风机变频控制系统
煤矿主通风机变频调速及控制监控系统

煤矿主通风机变频调速及控制监控系统一、概述煤矿巷道通风系统,在煤矿的安全生产中起着至关重要的作用,由于煤矿开采及掘进的不断延伸,巷道延长,矿井所需的风量将不断增加,风机所用功率也将加大;四季的交替,冷热的变化,所需的风量也需不断调节。
变频调速以其优异的调速和起动性能,高效率、高功率因数、节电显著和应用范围广泛等诸多优点而被认为是主扇风机最适合的调速方式,可以实现以下几个功能:●节能降耗,降低长达几十年的生产成本;●软起动特性,大大延长机械使用寿命;●无人值守,提高自动化运行程度,安全生产。
二、变频节能原理变频调速控制系统利用变频调速来实现风量(风压)调节,代替挡风板等控制方式,不但可以节约大量的电能,而且可以显著改善系统的运行性能。
曲线(1)为风机在恒定转速n1下的风压—风量(H―Q)特性,曲线(2)为管网风阻特性(风门全开)。
假设风机工作在A点效率最高,此时风压为H2,风量为Q1,轴功率N1与Q1、H2的乘积成正比,在图中可用面积AH2OQ1表示。
如果生产工艺要求,风量需要从Q1减至Q2,这时用调节风门的方法相当于增加管网阻力,使管网阻力特性变到曲线(3),系统由原来的工况点A变到新的工况点B运行。
从图中看出,风压反而增加,轴功率与面积BH1OQ2成正比。
显然,轴功率下降不大。
如果采用变频器调速控制方式,风机转速由n1降到 n2,根据风机参数的比例定律,画出在转速n2风量(Q―H)特性,如曲线(4)所示。
可见在满足同样风量Q2的情况下,风压H3大幅度降低,功率N3也随着显著减少,用面积CH3OQ2表示。
节省的功率△N=(H1-H3)×Q2,用面积BH1H3C表示。
显然,节能的经济效果是十分明显的。
由流体力学可知,风量与转速的一次方成正比,风压H与转速的平方成正比,轴功率N与转速的三次方成正比。
采用变频器进行调速,当风量下降到80%时,转速也下降到80%,而轴功率N将下降到额定功率的51.2%,如果风量下降到60%,轴功率N可下降到额定功率的21.6%,当然还需要考虑由于转速降低会引起的效率降低及附加控制装置的效率影响等。
风机变频器工作原理

风机变频器工作原理
风机变频器是一种用来控制风机转速的装置,通过调节输出频率来控制风机转速,从而实现风机的平稳启动和运行。
风机变频器的工作原理如下:
1. 感应电机的工作原理:感应电机是一种常用于风机的电机类型。
它由定子和转子两部分组成。
当定子上的绕组通过交流电流时,会在转子中产生感应电流。
感应电流产生的磁场与定子的磁场相互作用,从而驱动转子转动。
2. 变频器的工作原理:变频器是通过控制输出电压的频率和幅值来控制电机转速的装置。
它由整流单元、滤波单元和逆变单元组成。
a. 整流单元:将交流电源转换为直流电压。
b. 滤波单元:去除直流电压中的脉动部分,得到平滑的直流电压。
c. 逆变单元:将直流电压转换为可控的交流电压,其中输出频率可以通过控制逆变器的工作原理实现。
3. 控制系统的工作原理:风机变频器的控制系统通过传感器获取风机转速和负载情况,然后根据系统设定范围内的要求,计算出相应的频率和幅值控制信号输出给变频器,进而控制电机的运行。
总之,风机变频器通过控制输出频率和幅值,来实现对风机转速的精确控制和调节,从而满足不同工况下的需求,并提高能效和运行稳定性。
风机变频器控制原理-40页PPT资料

US12 US32
U VW
PS,QS
+PE
PM
To Step Up Transformer
690VAC / 50Hz
1500/1A
iL1..3
3x40A
3x32A
690V + 400V auxiliary power for
nacelle load
grid contactor K2
500/0,12A
与发电机的接线
变频器—接线
塔筒上部:发电机电缆 →BUS BAR
塔筒下部:BUS BAR→变频 器
变频器—系统原理
变频器—系统原理(ALSTOM)
变频器—硬件结构及功能(ALSTOM)
并网柜
控制柜
功率模块柜
变频器—硬件结构及功能(ALSTOM)
变频器—硬件结构及功能(ALSTOM)
并网柜
变频器—硬件结构及功能(ALSTOM)
stator voltage interface crowbar interface
K,L,M
Crowbar
DFIG
Enc
Quadrature encoder with marker pulse
rotor position feedback
电网侧交流滤波电抗器: 抑制功率元件通断引起的 电磁干扰
变频器控制单元: 电网电压、电流测量;功率测量;电 网监测;与主控制器通讯
变频器—硬件结构及功能(ALSTOM)
功率模块柜
与转子的 连接电缆 的螺栓
变频器—硬件结构及功能(ALSTOM)
• 功率模块柜: • 1 变频 • 2 功率回路滤波 • 3 功率回路保护(Crow-bar)
一次风机变频DCS控制操作说明

锅炉一次风机变频改造项目DCS系统控制操作说明批准:朱宏审核:杨明喜编写:闫普2011年09月25日神华亿利电厂设备技术部一次风机变频控制DCS系统操作说明1. 一次风机变频控制系统简介为了提高发电机组的生产效率、降低能耗以及系统的综合可靠性,一次风机负载的驱动系统拟采用全数字交流高压变频器实施控制。
变频控制系统具备本地操作和DCS远程控制两种控制方式,可进行手动切换。
一次风机变频的远程控制接入主机DCS系统,通过DCS系统进行远程控制,可实现机组DCS系统画面的远程操作和监控。
变频系统装置接收来自DCS 系统的开关量信号和4-20mA信号对一次风机变频器、旁路柜断路器进行控制,同时变频器、高压开关可输出开关量信号和4-20mA信号到DCS系统,已实现机组DCS系统对变频器、高压开关的操作和变频系统装置相关信息的监视。
2. 一次风机变频一次回路原理一次风机变频改造一次回路采用一拖一的方式,即在一次风机一次回路中将高压变频器串联进现有高压开关柜与高压电机之间,正常工作时采用变频回路,自动旁路柜QF1和QF2闭合,QF3断开;工频运行时,自动旁路柜QF1和QF2断开,QF3闭合,采用原有的工频启动方式,并可实现变频故障后自动切旁路工频功能,其控制原理如下图所示:图 1. 一次回路图图1.为高压变频器配置自动旁路柜,当变频器出现故障或需要检修时,自动切换到旁路运行,保证系统安全连续运行。
其自动旁路柜原理见下:该系统主要由原高压开关柜DL、自动旁路柜(由三个真空断路器QF1、QF2、QF3组成)、高压变频器、电动机组成。
变频运行时,QF3断开,QF1和QF2闭合。
高压电机由变频装置驱动,实现调速控制。
变频器出现严重故障时,系统断开QF1、QF2,合上QF3,系统自动恢复工频旁路运行。
工频运行状态下,系统可在线恢复变频方式。
断开QF2,合上QF0、QF1,在负载旋转过程中投入变频运行。
真空断路器QF2、QF3之间具有互为闭锁逻辑,确保系统安全可靠。
风机变频原理

风机变频原理
风机变频原理是通过变频器控制风机的转速,实现调节风机的输出风量和静压。
变频器是一种电子装置,它可以根据输入的频率信号,通过改变输出电压和频率的方式,控制电机的转速。
在传统的风机驱动系统中,使用的是恒频供电系统,即输入电压和频率是恒定的。
通过改变风机的叶片角度和调节进出口阀门的开度来控制风机的输出。
然而,这种方式调节风机的效果有限,且调节过程较为复杂。
而在风机变频控制系统中,通过变频器可以实时调节风机的转速。
变频器会将输入的电压和频率转换成可调的电压和频率输出,并将其输送给电机驱动风机。
通过改变输出电压和频率的方式,可以调节电机的转速,进而改变风机的输出风量和静压。
风机变频器工作的基本原理是通过PWM(脉宽调制)技术来
改变输出电压和频率。
PWM调制是一种将输入信号根据一定
的规则转换成周期性脉冲信号的技术。
变频器将输入信号进行采样,经过AD转换后,通过计算、比较等处理,生成脉冲信号来控制输出电压和频率。
具体来说,变频器会根据需要调节的转速,计算出相应的电压和频率,并将调整后的脉冲信号发送给电机。
电机根据脉冲信号的频率和占空比来调节转速,实现风机的输出控制。
风机变频控制系统的优势在于可以实现精细的风量和静压控制,提高系统的能效和运行稳定性。
此外,由于变频器可以实时监
测风机运行状态,并根据系统需求进行调节,它还可以提供过载保护、故障诊断等功能。
总之,风机变频原理通过变频器控制风机的转速,实现对风机输出风量和静压的精确调节。
这种系统能够提高风机的效率和控制性能,广泛应用于空调、通风、供暖等领域。
风机转速控制方法

风机转速控制方法一、引言风机转速控制是风机运行过程中非常重要的一项技术,它可以实现风机的启停、调速、保护等功能,从而满足不同工况下的需求。
本文将介绍几种常见的风机转速控制方法,包括变频控制、变桨控制和阻力控制。
二、变频控制1. 原理变频控制是通过改变电源频率来控制电动机的转速。
当电源频率增加时,电动机转速也会增加;相反,当电源频率降低时,电动机转速会减小。
通过改变变频器的输出频率,可以实现对风机转速的精确控制。
2. 优点变频控制具有以下优点:- 转速调节范围广:变频器可以实现宽范围的转速调节,满足不同工况下的需求。
- 节能效果好:变频器可以根据实际负荷情况调整电动机转速,从而实现节能效果。
- 启停平稳:变频器可以实现平稳的启停过程,减少设备的机械冲击。
3. 缺点变频控制的缺点主要包括:- 造价较高:变频器的价格较高,增加了设备的投资成本。
- 对电动机要求高:变频器对电动机的电压、电流等参数有一定要求,需要选用适配的电机。
三、变桨控制1. 原理变桨控制是通过改变风机叶片的角度来控制风机转速。
当叶片角度增大时,风阻增加,风机转速减小;相反,当叶片角度减小时,风阻减小,风机转速增加。
通过控制变桨系统的机械结构,可以实现对风机转速的调节。
2. 优点变桨控制具有以下优点:- 转速调节灵活:变桨控制可以实现对风机转速的灵活调节,适应不同工况下的需求。
- 结构简单可靠:变桨控制的机械结构相对简单,可靠性高。
3. 缺点变桨控制的缺点主要包括:- 受限于叶片角度:叶片角度的调节范围有限,可能无法满足某些特殊工况的需求。
- 能耗较大:变桨控制需要消耗一定的能量来调节叶片角度,会造成一定的能耗。
四、阻力控制1. 原理阻力控制是通过改变风机的外部负载来控制风机转速。
当外部负载增加时,风机转速减小;相反,当外部负载减小时,风机转速增加。
通过改变阻力装置的工作状态,可以实现对风机转速的调节。
2. 优点阻力控制具有以下优点:- 控制方式简单:阻力控制的操作方式相对简单,易于实施。
冷却塔风机变频控制系统

冷却塔风机变频控制系统一、冷却塔运行概况我们公司研制的冷却塔风机变频系统共有三件编号,分别为1#、2#、3#循环水冷却塔。
各生产装置返回的循环水用泵输送到这些塔内,通过塔内的填料增加热水与空气接触面积和时间,促进热水与空气进行热交换,使循环水冷却。
从而获得各生产装置所需循环水温度≤32℃的冷水。
当环境温度升高时,启动冷却塔内的轴流风机实行强制通风,加快冷却塔填料上循环水气相与液相的热交换。
每件冷却塔内装设1台轴流风机,其直径8500mm,由电压为380V,额定功率为160KW的4极异步电机驱动。
电机和风机之间采有能够减速比的减速机,塔内不装设节流阀。
回此轴流风机的转速与风量是不可调的,3件塔的总处理能力达8000m3/h,远大于各生产装置最大需求量部和6600m3/h,2000年度各塔的运行参数详见表1与表2。
冷却塔风机采用变频调速节能方案风机节能可行性分析表1 各塔运行参数统计表由表1所示的数据知:2000年度冷却塔风机运行期间,冷却塔进水温度的最高温度平均值分布在27.6-28.8℃内,其较各生产装置所需冷却水温度32℃低3.2-4.4℃,并可知在同时满足冷却塔进水温度低于最高热水温度平均值及冷却塔出水温度低于最高冷却水温度平均值这一条件下,单台风机全年的运行时间为2705h。
若采用变频控制器调节风机转速,改变风机风量,可使冷却塔出水温度提高2-3℃的情况下,仍能满足冷却塔出水温度≤32℃的工艺要求,这显然可节省电能。
根据厂家提供曲线图,以及表2的有关数据,通过工艺计算的风机的不同月份节能潜力及收益值如表3表2:2000年不同月份风机运行台数与冷却塔出水温度关系统计表表3:2000年不同月份风机节能潜力及收益计算值注:收益率=可运行时间*风机节能潜力0.56元/kw*h*100%表中P=120.5kw,总收益值8.883万元。
由表3可知各冷却塔风机节能力40%-54%风机变频调速实施方案风机节能的最佳方案是控制风机转速,可通过改变电机控制系统来调节电机运行转速,从而达到控制风机转的目的。
风机变频原理

风机变频原理
风机变频技术是指通过改变电源频率来控制风机的转速,从而实现对风机运行状态的精准控制。
在风电场中,风机变频技术被广泛应用,可以有效提高风机的运行效率和稳定性,降低能耗和维护成本,同时也对电网具有一定的支撑作用。
下面我们将详细介绍风机变频原理。
首先,风机变频技术的基本原理是利用变频器对电源频率进行调节,以改变电机的转速。
在传统的风机系统中,电机通常是由恒定频率的交流电源驱动,因此风机的转速也是固定的。
而通过变频器可以改变电源频率,从而改变电机的转速,实现对风机的精准控制。
其次,风机变频技术的关键在于变频器的控制策略。
变频器需要根据风机的运行状态和外部环境条件,调节输出频率和电压,以实现对风机的最佳控制。
在风速较大时,需要提高风机转速以提高发电效率,而在风速较小或风机受到外部干扰时,需要降低风机转速以保护设备和延长使用寿命。
因此,变频器需要具备智能化的控制策略,能够根据实时情况对风机进行动态调节。
此外,风机变频技术还涉及到电机的变频驱动系统。
变频驱动
系统通常由变频器、电机和传感器等组成,其中变频器起到控制电
源频率的作用,电机负责转换电能为机械能,传感器用于采集风机
运行状态和环境参数。
这些组件共同协作,实现了风机变频技术的
应用。
总的来说,风机变频技术通过改变电源频率来控制风机的转速,实现了对风机运行状态的精准控制。
这不仅提高了风机的运行效率
和稳定性,降低了能耗和维护成本,也对电网具有一定的支撑作用。
随着风电行业的发展,风机变频技术将会得到更广泛的应用,为风
电产业的可持续发展做出贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频风机恒温系统
一、关于变频风机恒温系统原理
1)系统原理
变频风机恒温系统是指在环境温度变化的情况下,总保持风
管网温度基本恒定,这样,既可满足用户对温度的需求,又
不使电动机全速转动,造成电能的浪费。
根据给定温度信号
和反馈温度信号,控制变频器调节马达转速,从而达到控制
系统温度的目的。
变频风机恒温系统如图所示:
2)温度控制信号算法处理
在该控制系统中,温度信号的检测采用热电偶对(TC)E 型,热电偶对采集到的温度变送信号经温度控制器PID运算后输出为4—20mA电流信号,对应变频器的运行频率为0—50HZ;通常情况下风管网允许正常温度为某
一值P1,而正常工作条件下管网允许最高温度为某一值P1+ P X,(P X为温控
器预设值)两者对应的模拟电流为4mA,20mA(对应变频器的运行频率为0—50HZ)则有如下函数关系:
P= P1+P X*(I p—4)/(20-4)
在上式中,P为某一时刻时管网温度。
类似地,变频器控制信号电流函数关系为
If= [ (20—4) *(P—P1)]/ P X+4
该系统为一单回路PID系统,由于系统控制要求不十分苛刻,所以采用PI 控制即可实现目标。
二、系统主要配置:
1 温度控制器DTA4848C、
2 台达VFD-B变频器、
3 热电偶对(TC)E 型、
4 断路器BM60-SN 3P
5 接触器S-P12 AC220V
三、系统功能
系统控制面板布局及功能
面板布局如下图所示:
1、“自动/手动”开关:切换自动与手动两种状态。
将开关转向“自动”,表明
系统工作在自动状态;将开关转向“手动”,表明系统工作在手动状态。
(注:只有自动控制信号引入时自控才有效)
2、“启动”与“停止”按钮:用于控制风机的启动与停止。
按“启动”按钮启
动风机,此时启动指示灯亮,按“停止”按钮,停止风机,此时停止指示灯亮。
(注:“启动”与“停止”按钮只在自动/手动按钮打到手动时才起
作用)
3、“变频/工频”按钮:用于切换风机的运行方式。
旋转按钮到,“变频”则
风机在变频器传动下运行,旋转按钮到,“工频”则风机在市电(工频)传动下运行。
(注:工频运行下风机流量不能根据温度自行调节,仅用于设备检修调试)
4、“变频故障”指示灯,此灯亮则表明系统存在故障(故障原因请依照变频器
显示故障代码提示原因,已便排除故障。
“过载”指示灯,此灯亮则表明风机存在过载现象,请核查有无机械故障。
四、其它:附变频器操作手册、台达温度控制器操作手册、系统控制原理图
质量保证
本产品的质量保证依下列规定办理
确属制造者责任的品质保证,国内市场(自出货之日起计算)
三个月内包换、包修。
十二个月内包修。
2、无论何时何地使用本公司的产品,均享受有偿终身服务。
本公司在全国各地的销售代理单位均可对本产品提供售后服务。
下述原因引起的故障,即使在保修期内,也属有偿修理。
不正确的操作(依说明书为准)或未经允许自行修理或自行改造引起的问题。
超出标准规范要求使用引起的问题。
购或搬运不当造成的损坏。
因环境不良所引买后跌损起的器件老化或故障。
由于地震、火灾、雨淋、雷击、异常电压或其它自然灾害或灾害相伴原因引起的损坏。
因运输过程中的损坏。
(注:运输方式由客户指定,本公司代办)
未依购买约定或合同条款付清款项。
对于包退、包换、包修的服务,须将货物退回本公司,经确认责任归属后,方可予以退换或修理。
产品保修卡
产品名称规格型号
购买日期年月日购买地点用户名称地址
电话:
维修记录:
经销商盖章:。