常用到的stata命令

合集下载

STATA常用命令大全

STATA常用命令大全

STATA 常用命令大全调整变量格式:format x1 %10.3f ——将x1的列宽固定为10,小数点后取三位format x1 %10.3g ——将x1的列宽固定为10,有效数字取三位format x1 %10.3e ——将x1的列宽固定为10,采用科学计数法format x1 %10.3fc ——将x1的列宽固定为10,小数点后取三位,加入千分位分隔符format x1 %10.3gc ——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符format x1 %-10.3gc ——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符,加入“-”表示左对齐合并数据:use "C:\Documents and Settings\xks\桌面\2006.dta", clearmerge using "C:\Documents and Settings\xks\桌面\1999.dta"——将1999和2006的数据按照样本(observation)排列的自然顺序合并起来use "C:\Documents and Settings\xks\桌面\2006.dta", clearmerge id using "C:\Documents and Settings\xks\桌面\1999.dta" ,unique sort——将1999和2006的数据按照唯一的(unique)变量id来合并,在合并时对id进行排序(sort)建议采用第一种方法。

对样本进行随机筛选:sample 50在观测案例中随机选取50%的样本,其余删除sample 50,count在观测案例中随机选取50个样本,其余删除查看与编辑数据:browse x1 x2 if x3>3 (按所列变量与条件打开数据查看器)edit x1 x2 if x3>3 (按所列变量与条件打开数据编辑器)数据合并(merge)与扩展(append)merge表示样本量不变,但增加了一些新变量;append表示样本总量增加了,但变量数目不变。

STATA命令应用及详细解释

STATA命令应用及详细解释

STATA命令应用及详细解释1. summarize:该命令用于计算数值变量的描述性统计信息,包括均值、标准差、最小值、最大值等。

2. tabulate:该命令用于生成一个分类变量的频数和百分比表。

它可以计算单个变量的分布情况,也可以计算多个变量之间的交叉分布情况。

3. tabstat:该命令用于生成一个或多个数值变量的汇总统计信息,包括均值、标准差、中位数等。

与summarize命令相比,tabstat命令可以同时计算多个变量的统计量。

4. regress:该命令用于进行线性回归分析。

可以使用regress命令估计一个自变量和一个或多个因变量之间的线性关系,并生成回归系数、拟合优度等回归结果。

5. logistic:该命令用于进行逻辑回归分析。

逻辑回归分析常用于二分类问题,可以估计自变量对因变量的影响,并生成回归系数、odds比等结果。

6. ttest:该命令用于进行两样本独立样本的t检验。

可以比较两个独立样本的均值差异,并计算t值、p值等检验结果。

7. oneway:该命令用于进行单因素方差分析。

可以比较不同组别之间的均值差异,并进行方差齐性检验和多重比较。

8. twoway:该命令用于进行双因素方差分析。

可以同时比较两个因素及其交互作用对均值差异的影响,并进行方差齐性检验和多重比较。

9. nonparametric:该命令用于进行非参数统计分析。

包括Wilcoxon秩和检验、Kruskal-Wallis H检验、Mann-Whitney U检验等非参数假设检验方法。

10. generate:该命令用于创建一个新的变量,并根据已有变量和运算符生成新的值。

生成的变量可以用于后续的计算和分析。

11. replace:该命令用于替换数据集中指定变量的值。

可以根据条件语句来替换指定变量中的值。

12. bysort:该命令用于按照一个或多个变量的值对数据集进行排序,并按照排序后的次序执行其他STATA命令。

stata常用命令

stata常用命令
Stata
第一讲:
use 打开数据文件,一般加 clear 选型清空内存中现有数据。 sysuse 打开系统数据文件。 describe 描述数据 edit 利用数据编辑器进行数据编辑 list 类似于 edit,但只能显示不能修改数据。 display 显示计算结果。经常写为: di summarize 求某个变量的观察值个数、平均值、标准差、最小值和最大值。经常写 为:sum scatter 生成两个变量的散点图。 set obs 定义样本个数(使用前一定要用 drop 或者 clear 命令清空当前样本) generate 建立新变量并赋值。经常写为 gen (**********************)stata 命令格式 (**********************) [by varlist:] command [ varlist] [=exp] [if exp] [in range] [ weight] [, options] 1。Command 命令动词,经常用缩写。 2。varlist 表示一个变量或者多个变量,多个变量之间用空格隔开。如 sum price weight 3。 4。 5。 6。 by varlist 分类信息 按照某一变量的不同特性分类 =exp 赋值及运算 if exp 挑选满足条件的数据 in range 对数据进行范围筛选 给数据赋一个权重

例二: use wage2, clear reg lnwage educ tenure exper expersq 1。教育(educ)和工作时间(tenure)对工资的影响相同。 test educ=tenure (两个变量的系数是否相等) 2。工龄(exper)对工资没有影响 test exper (检验 exper 的系数是否为 0) 3。检验 educ 和 tenure 的联合显著性 或者 test e(去年王永画的范围内明确指明 FGLS 不考! ! ! ) FGLS 的步骤 (1) 对原方程用 OLS 进行估计,得到残差项的估计 ûi , (2) 计算 ln(ûi2 ) (3) 用 ln(û2 )对所有独立的解释变量进行回归,然后得到拟合值 ĝ i (4) 计算 ĥi = exp(ĝ i) (5) 用 1/ ĥi 作为权重, 做 WLS 回归。 Reg y x1 x2 x3„„ predict u,res

STATA命令应用及详细解释

STATA命令应用及详细解释

STATA命令应用及详细解释STATA是一种统计软件,被广泛应用于数据分析和统计建模。

在STATA中,有许多命令可以用来汇总数据并提取关键统计信息,以便更好地理解和解释数据。

下面将介绍一些常用的STATA命令,并详细解释其用途和功能。

1. summarize:summarize命令用于对数值变量进行简单的统计汇总。

它会输出变量的观测数、均值、标准差、最小值、最大值等统计量。

2. tabulate:tabulate命令用于对分类变量进行频数统计。

它会输出每个分类变量的取值及其频数,并可以计算相对频数和累计频数。

3. descriptives:descriptives命令可以同时对数值变量和分类变量进行统计汇总。

它会输出每个变量的观测数、缺失值数、均值、标准差、最小值、最大值、频数等统计量。

4. summarizeby:summarizeby命令可以按照一个或多个分类变量对数值变量进行分组统计。

它会输出每个分类组别的观测数、均值、标准差、最小值、最大值等统计量。

5. collapse:collapse命令用于对数据进行折叠操作,将数据按照指定的分类变量进行分组,并计算每组的汇总统计量。

它可以用于生成汇总数据集,以便后续分析。

6. bysort:bysort命令可以按照一个或多个变量对数据进行排序,然后对排序后的数据进行分组统计。

它可以与其他命令结合使用,如collapse、egen等。

7. egen:egen命令可以生成新的衍生变量,该变量可以基于原始数据进行计算。

它支持许多统计函数,如均值、标准差、总和、中位数等,并可以按照一个或多个分类变量进行分组计算。

8. tabstat:tabstat命令可以对数值变量进行多个统计量的计算,并将结果输出为一个表格。

它支持均值、标准差、最小值、最大值、中位数等统计量,并可以按照一个或多个分类变量进行分组计算。

9. corr:corr命令用于计算变量之间的相关系数。

stata入门常用命令

stata入门常用命令

stata入门常用命令Stata是一种统计分析软件,在社会科学、医学等研究领域很常用。

以下是Stata入门常用命令:1.数据加载use "文件路径":加载Stata数据,文件路径为数据文件所在的路径。

describe:显示数据集的变量名、数据类型、缺失值和数据分布等。

2.变量处理generate 变量名=表达式:生成新变量(如指数变量),并可以使用算数、统计和逻辑运算。

replace 变量名=新值:替换某变量中的指定值(如缺失值)为新值。

drop 变量名:删除数据集中的变量。

rename 旧变量名 = 新变量名...:将变量改名。

recode 变量名(包含的值) = 新值:根据变量取值对其离散化。

3.数据子集sort 变量名...:按指定变量排序数据。

by 变量名:...:在一个或多个变量上划分数据集,然后对每个子集应用命令。

if (条件):指定一个条件,只选取满足条件的数据记录。

merge 命令:将两个或多个数据集根据指定变量进行合并。

4.数据汇总summarize:按变量计算数值统计(如平均值、标准差、中位数和四分位数)。

tabulate 变量名:对变量进行交叉分析,并产生表格输出。

5.数据可视化histogram 变量名:绘制直方图。

scatter 变量名1 变量名2:绘制散点图。

graph 命令:绘制多种类型的图表,例如线图和条形图。

6.线性回归regress 因变量自变量1 自变量2...:通过最小二乘法拟合多元线性回归模型。

test 命令:进行t检验、F检验、方差分析等统计检验。

predict 新变量名:计算回归模型的预测值或残差值,并存储在新的变量中。

7.度量方法计算correlate 命令:计算并存储所有变量的相关系数矩阵。

haase 命令:计算哈斯变换矩阵。

Inflate 命令:计算一个变量的方差膨胀因子和条件数。

8.模态分析(模拟)simulate 命令:用随机抽样模拟数据,计算一个或多个变量的特定函数或方程,并存储结果。

stata常用命令

stata常用命令

stata常用命令1. 生成变量1.1 gen生成新变量,可以是常数或基于其他变量的一般表达式。

1.2 replace替换已有变量的值。

生成专门函数如总和、均值、标准差等。

2. 数据子集保留指定的变量。

2.2 drop2.3 in子集数据只保留某些被满足条件的观察值。

更加灵活地较大判断条件。

3. 重塑数据3.1 wide将数据在垂直方向与一个变量进行“展开”(unstack)。

4. 数据合并将两个数据集根据一些共同变量进行合并。

5. 数据排序5.1 sort按顺序排列观测值。

5.2 by指定一组变量作为分类变量,然后对该变量使用stata命令。

6. 描述性统计和图形6.1 summarize描述数据集的基本信息。

6.2 tabulate生成列联表。

绘制直方图。

生成散点图。

6.5 twoway可用于绘制多元图形,包括线图、条形图、密度图等。

7. 频数用于表格中简单查看可以因为比较大的变量。

8. 回归分析8.1 regress线性回归分析。

8.2 logistic8.3 probit生成probit模型。

9. 时间序列9.1 tsset使用stata处理时间序列数据的第一步是指定数据集变量中的时间序列。

生成时间序列图。

10. 面板数据使Stata处理面板数据。

10.2 xtreg生成固定效应模型或随机效应模型。

11. 模型诊断使用模型生成新的预测值。

测试线性组合的系数的显著性。

12. 元分析进行元分析。

13. 子样本13.1 markin创建一个新文件并标记子样本。

标记子样本中的索引值。

以上就是stata常用命令,当然并不是所有的命令都一一列举,在实践用stata的经验中可以去发掘能否有更好的命令来使用。

STATA 常用命令

STATA 常用命令

目录STATA 常用命令 (2)一、基本运算 (2)二、数据处理 (3)三、数据导入导出 (3)四、描述性统计 (4)五、相关系数 (4)六、t检验 (4)七、非参数检验Wilcoxon (4)八、多元线性回归 (4)九、面板数据多元回归 (4)十、Logit回归 (5)十一、主成分分析与因子分析 (5)十二、PSM(倾向性匹配) (5)十三、内生性检验 (6)十四、DID (双重差分模型) (6)十五、作图 (7)十六、错误修正 (7)十七、应用技巧 (7)STATA 常用命令一、基本运算2.新变量产生1至n(行数)的变量:gen z=_n新变量赋值:gen y=log(x) if x>0gen y=seq(x)gen y=rmean(x)gen y=x+zDummy 变量:gen d=1 if x>1replace d=0 if x<=1自动生成年度(year)的Dummy变量:tabulate year, gen(Dyear)替换变量中的数值:replace x=0 if x<0更换变量名称:rename var1 x字符型变量转换为数值型:destring x, replace force(手动操作:选定变量=>右键=>数据)提取年度:gen ymd=date(date,”YMD”)format %td ymdgen year=year(ymd)提取字符:gen code=substr(x,1,1)3.变量处理一阶滞后变量:gen lag_x=L.x将所有变量的缺失值改为0:mvencode _all, mv(0) override去掉重复数值:duplicates drop x, force变量的标准化:egen x1=std(x)变量的缩尾处理:先安装:ssc install winsor, replacewinsor x , gen (x1) p(0.01)二、数据处理1.基本操作帮助:help ttestsearch ttest打开文件:use “ “查看:list x in 1/4展示数据集:describe (d)频率:tab x 或tab x y z命令窗口的执行命令:enter命令文件的执行命令:ctrl +D命令窗口换行:ctrl+enter清空内存(对新数据集开始检验时先清除原数据):clear点击历史窗口,可以将已执行的命令重新恢复为待执行的命令从小到大排列:sort x从大到小排列:gsort -x删除变量:drop x删除若干行:drop in 10/12删除前3行:drop in 1/3删除负数行:drop if x<0删除缺失值:drop if x==.删除不等于C的值:drop if x~=“C”保留变量x和y,删除其他变量:keep x y保留若干行,删除其他行:keep in 10/12保存:save “ 路径” , replace2.数据集合并横向合并:merge x y using “ “纵向合并:append using “ “按一个变量合并:merge 1:m code using "E:\Research\STATA\income.dta"drop _merge按两个变量合并:merge 1:1 code year using "E:\Research\STATA\income.dta"drop _merge3.三、数据导入导出1.Data=>data editor (改为数值型)=>将excel数据粘贴到data editor2.直接导入excel数据,并把第一行作为变量名称:import excel “路径”, firstrow clear3.导入stata 数据集:use “ ”4.导出: 安装asdoc: ssc intall asdoc, replace然后回归分析时:asdoc reg y x在结果窗口点击:Myfile.doc四、描述性统计1.summarize x2.su x3.su x if x>204.su 后不输入具体变量,则对全体变量进行描述性统计。

stata常用命令总结

stata常用命令总结

Stata常用命令总结Stata是一种统计分析软件,广泛用于社会科学、经济学、生物医学等领域的数据分析。

它具有丰富的功能和灵活的数据处理能力,能够进行各种统计分析、数据可视化和模型建立。

本文将总结Stata的常用命令,包括重要观点、关键发现和进一步思考,帮助读者更好地理解和使用Stata。

一、数据导入和处理e命令:用于导入Stata数据文件(.dta)。

2.import命令:用于导入其他格式的数据文件(如Excel、CSV等)。

3.save命令:用于保存当前数据文件。

4.drop命令:用于删除变量或观察值。

5.keep命令:用于保留指定的变量或观察值。

重要观点:在数据导入和处理阶段,要注意数据的完整性和准确性。

需要检查数据的缺失值、异常值和数据类型,做好数据清洗和预处理工作。

二、数据描述和统计分析1.summarize命令:用于计算变量的描述性统计量,如均值、标准差、最大值、最小值等。

2.tabulate命令:用于制作交叉表和列联表。

3.correlate命令:用于计算变量之间的相关系数。

4.regress命令:用于进行线性回归分析。

5.logit命令:用于进行二分类的逻辑回归分析。

重要观点:在进行数据描述和统计分析时,要根据研究问题选择合适的方法和指标。

同时要注意解释统计结果的意义,避免过度解读和误导。

三、数据可视化1.histogram命令:用于绘制直方图。

2.scatter命令:用于绘制散点图。

3.twoway命令:用于绘制多种类型的图形,如线图、柱状图、饼图等。

4.graph export命令:用于将图形导出为图片文件。

重要观点:数据可视化是数据分析的重要手段,能够直观地展示数据的分布和关系。

在进行数据可视化时,要选择合适的图形类型和参数,使图形简洁明了,易于理解和解释。

四、面板数据分析1.xtset命令:用于设置面板数据的时间和单位。

2.xtreg命令:用于进行面板数据的固定效应或随机效应模型分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安装estat:ssc install estout,replace\2010-10-14 11:38:15来自: 杨囡囡(all a woman lack is a wife)(转自人大论坛)调整变量格式:format x1 %10.3f ——将x1的列宽固定为10,小数点后取三位format x1 %10.3g ——将x1的列宽固定为10,有效数字取三位format x1 %10.3e ——将x1的列宽固定为10,采用科学计数法format x1 %10.3fc ——将x1的列宽固定为10,小数点后取三位,加入千分位分隔符format x1 %10.3gc ——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符format x1 %-10.3gc ——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符,加入“-”表示左对齐合并数据:use "C:\Documents and Settings\xks\桌面\2006.dta", clearmerge using "C:\Documents and Settings\xks\桌面\1999.dta"——将1999和2006的数据按照样本(observation)排列的自然顺序合并起来use "C:\Documents and Settings\xks\桌面\2006.dta", clearmerge id using "C:\Documents and Settings\xks\桌面\1999.dta" ,unique sort——将1999和2006的数据按照唯一的(unique)变量id来合并,在合并时对id进行排序(sort)建议采用第一种方法。

对样本进行随机筛选:sample 50在观测案例中随机选取50%的样本,其余删除sample 50,count在观测案例中随机选取50个样本,其余删除查看与编辑数据:browse x1 x2 if x3>3 (按所列变量与条件打开数据查看器)edit x1 x2 if x3>3 (按所列变量与条件打开数据编辑器)数据合并(merge)与扩展(append)merge表示样本量不变,但增加了一些新变量;append表示样本总量增加了,但变量数目不变。

one-to-one merge:数据源自stata tutorial中的exampw1和exampw2第一步:将exampw1按v001~v003这三个编码排序,并建立临时数据库tempw1clearuse "t:\statatut\exampw1.dta"su ——summarize的简写sort v001 v002 v003save tempw1第二步:对exampw2做同样的处理clearuse "t:\statatut\exampw2.dta"susort v001 v002 v003save tempw2第三步:使用tempw1数据库,将其与tempw2合并:clearuse tempw1merge v001 v002 v003 using tempw2第四步:查看合并后的数据状况:ta _merge ——tabulate _merge的简写su第五步:清理临时数据库,并删除_merge,以免日后合并新变量时出错erase tempw1.dtaerase tempw2.dtadrop _merge数据扩展append:数据源自stata tutorial中的fac19和newfacclearuse "t:\statatut\fac19.dta"ta regionappend using "t:\statatut\newfac"ta region合并后样本量增加,但变量数不变茎叶图:stem x1,line(2) (做x1的茎叶图,每一个十分位的树茎都被拆分成两段来显示,前半段为0~4,后半段为5~9)stem x1,width(2) (做x1的茎叶图,每一个十分位的树茎都被拆分成五段来显示,每个小树茎的组距为2)stem x1,round(100) (将x1除以100后再做x1的茎叶图)直方图采用auto数据库histogram mpg, discrete frequency normal xlabel(1(1)5)(discrete表示变量不连续,frequency表示显示频数,normal加入正太分布曲线,xlabel设定x轴,1和5为极端值,(1)为单位)histogram price, fraction norm(fraction表示y轴显示小数,除了frequency和fraction这两个选择之外,该命令可替换为“percent”百分比,和“density”密度;未加上discrete就表示将price当作连续变量来绘图)histogram price, percent by(foreign)(按照变量“foreign”的分类,将不同类样本的“price”绘制出来,两个图分左右排布)histogram mpg, discrete by(foreign, col(1))(按照变量“foreign”的分类,将不同类样本的“mpg”绘制出来,两个图分上下排布)histogram mpg, discrete percent by(foreign, total) norm(按照变量“foreign”的分类,将不同类样本的“mpg”绘制出来,同时绘出样本整体的“总”直方图)二变量图:graph twoway lfit price weight || scatter price weight(作出price和weight的回归线图——“lfit”,然后与price和weight的散点图相叠加)twoway scatter price weight,mlabel(make)(做price和weight的散点图,并在每个点上标注“make”,即厂商的取值)twoway scatter price weight || lfit price weight,by(foreign)(按照变量foreign的分类,分别对不同类样本的price和weight做散点图和回归线图的叠加,两图呈左右分布)twoway scatter price weight || lfit price weight,by(foreign,col(1))(按照变量foreign的分类,分别对不同类样本的price和weight做散点图和回归线图的叠加,两图呈上下分布)twoway scatter price weight [fweight= displacement],msymbol(oh)(画出price和weight的散点图,“msybol(oh)”表示每个点均为中空的圆圈,[fweight= displacement]表示每个点的大小与displacement的取值大小成比例)twoway connected y1 time,yaxis(1) || y2 time,yaxis(2)(画出y1和y2这两个变量的时间点线图,并将它们叠加在一个图中,左边“yaxis(1)”为y1的度量,右边“yaxis(2)”为y2的)twoway line y1 time,yaxis(1) || y2 time,yaxis(2)(与上图基本相同,就是没有点,只显示曲线)graph twoway scatter var1 var4 || scatter var2 var4 || scatter var3 var4(做三个点图的叠加)graph twoway line var1 var4 || line var2 var4 || line var3 var4(做三个线图的叠加)graph twoway connected var1 var4 || connected var2 var4 || connected var3 var4(叠加三个点线相连图)更多变量:graph matrix a b c y(画出一个散点图矩阵,显示各变量之间所有可能的两两相互散点图)graph matrix a b c d,half(生成散点图矩阵,只显示下半部分的三角形区域)用auto数据集:graph matrix price mpg weight length,half by( foreign,total col(1) )(根据foreign变量的不同类型绘制price等四个变量的散点图矩阵,要求绘出总图,并上下排列】=具)其他图形:graph box y,over(x) yline(.22)(对应x的每一个取值构建y的箱型图,并在y轴的0.22处划一条水平线)graph bar (mean) y,over(x)对应x的每一个取值,显示y的平均数的条形图。

括号中的“mean”也可换成median、sum、sd、p25、p75等graph bar a1 a2,over(b) stack(对应在b的每一个取值,显示a1和a2的条形图,a1和a2是叠放成一根条形柱。

若不写入“stack”,则a1和a2显示为两个并排的条形柱)graph dot (median)y,over(x)(画点图,沿着水平刻度,在x的每一个取值水平所对应的y的中位数上打点)qnorm x(画出一幅分位-正态标绘图)rchart a1 a2 a2(画出质量控制R图,显示a1到a3的取值范围)简单统计量的计算:ameans x(计算变量x的算术平均值、几何平均值和简单调和平均值,均显示样本量和置信区间)mean var1 [pweight = var2](求取分组数据的平均值和标准误,var1为各组的赋值,var2为每组的频数)summarize y x1 x2,detail(可以获得各个变量的百分比数、最大最小值、样本量、平均数、标准差、方差、峰度、偏度)***注意***stata中summarize所计算出来的峰度skewness和偏度kurtosis有问题,与ECELL和SPSS有较大差异,建议不采用stata的结果。

summarize var1 [aweight = var2], detail(求取分组数据的统计量,var1为各组的赋值,var2为每组的频数)tabstat X1,stats(mean n q max min sd var cv)(计算变量X1的算术平均值、样本量、四分位线、最大最小值、标准差、方差和变异系数)概率分布的计算:(1)贝努利概率分布测试:webuse quickbitest quick==0.3,detail(假设每次得到成功案例…1‟的概率等于0.3,计算在变量quick所显示的二项分布情况下,各种累计概率和单个概率是多少)bitesti 10,3,0.5,detail(计算当每次成功的概率为0.5时,十次抽样中抽到三次成功案例的概率:低于或高于三次成功的累计概率和恰好三次成功概率)(2)泊松分布概率:display poisson(7,6).44971106(计算均值为7,成功案例小于等于6个的泊松概率)display poissonp(7,6).14900278(计算均值为7,成功案例恰好等于6个的泊松概率)display poissontail(7,6).69929172(计算均值为7,成功案例大于等于6个的泊松概率)(3)超几何分布概率:display hypergeometricp(10,3,4,2).3(计算在样本总量为10,成功案例为3的样本总体中,不重置地抽取4个样本,其中恰好有2个为成功案例的概率)display hypergeometric(10,3,4,2).96666667(计算在样本总量为10,成功案例为3的样本总体中,不重置地抽取4个样本,其中有小于或等于2个为成功案例的概率)检验极端值的步骤:常见命令:tabulate、stem、codebook、summarize、list、histogram、graph box、gragh matrixstep1.用codebook、summarize、histogram、graph boxs、graph matrix、stem看检验数据的总体情况:codebook y x1 x2summarize y x1 x2,detailhistogram x1,norm(正态直方图)graph box x1(箱图)graph matrix y x1 x2,half(画出各个变量的两两x-y图)stem x1(做x1的茎叶图)可以看出数据分布状况,尤其是最大、最小值step2.用tabulate、list细致寻找极端值tabulate code if x1==极端值(作出x1等于极端值时code的频数分布表,code表示地区、年份等序列变量,这样便可找出那些地区的数值出现了错误)list code if x1==极端值(直接列出x1等于极端值时code的值,当x1的错误过多时,不建议使用该命令)list in -20/l(l表示last one,-20表示倒数第20个样本,该命令列出了从倒数第20个到倒数第一个样本的各变量值)step3.用replace命令替换极端值replace x1=? if x1==极端值去除极端值:keep if y<1000drop if y>1000对数据排序:sort xgsort +x(对数据按x进行升序排列)gsort -x(对数据按x进行降序排列)gsort -x, generate(id) mfirst(对数据按x进行降序排列,缺失值排最前,生成反映位次的变量id)对变量进行排序:order y x3 x1 x2(将变量按照y、x3、x1、x2的顺序排列)生成新变量:gen logx1=log(x1)(得出x1的对数)gen x1`=exp(logx1)(将logx1反对数化)gen r61_100=1 if rank>=61&rank<=100(若rank在61与100之间,则新变量r61_100的取值为1,其他为缺失值)replace r61_100 if r61_100!=1(“!=”表示不等于,若r61_100取值不为1,则将r61_100替换为0,就是将上式中的缺失值替换为0)gen abs(x)(取x的绝对值)gen ceil(x)(取大于或等于x的最小整数)gen trunc(x)(取x的整数部分)gen round(x)(对x进行四舍五入)gen round(x,y)(以y为单位,对x进行四舍五入)gen sqrt(x)(取x的平方根)gen mod(x,y)(取x/y的余数)gen reldif(x,y)(取x与y的相对差异,即|x-y|/(|y|+1))gen logit(x)(取ln[x/(1-x)])gen x=autocode(x,n,xmin,xmax)(将x的值域,即xmax-xmin,分为等距的n份)gen x=cond(x1>x2,x1,x2)(若x1>x2成立,则取x1,若x1>x2不成立,则取x2)sort xgen gx=group(n)(将经过排序的变量x分为尽量等规模的n个组)egen zx1=std(x1)(得出x1的标准值,就是用(x1-avgx1)/sdx1)egen zx1=std(x1),m(0) s(1)(得出x1的标准分,标准分的平均值为0,标准差为1)egen sdx1=sd(x1)(得出x1的标准差)egen meanx1=mean(x1)(得出x1的平均值)egen maxx1=max(x1)(最大值)egen minx1=min(x1)(最小值)egen medx1=med(x1)(中数)egen modex1=mode(x1)(众数)egen totalx1=total(x1)(得出x1的总数)egen rowsd=sd(x1 x2 x3)(得出x1、x2和x3联合的标准差)egen rowmean=mean(x1 x2 x3)(得出x1、x2和x3联合的平均值)egen rowmax=max(x1 x2 x3)(联合最大值)egen rowmin=min(x1 x2 x3)(联合最小值)egen rowmed=med(x1 x2 x3)(联合中数)egen rowmode=mode(x1 x2 x3) (联合众数)egen rowtotal=total(x1 x2 x3)(联合总数)egen xrank=rank(x)(在不改变变量x各个值排序的情况下,获得反映x值大小排序的xrank)数据计算器display命令:display x[12](显示x的第十二个观察值)display chi2(n,x)(自由度为n的累计卡方分布)display chi2tail(n,x)(自由度为n的反向累计卡方分布,chi2tail(n,x)=1-chi2(n,x))display invchi2(n,p)(卡方分布的逆运算,若chi2(n,x)=p,那么invchi2(n,p)=x)display invchi2tail(n,p)(chi2tail的逆运算)display F(n1,n2,f)(分子、分母自由度分别为n1和n2的累计F分布)display Ftail(n1,n2,f)(分子、分母自由度分别为n1和n2的反向累计F分布)display invF(n1,n2,P)(F分布的逆运算,若F(n1,n2,f)=p,那么invF(n1,n2,p)=f)display invFtail(n1,n2,p)(Ftail的逆运算)display tden(n,t)(自由度为n的t分布)display ttail(n,t)(自由度为n的反向累计t分布)display invttail(n,p)(ttail的逆运算)给数据库和变量做标记:label data "~~~"(对现用的数据库做标记,"~~~"就是标记,可自行填写)label variable x "~~~"(对变量x做标记)label values x label1(赋予变量x一组标签:label1)label define label1 1 "a1" 2 "a2"(定义标签的具体内容:当x=1时,标记为a1,当x=2时,标记为a2)频数表:tabulate x1,sorttab1 x1-x7,sort(做x1到x7的频数表,并按照频数以降序显示行)table c1,c(n x1 mean x1 sd x1)(在分类变量c1的不同水平上列出x1的样本量和平均值)二维交互表:auto数据库:table rep78 foreign, c(n mpg mean mpg sd mpg median mpg) center row col(rep78,foreign均为分类变量,rep78为行变量,foreign为列变量,center表示结果显示在单元格中间,row表示计算行变量整体的统计量,col表示计算列变量整体的统计量)tabulate x1 x2,all(做x1和x2的二维交互表,要求显示独立性检验chi2、似然比卡方独立性检验lrchi2、对定序变量适用的等级相关系数gamma和taub、以及对名义变量适用的V)tabulate x1 x2,column chi2(做x1和x2的二维交互表,要求显示列百分比和行变量和列变量的独立性检验——零假设为变量之间独立无统计关系)tab2 x1-x7,all nofreq(对x1到x7这七个变量两两地做二维交互表,不显示频数:nofreq)三维交互表:by x3,sort:tabulate x1 x2,nofreq col chi2(同时进行x3的每一个取值内的x1和x2的二维交互表,不显示频数、显示列百分比和独立性检验)四维交互表:table x1 x2 x3,c(ferq mean x1 mean x2 mean x3) by(x4)tabstat X1 X2,by(X3) stats(mean n q max min sd var cv) col(stats)tabstat X1 X2,by(X3) stats(mean range q sd var cv p5 p95 median),[aw=X4](以X4为权重求X1、X2的均值,标准差、方差等)ttest X1=1count if X1==0count if X1>=0gen X2=1 if X1>=0corr x1 x2 x3(做x1、x2、x3的相关系数表)swilk x1 x2 x3(用Shapiro-Wilk W test对x1、x2、x3进行正太性分析)sktest x1 x2 x3(对x1、x2、x3进行正太性分析,可以求出峰度和偏度)ttest x1=x2(对x1、x2的均值是否相等进行T检验)ttest x1,by(x2) unequal(按x2的分组方式对x1进行T检验,假设方差不齐性)sdtest x1=x2(方差齐性检验)sdtest x1,by(x2)(按x2的分组方式对x1进行方差齐性检验)聚类分析:cluster kmeans y x1 x2 x3, k(3)——依据y、x1、x2、x3,将样本分为n类,聚类的核为随机选取cluster kmeans y x1 x2 x3, k(3) measure(L1) start(everykth)—— "start"用于确定聚类的核,"everykth"表示将通过构造三组样本获得聚类核:构造方法为将样本id为1、1+3、1+3×2、1+3×3……分为一组、将样本id为2、2+3、2+3×2、2+3×3……分为第二组,以此类推,将这三组的均值作为聚类的核;"measure"用于计算相似性和相异性的方法,"L1"表示采用欧式距离的绝对值,也直接可采用欧式距离(L2)和欧式距离的平方(L2squared)。

相关文档
最新文档