死(显性,隐性),配子致死(3)和染色体变异联系【显隐性判断】【定义法】1.已知马的栗色与白色为一对相对性状,由常染色体上的等位基因A与a控制,在自由放养多年的一群马中,两基因频率相等,每匹母马一次只生产l匹小马。
以下关于性状遗传的研究方法及推断不正确的是A.选择多对栗色马和白色马杂交,若后代栗色马明显多于白色马则栗色为显性;反之,则白色为显性B.随机选出1匹栗色公马和4匹白色母马分别交配,若所产4匹马全部是白色,则白色为显性C.选择多对栗色马和栗色马杂交,若后代全部是栗色马,则说明栗色为隐性D.自由放养的马群自由交配,若后代栗色马明显多于白色马,则说明栗色马为显性【假设法】2.若已知果蝇的直毛和非直毛是位于X染色体上的一对等位基因。
但实验室只有从自然界捕获的、有繁殖能力的直毛雌、雄果蝇各一只和非直毛雌、雄果蝇各一只,通过一次杂交试验确定这对相对性状中的显性性状,下面相关说法正确的是()A.选择一只直毛的雌蝇和一只直毛的雄蝇杂交,若子代全为直毛则直毛为隐形B.选择一只非直毛的雌蝇和一只非直毛的雄蝇杂交,则子代雌性个体均可为直毛C.选择一只非直毛的雌蝇和一只直毛的雄蝇杂交,若子代雌雄表现型一致,则直毛为显形D.选择一只直毛的雌蝇和一只非直毛的雄蝇杂交,若子代雌雄表现型不一致,则直毛为隐形【性状分离法】3.将黑斑蛇与黄斑蛇杂交,子一代中既有黑斑蛇,又有黄斑蛇;若再将F1黑斑蛇之间交配,F2中既有黑斑蛇又有黄斑蛇。
分离定律的内容

分离定律的内容
内容:
分离定律是尤金·普朗克受物理学家安德烈·莱斯特的启发,在1898年提出的一条特殊原子和分子的原子结构定律,它认为原子和分子的结构可以按能量的最小值来分离,大多数情况下,它们充满了活性能量低的单子结构。
例子:
1. 氢原子:由一个单电子绕着一个质子构成,此结构的能量最小,符合分离定律。
2. 氯原子:由一个质子和两个单电子组成,具有最小的能量,也符合分离定律。
3. 亚硝酸盐:由一个氮原子,三个氧原子和两个氢原子组成,能量最小,符合分离定律。
孟德尔定律—分离定律(普通遗传学课件)

一、遗传因子假设
(二)遗传因子假设的内容 1.遗传性状是由遗传因子 (hereditary determinant)决 定的
2.每个植株的每一种性状都 分别由一对遗传因子控制 3.每一配子(性细胞)只有 成对遗物体所表现的性状,简称表型。它是基因型和外 界环境作用下具体的表现,是可以直接观测的。 豌豆:红花和白花 小麦:无芒与有芒 果蝇:红眼与白眼 人类:单双眼皮,有无酒窝,有无耳垂,蝶形与镰形红细
胞……
小麦的无芒与有芒
果蝇红眼与白银
三、基因型与表现型的关系
外界环境条件不变时
红花(CC) 白花(cc) 若纯合体 隐性纯合体
测交法
×
Ft
红花(Cc) 杂合体
编著者 申顺先;审阅者 卢良峰
红花(Cc) 白花(cc) 若杂合体 隐性纯合体
测交法
×
红花(Cc) 杂合体
白花(cc)
Ft
纯合体
红花植株与白花植株测交,若后代不分离全开红花则该红花植株 为纯合体(CC),若分编离著为者 申红顺先 花;与审阅白者花卢良则峰 其为杂合体(Cc)。
4.不同基因型的合子及 个体存活率相同。
三、分离比例的实现条件
5.各种基因型个体处在一致的正常环境条件下,并有较 大的群体。
结论
五个条件中任何一个条件不能满足都会导致偏离这 些比例。
由此可见,表型比例3∶1、1∶1只是分离定律的一种表
现形式而已。
《遗传学》
自交法验证分离定律
引言
孟德尔的分离定律是完全建立在一种假设的基础上,这个 假设的实质是杂种细胞里同时存在显性与隐性基因(即C与c 基因),并且这一成对基因在配子形成过程中彼此分离,互 不干扰,因而产生C和c两种不同的配子。
简述分离定律、自由组合定律及其实质

简述分离定律、自由组合定律及其实质。
1)分离定律:
内容:在生物的体细胞中,决定生物体遗传性状的一对遗传因子不相融合,在配子的形成过程中彼此分离,随机分别进入不同的配子中,随配子遗传给后代。
实质:分离定律揭示了一个基因座上等位基因的遗传规律——等位基因随同源染色体的分开而分离。
2)自由组合定律:
内容:具有独立性的两对或多对相对性状的遗传因子进行杂交时,在子一代产生配子时,在同一对遗传因子分离的同时,不同对的遗传因子表现为自由组合。
实质:形成配子时非同源染色体上的基因自由组合。
遵循分离定律的判断依据

遵循分离定律的判断依据1. 引言嘿,大家好!今天我们来聊聊一个听上去很复杂,但其实很有趣的话题——分离定律。
这可不是一门高深的科学,而是日常生活中的一条重要原则。
说白了,就是怎么把事情分得清清楚楚,让我们不再像无头苍蝇一样乱撞。
你有没有过这样的经历?一大堆事情涌上心头,让你感觉脑袋都要炸了。
这时候,如果你能遵循分离定律,那绝对能让你的生活轻松许多。
别急,咱们慢慢来,先看看这个定律到底是什么。
1.1 什么是分离定律?分离定律,简单来说,就是把复杂的事情拆解成小块。
就像吃西瓜,先把它切成小块,才能轻松享受。
而在思考和决策时,也是这个理儿。
想象一下,如果你有五件事要做,直接去处理每一件,那简直是要让人崩溃。
相反,如果你把它们分开,优先处理最重要的,哇,那可就事半功倍了。
1.2 为什么要遵循这个定律?生活就像是一场马拉松,而不是百米冲刺。
要有耐心,要懂得分阶段。
就像老话说的,“欲速则不达”,急于求成只会让你越陷越深。
通过分离定律,你能更清楚地看到每一件事情的重要性和紧急性,帮你把注意力集中在最关键的部分。
这样一来,你的工作效率就像打了鸡血一样,蹭蹭蹭地上升。
2. 如何判断是否遵循分离定律2.1 明确目标首先,要明确你的目标。
说得简单点,就是你到底想干啥。
比如,你在准备考试,那你就得知道每个科目要掌握的知识点。
确定目标后,才好进行下一步,不然就像无头苍蝇,哪里都飞,却不知飞去哪里。
俗话说,“心中有数”,这就是关键所在。
2.2 优先级排序接下来,就是给这些任务排个序。
想象一下,你要上山,前面有五条路,你得选一条最平坦的走。
把任务按重要性和紧急性排序,能让你事半功倍。
最急最重要的先做,剩下的慢慢来。
这个过程可能会有点麻烦,但一旦理清楚了,你就会发现,原来事情并没有想象中那么复杂。
3. 实践中的小技巧3.1 制定清单说到实践,制定一个清单是个好主意。
你可以把今天要做的事情列个单子,然后一项一项地去完成。
划掉已完成的任务,那种成就感绝对让你乐开花。
分离定律的应用

四、 Aa自交n代后,纯合子、杂合子旳计算
b c a
a 杂合子: 1/2n b 纯合子: 1 - 1/2n
C显性纯合子
(或隐性纯合子½)(:1 - 1/2n)
育种应用:在植物育种中假如要选育具有能稳定遗传旳 显性优良性状旳品种,怎样才干取得?
连续自交,直到后裔不发生性状分离为止
例 植物Aa自交得F1,F1中淘汰aa,余下 个体自交得F2,问F2中隐性个体所占旳百 分比?
A性状:B性状=3:1
后裔出现性状分离,且 或
B性状为新出现旳性状
则B性状为隐性性状,A性状为显性性状
2.杂交法
具有一对相对性状旳两个亲本杂交,后裔只有一种体现型, 则该体现型为显性性状,未体现出来旳为隐性性状
四、判断显性个体是纯合子还是杂合子旳措施
(1)自交法
1.植物: (2)测交法
不发生性状分离纯合子 发生性状分离杂合子
配子
基因型
基因型
基因型
基因型
F1 百分比
基因型 体现型
基因型 体现型
基因型 体现型
X:X:X:X
体现型百分比 体现型1 : 体现型2=X : X
基因型 体现型
例 食指长于无名指为长食指,反之为短食指,该相对性 状由常染色体上一对等位基因控制(TS表达短食指基因, TL表达长食指基因。)此等位基因体现受性激素影响,TS 在男性为显性,TL在女性为显性。若一对夫妇均为短食指, 所生孩子既有长食指又有短食指,则该夫妇再生一种孩子 是长食指旳概率为 A.1/4 B.1/3 C.1/2 D.3/4
2/3Aa*1/4=1/6
五、遗传系谱图旳分析
某同学(5号个体)所在家庭眼睑遗传系谱如图, 试推测3号与4号生一种双眼皮男孩
分离定律知识点总结(必备6篇)

分离定律知识点总结第1篇1.理论解释(1)生物的性状是由遗传因子决定的。
(2)体细胞中遗传因子是成对存在的。
(3)在形成生殖细胞时,成对的遗传因子彼此分离,分别进入不同的配子中,配子中只含有每对遗传因子中的一个。
(4)受精时,雌雄配子的结合是随机的。
2.遗传图解[解惑]F1配子的种类有两种是指雌雄配子分别为两种(D和d),D和d的比例为1∶1,而不是雌雄配子的比例为1∶1。
分离定律知识点总结第2篇1.有性生殖生物的性状遗传基因分离定律的实质是等位基因随同源染色体的分开而分离,而同源染色体的分开是有性生殖生物产生有性生殖细胞的减数分裂特有的行为2.真核生物的性状遗3.细胞核遗传只有真核生物细胞核内的基因随染色体的规律性变化而呈规律性变化。
细胞质内遗传物质数目不稳定,遵循细胞质母系遗传规律。
4.一对相对性状的遗传两对或两对以上相对性状的遗传问题,分离规律不能直接解决,说明分离规律适用范围的局限性。
分离定律知识点总结第3篇①杂合子(Aa)产生的雌雄配子数量不相等。
基因型为Aa的杂合子产生的雌配子有两种,即A∶a=1∶1或产生的雄配子有两种,即A∶a=1∶1,但雌雄配子的数量不相等,通常生物产生的雄配子数远远多于雌配子数。
②符合基因分离定律并不一定就会出现特定的性状分离比(针对完全显性)。
原因如下:a.F2中3∶1的结果必须在统计大量子代后才能得到;若子代数目较少,不一定符合预期的分离比。
b.某些致死基因可能导致性状分离比变化,如隐性致死、纯合致死、显性致死等。
分离定律知识点总结第4篇1.异花传粉的步骤:①→②→③→②。
(①去雄,②套袋处理,③人工授粉)2.常用符号及含义P:亲本;F1:子一代;F2:子二代;×:杂交;⊗:自交;♀:母本;♂:父本。
3.过程图解P纯种高茎×纯种矮茎↓F1 高茎↓⊗F2高茎矮茎比例 3 ∶14.归纳总结:(1)F1全部为高茎;(2)F2发生了性状分离。
分离定律知识点总结第5篇1.掌握最基本的六种杂交组合①DD×DD→DD;②dd×dd→dd;③DD×dd→Dd;④Dd×dd→Dd∶dd=1∶1;⑤Dd×Dd→(1DD、2Dd)∶1dd=3∶1;⑥Dd×Dd→DD∶Dd=1∶1(全显)根据后代的分离比直接推知亲代的基因型与表现型:①若后代性状分离比为显性:隐性=3:1,则双亲一定是杂合子。
孟德尔的分离定律和自由组合定律

孟德尔的分离定律和自由组合定律全文共四篇示例,供读者参考第一篇示例:孟德尔的分离定律和自由组合定律是遗传学的基石,揭示了遗传因素在后代中如何传递和表现的规律。
这两个定律的发现使得孟德尔成为遗传学之父,并为后来的基因学奠定了基础。
在本文中,我们将深入探讨这两个定律的原理和意义。
孟德尔的分离定律是指在杂交实验中,亲本的遗传因素在子代中以特定的比例进行分离,并且保持独立的传递。
这个定律是通过孟德尔对豌豆植物的杂交实验中发现的。
他发现,在某些特定的性状上,比如颜色和形状,纯合子亲本的基因会在子代中以3:1的比例分离。
这就意味着,一个亲本植物携带的两种基因会在子代中被分开,而且每个子代仅携带其中的一种。
这一发现揭示了遗传因素在后代中是如何被传递和表现的,并为后来的基因概念奠定了基础。
分离定律的意义在于它揭示了遗传因素如何在后代中传递和表现,以及遗传信息是如何被维持和变异的。
这一定律的发现对于后来的遗传学研究起到了巨大的影响,帮助科学家们理解了遗传学中一些重要的概念,比如基因的概念和表现型与基因型之间的关系。
通过这一定律,我们可以更好地了解生物体中的遗传信息如何被传递和演化,以及遗传变异是如何产生的。
另一个重要的定律是孟德尔的自由组合定律。
这个定律是指在杂交实验中,不同性状的遗传因素在子代中以自由组合的方式出现,而且各种性状之间是独立的。
也就是说,一个亲本植物携带的不同性状的基因会在子代中以各种可能的组合方式出现,而且它们之间是相互独立的。
这一发现帮助科学家们理解了遗传因素在后代中的组合规律,以及不同基因之间的互相作用。
自由组合定律的意义在于它揭示了遗传因素之间的独立性和多样性,帮助科学家们更好地理解了遗传因素在后代中的表现和传递。
通过这一定律,我们可以更深入地了解遗传因素之间的相互作用和影响,以及它们在生物体中是如何产生多样性和适应性的。
第二篇示例:孟德尔的分离定律和自由组合定律是遗传学的两个重要定律,是植物遗传学的创始人孟德尔通过对豌豆杂交实验的研究发现的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
性状:
生物的形态、结构和生理生化等特征的总称,如:脸型、肤色、身高、血型等等。
相对性状:
同种生物同种性状的不同表现类型,如人的单双眼皮、有无酒窝等等。
对分离现象的解释
1、性状由遗传因子(后称为基因)控制,显性基因(如C)和隐性基因(如c)分别控制显性性状和隐性性状,并互为等位基因;
2、基因在体细胞内是成对存在,形成配子即生殖细胞时,成对基因彼此分离;
3、显性基因对隐性基因具有显性作用;
4、F1体细胞内有两个不同基因,可产生两种不同类型的配子,受精时,雌雄配子的随机结合。
显性基因:控制显性性状的基因(大写英文字母表示,如D);
隐性基因:控制隐性性状的基因(小写英文字母表示,如d);
等位基因:控制一对相对性状的两个基因,如Cc、Rr、Aa。
基因型:控制性状的基因组合类型。
如CC、Cc。
表现型:具有特定基因型的个体表现出来的性状。
如人的单、双眼皮;狗的长毛与短毛等。
正交:紫花豌豆作母本与白花豌豆作父本杂交;
反交:紫花豌豆作父本与白花豌豆作母本杂交。
杂交:基因型不同的生物体间相互交配的过程。
自交:基因型相同的生物体间相互交配。
植物体中指自花授粉和雌雄异花的同株授粉。
分离定律实质:
控制一对相对性状的两个不同的等位基因互相独立,互不沾染;在形成配子时彼此分离,分别进入不同的配子中,结果是一半的配子带有一种等位基因,另一半的配子带有另一种等位基因。
完全显性:具有相对性状的两个亲本杂交,所得F1与显性亲本的表现完全一致的现象。
不完全显性:具有相对性状的两个亲本杂交,所得F1表现为双亲的中间类型的现象(红花紫花杂交的花朵粉红)。
共显性:具有相对性状的两个亲本杂交,所得F1同时表现双亲的性状(血型)。
分离定律适用范围
1、有性生殖生物的性状遗传
2、真核生物的性状遗传
3、细胞核遗传
4、一对相对性状的遗传
即进行有性生殖的杂合子的真核生物的一对相对性状的细胞核遗传。
表现型是基因型和环境相互作用的结果,
生物体内在环境和所处的外界环境的改变都会影响显性的表现。