Stata统计分析命令

合集下载

stata常用的检验

stata常用的检验

stata常用的检验
Stata中常用的统计检验包括:
1. 单样本t检验(ttest命令):用于检验一个样本的均值是否与给定的理论值相等。

2. 双样本t检验(ttest命令):用于比较两个独立样本的均值是否存在显著差异。

3. 配对样本t检验(ttest命令):用于比较两个配对样本的均值是否存在显著差异。

4. 方差分析(anova命令):用于比较多个样本的均值是否存在显著差异。

5. 卡方检验(tab命令):用于检验两个或多个分类变量之间是否存在关联。

6. 相关性检验(correl命令):用于检验两个连续变量之间是否存在线性相关性。

7. 线性回归(reg命令):用于检验自变量与因变量之间的关系是否显著。

8. 非参数检验:包括Wilcoxon秩和检验(wilcoxon命令)、Mann-Whitney U检验(ranksum命令)等,适用于数据不满足正态分布的情况。

以上是Stata中常用的一些统计检验方法,具体使用方法可以参考Stata的官方文档或使用帮助命令获取更多信息。

STATA命令应用及详细解释

STATA命令应用及详细解释

STATA命令应用及详细解释STATA是一种统计软件,被广泛应用于数据分析和统计建模。

在STATA中,有许多命令可以用来汇总数据并提取关键统计信息,以便更好地理解和解释数据。

下面将介绍一些常用的STATA命令,并详细解释其用途和功能。

1. summarize:summarize命令用于对数值变量进行简单的统计汇总。

它会输出变量的观测数、均值、标准差、最小值、最大值等统计量。

2. tabulate:tabulate命令用于对分类变量进行频数统计。

它会输出每个分类变量的取值及其频数,并可以计算相对频数和累计频数。

3. descriptives:descriptives命令可以同时对数值变量和分类变量进行统计汇总。

它会输出每个变量的观测数、缺失值数、均值、标准差、最小值、最大值、频数等统计量。

4. summarizeby:summarizeby命令可以按照一个或多个分类变量对数值变量进行分组统计。

它会输出每个分类组别的观测数、均值、标准差、最小值、最大值等统计量。

5. collapse:collapse命令用于对数据进行折叠操作,将数据按照指定的分类变量进行分组,并计算每组的汇总统计量。

它可以用于生成汇总数据集,以便后续分析。

6. bysort:bysort命令可以按照一个或多个变量对数据进行排序,然后对排序后的数据进行分组统计。

它可以与其他命令结合使用,如collapse、egen等。

7. egen:egen命令可以生成新的衍生变量,该变量可以基于原始数据进行计算。

它支持许多统计函数,如均值、标准差、总和、中位数等,并可以按照一个或多个分类变量进行分组计算。

8. tabstat:tabstat命令可以对数值变量进行多个统计量的计算,并将结果输出为一个表格。

它支持均值、标准差、最小值、最大值、中位数等统计量,并可以按照一个或多个分类变量进行分组计算。

9. corr:corr命令用于计算变量之间的相关系数。

Stata统计分析报告命令

Stata统计分析报告命令

Stata统计分析常用命令汇总一、winsorize极端值处理范围:一般在1%和99%分位做极端值处理,对于小于1%的数用1%的值赋值,对于大于99%的数用99%的值赋值。

1、Stata中的单变量极端值处理:stata 11.0,在命令窗口输入“findit winsor”后,系统弹出一个窗口,安装winsor 模块安装好模块之后,就可以调用winsor命令,命令格式:winsor var1, gen(new var) p(0.01) 或者在命令窗口中输入:ssc install winsor安装winsor命令。

winsor命令不能进行批量处理。

2、批量进行winsorize极端值处理:打开链接:/judson.caskey/data.html,找到winsorizeJ,点击右键,另存为到stata中的ado/plus/目录下即可。

命令格式:winsorizeJ var1var2var3,suffix(w)即可,这样会生成三个新变量,var1w var2w var3w,而且默认的是上下1%winsorize。

如果要修改分位点,则写成如下格式:winsorizeJ var 1 var2 var3,suffix(w) cuts(5 95)。

3、Excel中的极端值处理:(略)winsor2 命令使用说明简介:winsor2 winsorize or trim (if trim option is specified) the variables in varlist at particular percentiles specified by option cuts(# #). In defult, new variables will be generated with a suffix "_w" or "_tr", which can be changed by specifying suffix() option. The replace option replaces the variables with their winsorized or trimmed ones.相比于winsor命令的改进:(1) 可以批量处理多个变量;(2) 不仅可以 winsor,也可以 trimming;(3) 附加了 by() 选项,可以分组 winsor 或 trimming;(4) 增加了 replace 选项,可以不必生成新变量,直接替换原变量。

Stata统计分析命令

Stata统计分析命令

Stata统计分析命令Stata是一种用于数据分析的统计软件,具有广泛的应用领域,可以用于社会科学、健康科学、金融等领域的数据分析。

Stata具有强大的数据处理和统计分析功能,可以对数据进行清洗、整理和分析,还可以进行数据可视化和报告制作。

本文将介绍一些常用的Stata统计分析命令,以供参考。

数据导入与清洗在进行数据分析之前,需要先将数据导入Stata软件中,并进行数据清洗。

以下是常用的数据导入和清洗命令:导入数据•use:使用已有的Stata数据集•import delimited:导入以逗号为分隔符或制表符为分隔符的纯文本数据•import excel:导入Excel数据文件•insheet:将文本文件读入数据集数据清洗•drop:删除变量或数据•keep:保存变量或数据•rename:重命名变量•egen:生成新的变量•recode:将变量值重新编码•merge:合并两个数据集描述性统计分析在进行数据分析之前,需要先对数据进行描述性分析。

以下是常用的描述性统计分析命令:•summarize:计算变量的基本统计量,如均值、标准差、最小和最大值、中位数、1/4和3/4位数•tabulate:计算变量的频数和百分比,可以进行交叉分析•graph box:绘制箱线图•graph scatter:绘制散点图统计分析在进行统计分析时,需要根据变量的类型和分析目的选择不同的统计方法。

以下是常用的统计分析命令:单样本统计分析•ttest:单样本t检验•onesamplewilcoxon:单样本Wilcoxon秩和检验双样本统计分析•ttest:双样本t检验•ranksum:Wilcoxon秩和检验相关分析•correlate:计算两个或多个变量之间的相关系数•pwcorr:计算Pearson相关系数矩阵回归分析•regress:运行普通最小二乘回归•logit:运行二元Logistic回归模型•oprobit:运行有序Logistic回归模型数据可视化数据可视化是Stata的另一个强大特性,可以使分析人员更清晰、更直观地了解数据分析结果。

Stata统计分析命令

Stata统计分析命令

Stata统计分析常用命令汇总一、winsorize极端值处理范围:一般在1%和99%分位做极端值处理,对于小于1%的数用1%的值赋值,对于大于99%的数用99%的值赋值。

1、Stata中的单变量极端值处理:stata 11.0,在命令窗口输入“findit winsor”后,系统弹出一个窗口,安装winsor模块安装好模块之后,就可以调用winsor命令,命令格式:winsor var1, gen(new var) p(0.01) 或者在命令窗口中输入:ssc install winsor安装winsor命令。

winsor命令不能进行批量处理。

2、批量进行winsorize极端值处理:打开链接:,找到winsorizeJ,点击右键,另存为到stata中的ado/plus/目录下即可。

命令格式:winsorizeJ var1var2var3,suffix(w)即可,这样会生成三个新变量,var1w var2w var3w,而且默认的是上下1%winsorize。

如果要修改分位点,则写成如下格式:winsorizeJ var 1 var2 var3,suffix(w) cuts(5 95)。

3、Excel中的极端值处理:(略)winsor2 命令使用说明简介:winsor2 winsorize or trim (if trim option is specified) the variables in varlist at particular percentiles specified by option cuts(# #). In defult, new variables will be generated with a suffix "_w" or "_tr", which can be changed by specifying suffix() option. The replace option replaces the variables with their winsorized or trimmed ones.相比于winsor命令的改进:(1) 可以批量处理多个变量;(2) 不仅可以winsor,也可以trimming;(3) 附加了by() 选项,可以分组winsor 或trimming;(4) 增加了replace 选项,可以不必生成新变量,直接替换原变量。

stata描述性统计代码

stata描述性统计代码

stata描述性统计代码Stata是一种强大的数据分析软件,它提供了丰富的统计分析功能和数据处理工具。

在Stata中进行描述性统计分析是非常常见的一种数据处理任务,下面是一些常用的Stata描述性统计代码: 1. 描述性统计分析summarize varname通过summarize命令可以计算变量varname的描述性统计量,包括平均数、标准差、最小值、最大值、中位数等。

2. 频数统计tabulate varname通过tabulate命令可以计算变量varname的频数统计,包括每个取值的频数和频率。

3. 分组统计summarize varname, by(groupvar)通过by子句可以按照groupvar变量进行分组统计,计算每个组别内变量varname的描述性统计量。

4. 交叉统计tabulate varname1 varname2通过tabulate命令可以计算两个变量varname1和varname2的交叉统计表,包括每个组合的频数和频率。

5. 分组交叉统计tabulate varname1 varname2, by(groupvar)通过by子句可以按照groupvar变量进行分组交叉统计,计算每个组别内两个变量varname1和varname2的交叉统计表。

6. 相关分析correlate varname1 varname2通过correlate命令可以计算两个变量varname1和varname2之间的相关系数和协方差。

7. 回归分析regress depvar indepvar1 indepvar2...通过regress命令可以进行回归分析,其中depvar为因变量,indepvar1、indepvar2等为自变量。

以上是一些常用的Stata描述性统计代码,可以帮助你快速地完成数据分析任务。

stata语句

stata语句

stata语句1. 描述统计分析描述统计分析是Stata中最基本的数据分析方法之一。

通过描述统计分析,我们可以计算数据的均值、标准差、最大值、最小值等统计指标,从而对数据的基本特征有一个初步的了解。

在Stata中,我们可以使用命令summarize来进行描述统计分析。

例如,我们可以使用以下命令计算一个变量的均值、标准差和最大最小值:```summarize varname```2. 数据清洗数据清洗是数据分析的前提和基础。

在Stata中,我们可以使用一系列命令来进行数据清洗,例如去除缺失值、处理异常值等。

例如,我们可以使用以下命令去除一个变量中的缺失值:```drop if missing(varname)```3. 数据可视化数据可视化是数据分析中常用的方法之一。

在Stata中,我们可以使用一系列命令来进行数据可视化,例如绘制直方图、散点图等。

例如,我们可以使用以下命令绘制一个变量的直方图:```histogram varname```4. 回归分析回归分析是一种常用的统计方法,用于研究变量之间的关系。

在Stata中,我们可以使用一系列命令来进行回归分析,例如线性回归、逻辑回归等。

例如,我们可以使用以下命令进行简单线性回归分析:```regress dependent_var independent_var```5. 面板数据分析面板数据分析是一种适用于时间序列和横截面数据的分析方法。

在Stata中,我们可以使用一系列命令来进行面板数据分析,例如固定效应模型、随机效应模型等。

例如,我们可以使用以下命令进行固定效应模型分析:```xtreg dependent_var independent_var, fe```6. 生存分析生存分析是一种用于研究个体生存时间的统计方法。

在Stata中,我们可以使用一系列命令来进行生存分析,例如Kaplan-Meier生存曲线、Cox比例风险模型等。

例如,我们可以使用以下命令进行Kaplan-Meier生存曲线分析:```sts graph, by(group_var)```7. 非参数统计非参数统计是一种不依赖于数据分布假设的统计方法。

Stata统计分析命令..

Stata统计分析命令..

Stata统计分析常用命令汇总一、winsorize极端值处理范围:一般在1%和99%分位做极端值处理,对于小于1%的数用1%的值赋值,对于大于99%的数用99%的值赋值。

1、Stata中的单变量极端值处理:stata 11.0,在命令窗口输入“findit winsor”后,系统弹出一个窗口,安装winsor模块安装好模块之后,就可以调用winsor命令,命令格式:winsor var1, gen(new var) p(0.01) 或者在命令窗口中输入:ssc install winsor安装winsor命令。

winsor命令不能进行批量处理。

2、批量进行winsorize极端值处理:打开链接:/judson.caskey/data.html,找到winsorizeJ,点击右键,另存为到stata中的ado/plus/目录下即可。

命令格式:winsorizeJ var1var2var3,suffix(w)即可,这样会生成三个新变量,var1w var2w var3w,而且默认的是上下1%winsorize。

如果要修改分位点,则写成如下格式:winsorizeJ var 1 var2 var3,suffix(w) cuts(5 95)。

3、Excel中的极端值处理:(略)winsor2 命令使用说明简介:winsor2 winsorize or trim (if trim option is specified) the variables in varlist at particular percentiles specified by option cuts(# #). In defult, new variables will be generated with a suffix "_w" or "_tr", which can be changed by specifying suffix() option. The replace option replaces the variables with their winsorized or trimmed ones.相比于winsor命令的改进:(1) 可以批量处理多个变量;(2) 不仅可以winsor,也可以trimming;(3) 附加了by() 选项,可以分组winsor 或trimming;(4) 增加了replace 选项,可以不必生成新变量,直接替换原变量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Stata统计分析常用命令汇总一、winsorize极端值处理范围:一般在1%和99%分位做极端值处理,对于小于1%的数用1%的值赋值,对于大于99%的数用99%的值赋值。

1、Stata中的单变量极端值处理:stata 11.0,在命令窗口输入“findit winsor”后,系统弹出一个窗口,安装winsor模块安装好模块之后,就可以调用winsor命令,命令格式:winsor var1, gen(new var) p(0.01) 或者在命令窗口中输入:ssc install winsor安装winsor命令。

winsor命令不能进行批量处理。

2、批量进行winsorize极端值处理:打开链接:/judson.caskey/data.html,找到winsorizeJ,点击右键,另存为到stata中的ado/plus/目录下即可。

命令格式:winsorizeJ var1var2var3,suffix(w)即可,这样会生成三个新变量,var1w var2w var3w,而且默认的是上下1%winsorize。

如果要修改分位点,则写成如下格式:winsorizeJ var 1 var2 var3,suffix(w) cuts(5 95)。

3、Excel中的极端值处理:(略)winsor2 命令使用说明简介:winsor2 winsorize or trim (if trim option is specified) the variables in varlist at particular percentiles specified by option cuts(# #). In defult, new variables will be generated with a suffix "_w" or "_tr", which can be changed by specifying suffix() option. The replace option replaces the variables with their winsorized or trimmed ones.相比于winsor命令的改进:(1) 可以批量处理多个变量;(2) 不仅可以winsor,也可以trimming;(3) 附加了by() 选项,可以分组winsor 或trimming;(4) 增加了replace 选项,可以不必生成新变量,直接替换原变量。

范例:*- winsor at (p1 p99), get new variable "wage_w". sysuse nlsw88, clear. winsor2 wage*- left-trimming at 2th percentile. winsor2 wage, cuts(2 100) trim*- winsor variables by (industry south), overwrite the old variables. winsor2 wage hours, replace by(industry south)使用方法:1. 请将winsor2.ado 和winsor2.sthlp 放置于stata12\ado\base\w 文件夹下;2. 输入help winsor2 可以查看帮助文件;二、描述性统计1、summarize命令格式:su、sum或者summarize [varlist] [if] [in] [weight] [,options]如果summarize或sum后不加任何变量,则默认对数据中的所有变量进行描述统计options 选项:detail 表示产生更加详细的统计变量Separator(n)表示每n个变量画一条分界线,n=0表示禁止使用分界线Summarize 描述统计输出表中包含:样本容量、平均数、标准差、最小值和最大值2、tabstat命令格式:tabstat [varlist] [if] [in] [weight] [,options]options 选项:stat(statname) 表示设定所需要的统计量col(stat)或c(s)表示将结果报表转置统计量:mean:平均数count/n:观测值数目sum:加总max/min :最大值/最小值range :极差sd:标准差cv:变异系数semean :平均标准误差skewness:偏度var :方差kurtosis :峰度median/p50:中位数p# :#%百分位数例如:tabstat[varlist],stat(count mean sd median min max range) col(stat)3、描述性统计结果输出到word或Excel用sum做的描述性统计:logout, save(miaoshutongji) word replace:sum用tabstat做的描述性统计:logout, save(miaoshutongji) word replace:tabstat [varlist] ,stat(count mean sd median min max range) col(stat)分组描述:bysort var:三、相关性分析(一)相关性分析1、Pearson相关系数命令格式:correlate(简写:cor或corr)[varlist] [if] [in] [weight] [,options]2、spearman相关系数命令格式:spearman[varlist], stats(rho p)3、在Stata中,命令corr用于计算一组变量间的协方差或相关系数矩阵;4、命令pwcorr可用于计算一组变量中两两变量的相关系数,同时还可以对相关系数的显著性进行检验;option选项中加上sig可显示显著性水平:pwcorr[varlist] ,sig5、命令pcorr 用于计算一组变量中两两变量的偏相关系数并进行显著性检验。

6、Spearman 和Pearson 检验同在一个表的命令:corrtbl[varlist] ,corrvars ([varlist])输出结果中,上三角为Spearman相关系数和显著水平,下三角为Pearson系数和显著水平。

(二)输出相关系数表到word或Excel中例如:logout, save(mytable) word replace: pwcorr_a price mpg rep78 headroom trunk, star1(0.01) star5(0.05) star10(0.1)四、截面数据单方程线性回归模型的Stata实现命令格式:regress(简写:reg)depvar indepvars [if] [in] [weigh] [option](depvar表示因变量,indepvars表示自变量)五、异方差的检验与处理1、检验异方差命令格式:hettest2、判断异方差的标准:看P值的大小来判断,如果P值小于0.05,则不能排除异方差的可能,上图中P值等于0.4584>0.05,因此,可以排除异方差的可能性。

3、处理异方差命令格式:在reg命令后加上“,r”或者“,robust”即可。

经异方差处理后的回归不显示调整后的R2(adj-R2),如果要查看调整后的R2,再输入命令:di e(r2_a)六、多重共线性(自变量之间高度相关)命令格式:vif(一)判断多重共线性的标准(两个标准必须同时满足):1、最大的vif大于10;2、平均的vif大于1 。

(二)多重共线性的修正1、采用逐步回归进行修正,命令格式:sw reg depvar indepvar, pr(0.05)2、对于含二次项的,使用“对中”的方法,既可以保留二次项,又可以在一定程度上克服多重共线性的问题:先定义两个变量,分别为该变量减去其均值和该变量的平方,命令如下:sum vargen var1=var-r(mean)gen var2=var^2再用新变量代替原来的变量进行回归处理七、内生性的检验与处理(内生性是指自变量与误差项之间有关系)1、内生性的检验:ovtest看P值的大小来判断,如果P值小于0.05,则不能排除内生性的可能,上图中P值等于0.4717>0.05,因此,可以排除内生性的可能。

2、内生性的处理:使用工具变量法:ivreg内生性的三个来源:测量误差、遗漏变量和双向因果。

1、变量的内生性。

这个是没有办法单独检验的。

当有合适工具变量时候,是可以检验的,就是hausman检验2、工具变量的外生性。

这个也是没办法检验的。

当有很多工具变量时候,可以检验是否有不是外生的,就是“过度识别”问题3、工具变量的相关性。

这个可以说成是“弱工具变量”问题,检验可以通过一阶段的F值。

还可以利用Partial R2。

4、估计方法stata里面有这么几个2sls,2sls smal、liml、gmm,各自适用情况:small适合小样本;liml 适合弱工具变量;gmm适合异方差。

【例子】webuse hsng2*Fit a regression via 2SLS, requesting small-sample statisticsivregress 2sls rent pcturban (hsngval = faminc iregion), small*Fit a regression using the LIML estimatorivregress liml rent pcturban (hsngval = faminc iregion)*Fit a regression via GMM using the default heteroskedasticity-robust weight matrixivregress gmm rent pcturban (hsngval = faminc iregion)*Fit a regression via GMM using a heteroskedasticity-robust weight matrix, requesting nonrobust standard errorsivregress gmm rent pcturban (hsngval = faminc iregion), vce(unadjusted)*检验estata firststage ,all forcenonrobust \\\可以查看第一阶段F值,已经partial R2estat overid \\\查看是否过度识别estat endogenous \\\查看是否异方差regress 2sls rent pcturban hsngvalest store m1ivregress 2sls rent pcturban (hsngval = faminc iregion)est store m2hausman m1 m2 \\\内生检验八、线性方程组的回归分析命令格式:sureg(depvar1 varlist1)(depvar2 varlist2)…(depvarN varlistN) [if] [in] [weigh]九、联立方程组命令格式:reg3 (depvar1 varlist1)(depvar2 varlist2)…(depvarN varlistN) [if] [in] [weigh]十、面板数据的固定效应和随机效应Xtset固定效应命令格式:xtreg depvar indepvars [if] [in] ,fe[FE_options]随机效应命令格式:xtreg depvar indepvars [if] [in] ,re[FE_options]hausman检验固定效应还是随机效应?【例子】xtreg y var1 var2 var3,feest store fextreg y var1 var2 var3,reest store rehausman fe re,sigmamorehausman fe re,sigmaless*sigmamore利用有效估计量方差,即re*sigmaless利用一致估计量方差,即fe十一:Stata回归结果的导出1、在命令窗口中输入:ssc install esttab,安装命令esttab2、reg 回归3、esttab using filename.rtf将以word形式输出回归结果,后缀改成.xls或者.csv则以Excel 格式输出,输出内容为变量名称和相应的回归系数,t值,显著性水平标识。

相关文档
最新文档