软阈值函数去噪代码
数字图像去噪处理

一.加噪f=imread('mch.tif');figure(1);imshow(f);title('原始图像');g=imnoise(f,'salt & pepper',0.2);figure(2);imshow(g);title('椒盐噪声污染的图像');二.图像去噪1.均值滤波器【1】均值滤波:本例对一幅数字图像添加高斯噪声,并分别用3*3和7*7均值滤波模板进行噪声的滤除。
所需程序代码如下:clear all%打开图像I=imread('mch.tif');%创建均值滤波模板H1=ones(3)/9;H2=ones(7)/49;%添加高斯噪声,均值为0,方差为0.02 J=imnoise(I,'gaussian',0,0.02);%转换J为double数据类型J=double(J);%均值滤波G1=conv2(J,H1,'same');G2=conv2(J,H2,'same');%图像显示subplot(2,2,1);imshow(I);title('原始图像');subplot(2,2,2);imshow(J,[]);title('添加高斯噪声图像');subplot(2,2,3);imshow(G1,[]);title('3*3均值滤波图像');subplot(2,2,4);imshow(G2,[]);title('7*7均值滤波图像');【2】超限像素平滑法:clear all%打开图像I=imread('pout.tif');[m n]=size(I);%求图像尺寸T=50;%设定阈值G=[];%创建均值滤波模板H1=ones(3)/9;%添加椒盐噪声J=imnoise(I,'salt & pepper',0.05);%转换J为double数据类型J=double(J);%均值滤波G1=conv2(J,H1,'same');%超限像素平滑for i=1:mfor j=1:nif abs(J(i,j)-G1(i,j))>TG(i,j)=G1(i,j);elseG(i,j)=J(i,j);endendend%图像显示subplot(2,2,1);imshow(I);title('原始图像');subplot(2,2,2);imshow(J,[]);title('添加椒盐噪声图像');subplot(2,2,3);imshow(G1,[]);title('3*3均值滤波图像');subplot(2,2,4);imshow(G,[]);title('超限像素平滑图像');2. 中值滤波clear all%打开图像I=imread('21.tif');%添加椒盐噪声N1=imnoise(I,'salt & pepper',0.04); %添加高斯噪声N2=imnoise(I,'gaussian',0,0.02);%添加乘性噪声N3=imnoise(I,'speckle',0.02);G1=medfilt2(N1);G2=medfilt2(N2);G3=medfilt2(N3);%分别显示噪声图像和中值滤波图像subplot(2,3,1);imshow(N1);title('添加椒盐噪声图像');subplot(2,3,2);imshow(N2);title('添加高斯噪声图像');subplot(2,3,3);imshow(N3);title('添加乘性噪声图像');subplot(2,3,4);imshow(G1);title('椒盐噪声中值滤波图像'); subplot(2,3,5);imshow(G2);title('高斯噪声中值滤波图像'); subplot(2,3,6);imshow(G3);title('乘性噪声中值滤波图像');3. 维纳滤波【1】clear allI=imread('mch.tif');%添加高斯噪声N1=imnoise(I,'gaussian',0,0.005);%wiener2滤波J1=wiener2(N1,[5 5]);%分别显示噪声图像和滤波图像subplot(1,2,1);imshow(N1);title('添加高斯噪声图像');subplot(1,2,2);imshow(J1);title('维纳滤波图像');【2】%读原图i=imread('20.tif');subplot(2,2,1);imshow(i);title('原图');axis square;j=imnoise(i,'gaussian',0,0.1);subplot(2,2,2);imshow(j);title('加噪图像');axis square;%用sym4小波函数对j进行2层分解[c,l]=wavedec2(j,2,'sym4');%实现低通滤波消噪a1=uint8(wrcoef2('a',c,l,'sym4',2));%用coif2小波函数对j进行2层分解[gc,gl]=wavedec2(a1,2,'coif2');n=[1,2];%设置尺度向量p=[10.28,24.08];%设置阈值向量%对三个高频系数进行阈值处理nc=wthcoef2('h',gc,gl,n,p,'s');nc=wthcoef2('v',gc,gl,n,p,'s');nc=wthcoef2('d',gc,gl,n,p,'s');mc=wthcoef2('h',gc,gl,n,p,'s');mc=wthcoef2('v',gc,gl,n,p,'s');mc=wthcoef2('d',gc,gl,n,p,'s');%对更新后的小波分解结构进行阈值处理x2=waverec2(mc,gl,'coif2');%进行中值滤波for ii=1:252;for jj=1:252;temp=0;for m=0:3for n=0:3temp=temp+double(x2(ii+m,jj+n));endendtemp=temp/16;x4(ii,jj)=temp;endendfor ii=253:256for jj=253:256x4(ii,jj)=double(i(ii,jj));endend%显示去噪图像subplot(2,2,3);imshow(uint8(x4));title('消噪图像');axis square;4. 小波图像降噪【1】使用wdencmp函数%装载图像load sinsin%添加噪声init=20100111;randn('seed',init);x=X+18*randn(size(X));%获取默认值[thr,sorh,keepapp]=ddencmp('den','wv',x);%使用全局阈值降噪xd=wdencmp('gbl',x,'sym4',2,thr,sorh,keepapp);subplot(2,2,1)imshow(X,map);title('原始图像');subplot(2,2,2)imshow(x,map);title('加噪图像');subplot(2,2,3)imshow(xd,map);title('降噪图像');【2】使用wbmpen函数%装载图像load belmont2;nbc=size(map,1);%使用coif2执行图象的3层小波分解wname='coif2';lev=3;[c,s]=wavedec2(X,lev,wname);%由第1层的系数估计噪声标准差det1=detcoef2('compact',c,s,1);sigma=median(abs(det1))/0.6745;%对图像降噪,用wbmpen函数选择全局阈值alpha=1.2;thr=wbmpen(c,1,sigma,alpha);%使用软阈值和保存的低频信号,进行图像降噪keepapp=1;xd=wdencmp('gbl',c,s,wname,lev,thr,'s',keepapp);%结果显示colormap(pink(nbc));subplot(1,2,1);image(wcodemat(X,nbc));title('原始图像');subplot(1,2,2);image(wcodemat(xd,nbc));title(['降噪图像''THR='num2str(thr)]);5.形态学噪声滤除三.图像复原最小二乘方滤波复原(用NP)clear all%产生棋盘图像I=checkerboard(32);%高斯卷积造成图像模糊PSF=fspecial('gaussian',8,12);Blurred_I=imfilter(I,PSF,'conv');%添加噪声V=0.02;Blurred_I_Noisy=imnoise(Blurred_I,'gaussian',0,V);%噪声功率NP=V*prod(size(I));%真实PSF和NP图像复原J1=deconvreg(Blurred_I_Noisy,PSF,NP);%真实PSF和过大的NP图像复原J2=deconvreg(Blurred_I_Noisy,PSF,2*NP);%真实PSF和过小的NP图像复原J3=deconvreg(Blurred_I_Noisy,PSF,0.6*NP);ED=edgetaper(Blurred_I_Noisy,PSF);J4=deconvreg(ED,PSF,0.6*NP);subplot(2,3,1);imshow(I,[]);title('原始图像');subplot(2,3,2);imshow(Blurred_I_Noisy,[]);title('高斯模糊噪声图像');subplot(2,3,3);imshow(J1,[]);title('真实NP复原图像');subplot(2,3,4);imshow(J2,[]);title('过大的NP复原图像');subplot(2,3,5);imshow(J3,[]);title('过小的NP复原图像');subplot(2,3,6);imshow(J4,[]);title('振铃抑制复原图像');四.图像的去噪【注】用四种方法实现图像去噪1.clear all%打开图像I=imread('21.tif');%创建均值滤波模板H1=ones(3)/9;%高斯卷积造成图像模糊PSF=fspecial('gaussian',8,12);Blurred_I=imfilter(I,PSF,'conv');%添加噪声V=0.02;J=imnoise(Blurred_I,'gaussian',0,V); %噪声功率NP=V*prod(size(I));%真实PSF和NP图像复原J2=deconvreg(J,PSF,NP);%均值滤波G1=conv2(J,H1,'same');%中值滤波G2=medfilt2(J);%wiener2滤波J1=wiener2(J,[5 5]);%图像显示subplot(2,3,1);imshow(I);title('原始图像');subplot(2,3,2);imshow(J,[]);title('高斯模糊噪声图像');subplot(2,3,3);imshow(J2,[]);title('真实NP复原图像');subplot(2,3,4);imshow(G1,[]);title('3*3均值滤波图像');subplot(2,3,5);imshow(G2);title('中值滤波图像');subplot(2,3,6);imshow(J1);title('维纳滤波图像');2.%装载图像load sinsin%添加噪声init=20100111;randn('seed',init);x=X+18*randn(size(X));%获取默认值[thr,sorh,keepapp]=ddencmp('den','wv',x);%使用全局阈值降噪xd=wdencmp('gbl',x,'sym4',2,thr,sorh,keepapp);%wiener2滤波J=wiener2(x,[5 5]);%中值滤波J1=medfilt2(x);%创建均值滤波模板H=ones(7)/49;%均值滤波J2=conv2(x,H,'same');%图像显示subplot(2,3,1)imshow(X,map);title('原始图像');subplot(2,3,2)imshow(x,map);title('加噪图像');subplot(2,3,3)imshow(xd,map);title('小波降噪图像');subplot(2,3,4)imshow(J,map);title('维纳滤波图像');subplot(2,3,5)imshow(J1,map);title('中值滤波图像');subplot(2,3,6)imshow(J2,map);title('均值滤波图像');3.clear all%打开图像I=imread('mch.tif')[m n]=size(I);%求图像尺寸T=50;%设定阈值G=[];%高斯卷积造成图像模糊PSF=fspecial('gaussian',8,12);Blurred_I=imfilter(I,PSF,'conv');%添加噪声V=0.02;Blurred_I_Noisy=imnoise(Blurred_I,'gaussian',0,V); %噪声功率NP=V*prod(size(I));%真实PSF和NP图像复原J=deconvreg(Blurred_I_Noisy,PSF,NP);%wiener2滤波J1=wiener2(Blurred_I_Noisy,[5 5]);%中值滤波J2=medfilt2(Blurred_I_Noisy);%创建均值滤波模板H=ones(7)/49;%均值滤波J3=conv2(Blurred_I_Noisy,H,'same');%超限像素平滑for i=1:mfor j=1:nif abs( Blurred_I_Noisy(i,j)-J3(i,j))>TG(i,j)=J3(i,j);elseG(i,j)= Blurred_I_Noisy(i,j);endendendsubplot(2,4,1);imshow(I,[]);title('原始图像');subplot(2,4,2);imshow(Blurred_I_Noisy,[]);title('高斯模糊噪声图像');subplot(2,4,3);imshow(J,[]);title('真实NP复原图像');subplot(2,4,4);imshow(J1,[]);title('维纳滤波图像');subplot(2,4,5);imshow(J2,[]);title('中值滤波图像');subplot(2,4,6);imshow(J3,[]);title('均值滤波图像');subplot(2,4,7);imshow(G,[]);title('超限像素平滑图像');4. clear all%打开图像I=imread('mch.tif');%创建均值滤波模板H1=ones(3)/9;H2=ones(7)/49;%添加高斯噪声,均值为0,方差为0.02 J=imnoise(I,'gaussian',0,0.02);%转换J为double数据类型J=double(J);%均值滤波G1=conv2(J,H1,'same');G2=conv2(J,H2,'same');%wiener2滤波J1=wiener2(J,[5 5]);%中值滤波G3=medfilt2(J);%图像显示subplot(3,2,1);imshow(I);title('原始图像'); subplot(3,2,2);imshow(J,[]);title('添加高斯噪声图像'); subplot(3,2,3);imshow(G1,[]);title('3*3均值滤波图像'); subplot(3,2,4);imshow(G2,[]);title('7*7均值滤波图像'); subplot(3,2,5);imshow(J1,[]);title('维纳滤波图像'); subplot(3,2,6);imshow(G3,[]);title('中值滤波图像');5.clear all%打开图像I=imread('21.tif');%创建均值滤波模板H=ones(7)/49;%添加高斯噪声,均值为0,方差为0.02 J=imnoise(I,'gaussian',0,0.02);%转换J为double数据类型J=double(J);%均值滤波G1=conv2(J,H,'same');%获取默认值[thr,sorh,keepapp]=ddencmp('den','wv',J);%使用全局阈值降噪G2=wdencmp('gbl',J,'sym4',2,thr,sorh,keepapp); %wiener2滤波G3=wiener2(J,[5 5]);%中值滤波G4=medfilt2(J);%图像显示subplot(3,2,1);imshow(I);title('原始图像');subplot(3,2,2);imshow(J,[]);title('添加高斯噪声图像');subplot(3,2,3);imshow(G1,[]);title('7*7均值滤波图像');subplot(3,2,4);imshow(G2,[]);title('小波降噪图像');subplot(3,2,5);imshow(G3,[]);title('维纳滤波图像');subplot(3,2,6);imshow(G4,[]);title('中值滤波图像');。
小波变换语音消噪(改进阈值)

改进阈值函数进行语音信号消噪,但是在程序运行过程中频频报错。
本人经验不足调试不出,希望求得各位指导改进函数表达式附图clear all; clc; close all;fs=8000;%语音信号采样频率为8000xx=wavread('lw1.wav');x1=xx(:,1);%取单声道t=(0:length(x1)-1)/8000;y1=fft(x1,2048);%对信号做2048点FFT变换f=fs*(0:1023)/2048;figure(1)plot(t,x1) %做原始语音信号的时域图形y=awgn(x1',10,'measured');%加10db的高斯白噪声[snr,mse]=snrmse(x1,y')%求得信噪比均方误差figure(2)plot(t,y) %做加噪语音信号的时域图形[c,l]=wavedec(y,3,'db1');%多尺度一维分解%用db1小波对信号进行3层分解并提取系数a3=appcoef(c,l,'db1',3);%a2=appcoef(c,l,'db1',2);%a1=appcoef(c,l,'db1',1);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);thr1=thselect(d1,'rigrsure');%阈值获取,使用Stein的无偏风险估计原理thr2=thselect(d2,'rigrsure');thr3=thselect(d3,'rigrsure');%利用改进阈值函数进行去噪处理gd1=Garrote_gg(d1,thr1);gd2=Garrote_gg(d2,thr2);gd3=Garrote_gg(d3,thr3);c1=[a3 gd3 gd2 gd1];y1=waverec(c2,l,'db1');%多尺度重构[snr,mse]=snrmse(x1,y1')%求得信噪比均方误差figure(3);plot(t,y1);function gd=Garrote_gg(a,b)%a为信号分解后的小波系数,b为获得的阈值m=0.2*((a*a)-(b*b));if (abs(a)>=b)gd=sign(a)*(abs(a)-b/exp(m));else (abs(a)<b)gd=0;endfunction [snr,mse]=snrmse(I,In)% 计算信噪比函数% I :原始信号% In:去噪后信号snr=0;Ps=sum(sum((I-mean(mean(I))).^2));%signal power Pn=sum(sum((I-In).^2));%noise powersnr=10*log10(Ps/Pn);mse=Pn/length(I);QQ截图20130516175535.png(11.18 KB, 下载次数: 0)改进函数表达式本帖最后由罗志雄于 2013-5-16 21:58 编辑function [snr,mse]=snrmse(I,In)% 计算信噪比函数% I :原始信号% In:去噪后信号snr=0;Ps=sum(sum((I-mean(mean(I))).^2));%signal power Pn=sum(sum((I-In).^2));%noise powersnr=10*log10(Ps/Pn);mse=Pn/length(I);修改后程序清单如下:clear all; clc; close all;fs=8000;%语音信号采样频率为8000xx=wavread('lw1.wav');x1=xx(:,1);%取单声道x1=x1-mean(x1);t=(0:length(x1)-1)/8000;y1=fft(x1,2048);%对信号做2048点FFT变换f=fs*(0:1023)/2048;figure(1)plot(t,x1) %做原始语音信号的时域图形y=awgn(x1',10,'measured');%加10db的高斯白噪声[snr,mse]=snrmsel(x1',y)%求得信噪比均方误差snr1=SNR_singlech(x1',y)figure(2)plot(t,y) %做加噪语音信号的时域图形[c,l]=wavedec(y,3,'db1');%多尺度一维分解%用db1小波对信号进行3层分解并提取系数a3=appcoef(c,l,'db1',3);%a2=appcoef(c,l,'db1',2);%a1=appcoef(c,l,'db1',1);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);thr1=thselect(d1,'rigrsure');%阈值获取,使用Stein的无偏风险估计原理thr2=thselect(d2,'rigrsure');thr3=thselect(d3,'rigrsure');%利用改进阈值函数进行去噪处理gd1=Garrote_gg(d1,thr1);gd2=Garrote_gg(d2,thr2);gd3=Garrote_gg(d3,thr3);c1=[a3 gd3 gd2 gd1];function gd=Garrote_gg(a,b)%a为信号分解后的小波系数,b为获得的阈值m=0.2*((a.*a)-(b*b));if (abs(a)>=b)gd=sign(a)*(abs(a)-b/exp(m));elsegd=zeros(size(a));endy1=waverec(c1,l,'db1');%多尺度重构[snr,mse]=snrmsel(x1',y1) %求得信噪比均方误差figure(3);plot(t,y1);小波去噪软阈值和硬阈值的matlab仿真程序硬阈值、软阈值这里有一段不知道有用没%设置信噪比和随机种子值snr=4;init=2055615866;%产生原始信号sref和高斯白噪声污染的信号s[sref,s]=wnoise(1,11,snr,init);%用db1小波对原始信号进行3层分解并提取系数[c,l]=wavedec(s,3,'db1');a3=appcoef(c,l,'db1',3);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);thr=1;%进行硬阈值处理ythard1=wthresh(d1,'h',thr);ythard2=wthresh(d2,'h',thr);ythard3=wthresh(d3,'h',thr);c2=[a3 ythard3 ythard2 ythard1];s3=waverec(c2,l,'db1');%进行软阈值处理ytsoftd1=wthresh(d1,'s',thr);ytsoftd2=wthresh(d2,'s',thr);ytsoftd3=wthresh(d3,'s',thr);c3=[a3 ytsoftd3 ytsoftd2 ytsoftd1];s4=waverec(c3,l,'db1');%对上述信号进行图示subplot(5,1,1);plot(sref);title('参考信号');subplot(5,1,2);plot(s);title('染噪信号');subplot(5,1,3);plot(s3);title('硬阈值处理');subplot(5,1,4);plot(s4);title('软阈值处理');matlab小波除噪,为何硬阈值和软阈值除躁信噪比一样了?load leleccum;index=1:1024;f1=leleccum(index); % 产生含噪信号init=2055615866;randn('seed',init);f2=f1+18*randn(size(x));snr=SNR_singlech(f1,f2) %信噪比subplot(2,2,1);plot(f1);title('含噪信号'); %axis([1,1024,-1,1]); subplot(2,2,2);plot(f2);title('含噪信号'); %axis([1,1024,-1,1]); %用db5小波对原始信号进行3层分解并提取系数[c,l]=wavedec(f2,3,'db6');a3=appcoef(c,l,'db6',3);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);sigma=wnoisest(c,l,1);thr=wbmpen(c,l,sigma,2);%进行硬阈值处理ythard1=wthresh(d1,'h',thr);ythard2=wthresh(d2,'h',thr);ythard3=wthresh(d3,'h',thr);c2=[a3 ythard3 ythard2 ythard1];f3=waverec(c2,l,'db6');%进行软阈值处理ytsoftd1=wthresh(d1,'s',thr);ytsoftd2=wthresh(d2,'s',thr);ytsoftd3=wthresh(d3,'s',thr);c3=[a3 ytsoftd3 ytsoftd2 ytsoftd1];f4=waverec(c3,l,'db6');%对上述信号进行图示subplot(2,2,3);plot(f3);title('硬阈值处理');%axis([1,1024,-1,1]); subplot(2,2,4);plot(f4);title('软阈值处理');%axis([1,1024,-1,1]); snr=SNR_singlech(f1,f3)snr=SNR_singlech(f1,f4)信噪比函数SNR_singlech(I,In)function snr=SNR_singlech(I,In)% 计算信噪比函数% I:riginal signal% In:noisy signal(ie. original signal + noise signal)snr=0;Ps=sum(sum((I-mean(mean(I))).^2));%signal powerPn=sum(sum((I-In).^2));%noise powersnr=10*log10(Ps/Pn);小波去噪程序Matlab小波去噪(默认,强制,给定三种情况)%% 利用小波分析对监测采集的信号进行去噪处理,恢复原始信号%小波分析进行去噪有3中方法:%1、默认阈值去噪处理。
经验模态分解分解(EMD)信号去噪

% 经验模态分解去噪% 阈值选择:cσ准则,默认c=3% 参考文献:% 李天云, 高磊, 聂永辉,等. 基于经验模式分解处理局部放电数据的自适应直接阈值算法[J]. 中国电机工程学报, 2006, 26(15):29-34.% 经验模态分解抑制白噪声时存在的问题:不能直接对分解后的全部IMF进行3σ滤波,否则滤波效果不好(特别是对于脉冲型PD,振荡PD好点)% 因此,对于用EMD去除白噪声的方法,需要选择合适的去噪层数(duoshaoge IMF分量),而不能直接对所以的IMF进行去噪functiony_denoised=EMDdenoising_3sigma(noisydata,nlevel,thresholdtype,c)% noisydata--含噪信号% thresholdtype--阈值方法(hard或者soft)% c---阈值系数,取值3-4,文中取3% nlevel--对前nlevel个IMF进行去噪处理% [CC,LL]=wavedec(noisydata,1,'db8');% sigma=median(abs(detcoef(CC,LL,1)))/0.6745;if nargin==1nlevel=1; %去噪层数thresholdtype='hard'; %阈值方法c=3; %阈值elseif nargin==2thresholdtype='hard'; %阈值方法c=3; %阈值elseif nargin==3c=3; %阈值endendendif size(noisydata,1)>size(noisydata,2)noisydata=noisydata'; %化为行向量endIMF=emd(noisydata);if nlevel>size(IMF,1)-1nlevel=size(IMF,1)-1;endlen_data=length(noisydata); %含噪数据长度% IMF1=IMF;switch thresholdtypecase 'hard' %硬阈值去噪for j=1:nlevelsigma=std(IMF(j,:));thre=c*sigma;% M=[]; 如果有这部分就表示是参考文献中的方法% for k=1:len_data% if abs(IMF(j,k))>thre% M=[M,k];% end% end% IMF1=IMF(j,:);% IMF1(M)=[];% thre=c*std(IMF1);thre=median(abs(IMF(j,:)))/0.6745*sqrt(2*log(len_data));for k=1:len_dataif abs(IMF(j,k))<=threIMF(j,k)=0;endendendy_denoised=sum(IMF(1:end-1,:));case 'soft' %软阈值去噪for j=1:nlevelthre=c*std(IMF(j,:));% M=[];% for k=1:len_data% if abs(IMF(j,k))>thre% M=[M,k];% end% end% IMF1=IMF(j,:);% IMF1(M)=[];% thre=c*std(IMF1);for k=1:len_dataif abs(IMF(j,k))<=threIMF(j,k)=0;elseIMF(j,k)=IMF(j,k)-sign(IMF(j,k))*thre; %软阈值去噪(符号函数)endendendy_denoised=sum(IMF(1:end-1,:));otherwiseprintf('error input parameters!\n'); endemd函数直接网上下载:。
软阈值函数去噪代码

软阈值函数去噪代码
首先,我们需要导入必要的库:
```python
import cv2
import numpy as np
```
然后,我们加载待去噪的图像:
```python
image = cv2.imread('image.jpg', 0)
```
接下来,我们定义软阈值函数:
```python
def soft_threshold(image, threshold):
return np.sign(image) 某 np.ma某imum(np.abs(image) - threshold, 0)
```
在这个函数中,我们首先使用`np.sign`函数来获取图像的符号信息(即正负),然后使用`np.abs`函数获取图像的绝对值,接着减去阈值,并将结果与0取最大值。
接下来,我们使用软阈值函数对图像进行去噪:
```python
denoised_image = soft_threshold(image, 50)
```
在这个例子中,我们将阈值设为50。
你可以根据需要调整阈值的大小。
最后,我们将去噪后的图像保存到磁盘上:
```python
cv2.imwrite('denoised_image.jpg', denoised_image)
```
值得注意的是,软阈值函数是一种简单而有效的去噪方法,但其效果有限。
如果你需要更高质量的图像去噪结果,可能需要考虑使用更复杂的去噪算法,如小波去噪或非局部均值去噪。
matlab中的去噪函数

matlab中的去噪函数
MATLAB中有多种用于去噪的函数和工具,其中一些常用的包括:
1. `medfilt1`,这个函数用于对一维信号进行中值滤波,可以
有效地去除椒盐噪声和其他类型的噪声。
2. `medfilt2`,类似于`medfilt1`,这个函数用于对二维图像
进行中值滤波,对于去除图像中的斑点噪声和其他类型的噪声效果
很好。
3. `wiener2`,这个函数实现了维纳滤波器,可以用于图像的
去噪。
维纳滤波器是一种自适应滤波器,可以根据图像的局部特性
进行滤波,适用于各种类型的噪声。
4. `imfilter`,这个函数可以实现各种类型的滤波操作,包括
高斯滤波、均值滤波等,可以根据具体的需求选择合适的滤波器进
行去噪处理。
5. `denoiseWavelet`,MATLAB中还提供了基于小波变换的去
噪函数,可以通过小波阈值处理来去除信号中的噪声成分。
除了以上提到的函数,MATLAB还提供了一些图像处理工具箱,
其中包含了更多高级的去噪算法和工具,比如基于深度学习的去噪
方法、非局部均值去噪(NL-means denoising)等。
这些工具可以
根据具体的应用场景和需求选择合适的去噪方法进行处理。
总的来说,MATLAB提供了丰富的去噪函数和工具,可以根据具
体的信号或图像特性选择合适的方法进行去噪处理。
在实际应用中,需要根据噪声类型、信噪比以及对信号质量的要求来选择合适的去
噪方法。
python数据降噪的处理方法

python数据降噪的处理方法Python数据降噪的处理方法数据降噪是机器学习和数据分析中的一个重要问题。
在Python中,有许多数据降噪方法可供使用。
下面将介绍一些常用的Python数据降噪方法。
1. 滑动平均法滑动平均法是一种简单、有效的降噪方法。
该方法通过计算连续n个数据的平均值来平滑时间序列数据。
在Python中,可以使用NumPy 库中的convolve函数来实现滑动平均法。
具体实现方法如下:```import numpy as npdef moving_average(data, window_size):window = np.ones(int(window_size))/float(window_size)return np.convolve(data, window, 'same')```其中,data是待降噪的数据,window_size是窗口大小。
通过调整窗口大小,可以控制平滑度。
这里使用的是“same”模式,表示输出与输入数据的大小相同。
可以根据需要选择不同的模式。
2. 傅里叶变换法傅里叶变换是一种将时域数据变换到频域数据的方法。
通过对频域数据进行滤波,可以实现降噪。
在Python中,可以使用NumPy库中的fft函数来实现傅里叶变换。
具体实现方法如下:```import numpy as npdef fourier_filter(data, threshold):fft_data = np.fft.fft(data)fft_data[threshold:-threshold] = 0return np.real(np.fft.ifft(fft_data))```其中,data是待降噪的数据,threshold是过滤的阈值。
通过调整阈值,可以控制平滑度。
该方法会将频率分量低于阈值的频域数据设置为0,然后再进行逆傅里叶变换得到降噪后的时域数据。
3. 小波变换法小波变换是一种将时域数据变换到时-频域的方法。
matlab 小波变换软阈值

matlab 小波变换软阈值小波变换软阈值是一种常用的信号处理技术,可以用于信号去噪和压缩。
在MATLAB中,可以使用wavethresh函数来实现小波变换软阈值处理。
首先,你需要使用wavedec函数对信号进行小波分解,得到小波系数。
然后,可以使用thselect函数来选择软阈值的阈值值。
最后,利用wdencmp函数对小波系数进行软阈值处理,实现信号的去噪或压缩。
在MATLAB中,你可以按照以下步骤来实现小波变换软阈值处理:1. 使用wavedec函数对信号进行小波分解,得到小波系数。
例如,[C,L] = wavedec(x,n,'wname'),其中x为输入信号,n为分解层数,'wname'为小波基名称。
2. 使用thselect函数来选择软阈值的阈值值。
例如,thr = thselect(C,'rigrsure'),这里选择了Rigorous sure阈值。
3. 利用wdencmp函数对小波系数进行软阈值处理。
例如,xd = wdencmp('gbl',C,L,'wname',n,thr,'s'),这里'gbl'表示全局阈值,'wname'为小波基名称,n为分解层数,'s'表示软阈值处理。
需要注意的是,在实际使用中,你需要根据具体的信号特点和处理需求来选择合适的小波基、分解层数和阈值选择方法。
另外,小波变换软阈值处理也涉及到阈值的选取和参数的调节,需要结合实际情况进行调试和优化。
总之,MATLAB提供了丰富的小波变换函数和工具,可以帮助你实现小波变换软阈值处理,从而对信号进行去噪和压缩。
希望这些信息能够帮助到你。
Python小波变换去噪

Python⼩波变换去噪⼀.⼩波去噪的原理信号产⽣的⼩波系数含有信号的重要信息,将信号经⼩波分解后⼩波系数较⼤,噪声的⼩波系数较⼩,并且噪声的⼩波系数要⼩于信号的⼩波系数,通过选取⼀个合适的阀值,⼤于阀值的⼩波系数被认为是有信号产⽣的,应予以保留,⼩于阀值的则认为是噪声产⽣的,置为零从⽽达到去噪的⽬的。
⼩波阀值去噪的基本问题包括三个⽅⾯:⼩波基的选择,阀值的选择,阀值函数的选择。
(1) ⼩波基的选择:通常我们希望所选取的⼩波满⾜以下条件:正交性、⾼消失矩、紧⽀性、对称性或反对称性。
但事实上具有上述性质的⼩波是不可能存在的,因为⼩波是对称或反对称的只有Haar⼩波,并且⾼消失矩与紧⽀性是⼀对⽭盾,所以在应⽤的时候⼀般选取具有紧⽀的⼩波以及根据信号的特征来选取较为合适的⼩波。
(2) 阀值的选择:直接影响去噪效果的⼀个重要因素就是阀值的选取,不同的阀值选取将有不同的去噪效果。
⽬前主要有通⽤阀值(VisuShrink)、SureShrink阀值、Minimax阀值、BayesShrink阀值等。
(3) 阀值函数的选择:阀值函数是修正⼩波系数的规则,不同的反之函数体现了不同的处理⼩波系数的策略。
最常⽤的阀值函数有两种:⼀种是硬阀值函数,另⼀种是软阀值函数。
还有⼀种介于软、硬阀值函数之间的Garrote函数。
另外,对于去噪效果好坏的评价,常⽤信号的信噪⽐(SNR)与估计信号同原始信号的均⽅根误差(RMSE)来判断。
⼆,在python中使⽤⼩波分析进⾏阈值去噪声,使⽤pywt.threshold函数#coding=gbk#使⽤⼩波分析进⾏阈值去噪声,使⽤pywt.thresholdimport pywtimport numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport mathdata = np.linspace(1, 10, 10)print(data)# [ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]# pywt.threshold(data, value, mode, substitute) mode 模式有4种,soft, hard, greater, less; substitute是替换值可以点进函数⾥看,data/np.abs(data) * np.maximum(np.abs(data) - value, 0)data_soft = pywt.threshold(data=data, value=6, mode='soft', substitute=12)print(data_soft)# [12. 12. 12. 12. 12. 0. 1. 2. 3. 4.] 将⼩于6 的值设置为12,⼤于等于6 的值全部减去6data_hard = pywt.threshold(data=data, value=6, mode='hard', substitute=12)print(data_hard)# [12. 12. 12. 12. 12. 6. 7. 8. 9. 10.] 将⼩于6 的值设置为12,其余的值不变data_greater = pywt.threshold(data, 6, 'greater', 12)print(data_greater)# [12. 12. 12. 12. 12. 6. 7. 8. 9. 10.] 将⼩于6 的值设置为12,⼤于等于阈值的值不变化data_less = pywt.threshold(data, 6, 'less', 12)print(data_less)# [ 1. 2. 3. 4. 5. 6. 12. 12. 12. 12.] 将⼤于6 的值设置为12,⼩于等于阈值的值不变三,在python中使⽤ecg⼼电信号进⾏⼩波去噪实验#-*-coding:utf-8-*-import matplotlib.pyplot as pltimport pywtimport mathimport numpy as np#get Dataecg=pywt.data.ecg() #⽣成⼼电信号index=[]data=[]coffs=[]for i in range(len(ecg)-1):X=float(i)Y=float(ecg[i])index.append(X)data.append(Y)#create wavelet object and define parametersw=pywt.Wavelet('db8')#选⽤Daubechies8⼩波maxlev=pywt.dwt_max_level(len(data),w.dec_len)print("maximum level is"+str(maxlev))threshold=0 #Threshold for filtering#Decompose into wavelet components,to the level selected:coffs=pywt.wavedec(data,'db8',level=maxlev) #将信号进⾏⼩波分解for i in range(1,len(coffs)):coffs[i]=pywt.threshold(coffs[i],threshold*max(coeffs[i]))datarec=pywt.waverec(coffs,'db8')#将信号进⾏⼩波重构mintime=0maxtime=mintime+len(data)print(mintime,maxtime)plt.figure()plt.subplot(3,1,1)plt.plot(index[mintime:maxtime], data[mintime:maxtime])plt.xlabel('time (s)')plt.ylabel('microvolts (uV)')plt.title("Raw signal")plt.subplot(3, 1, 2)plt.plot(index[mintime:maxtime], datarec[mintime:maxtime])plt.xlabel('time (s)')plt.ylabel('microvolts (uV)')plt.title("De-noised signal using wavelet techniques")plt.subplot(3, 1, 3)plt.plot(index[mintime:maxtime],data[mintime:maxtime]-datarec[mintime:maxtime]) plt.xlabel('time (s)')plt.ylabel('error (uV)')plt.tight_layout()plt.show()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
软阈值函数去噪代码
以下是一个使用软阈值函数进行图像去噪的Python代码,该代码使用的是均值滤波算法。
```python
import cv2
import numpy as np
def soft_threshold(x, threshold):
if x > threshold:
return x - threshold
elif x < -threshold:
return x + threshold
else:
return 0
def denoise_image(img, threshold):
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
height, width = img.shape
denoised_img = np.zeros((height, width), dtype=np.float32) #对每个像素进行均值滤波和软阈值处理
for i in range(1, height-1):
for j in range(1, width-1):
neighborhood = img[i-1:i+2, j-1:j+2]
mean_value = np.mean(neighborhood)
denoised_img[i, j] = soft_threshold(img[i, j] - mean_value, threshold)
#将浮点型像素值转换为8位图像
denoised_img = cv2.convertScaleAbs(denoised_img)
return denoised_img
#读取图像
img = cv2.imread("image.jpg")
#设置阈值
threshold = 20
#进行图像去噪
denoised_img = denoise_image(img, threshold)
#显示原始图像和去噪后的图像
cv2.imshow("Original Image", img)
cv2.imshow("Denoised Image", denoised_img)
cv2.waitKey(0)
```
注意:在运行此代码之前,确保已经安装了OpenCV库,并将`"image.jpg"`替换为你要去噪的图像的路径。
此代码使用了均值滤波算法和软阈值函数进行图像去噪。
首先,图像被转换为灰度图像。
然后,对每个像素应用均值滤波,计算像素的邻域的平均值。
最后,应用软阈值函数去除噪声,并将浮点型像素值转换为8位图像。
最终,显示原始图像和去噪后的图像。