武汉理工大学无机材料科学基础名词解释历年名词解释
《材料科学基础》名词解释

《材料科学基础》名词解释第一章材料结构的基本知识1、晶体材料的组织:指材料由几个相(或组织单元)组成,各个相的相对量、尺寸、形状及分布。
第二章材料的晶体结构1、空间点阵:将理想模型中每个原子或原子团抽象为纯几何点,无数几何点在三维空间规律排列的阵列2、同素异构:是指有些元素在温度和压力变化时,晶体结构发生变化的特性3、离子半径:从原子核中心到其最外层电子的平衡距离。
4、离子晶体配位数:在离子晶体中,与某一考察离子邻接的异号离子的数目称为该考察离子的配位数。
5、配位数:晶体结构中任一原子周围最近邻且等距离的原子数6、致密度:晶体结构中原子体积占总体积的百分数;第三章高分子材料的结构1、聚合度:高分子化合物的大分子链是出大量锥告连成的。
大分子链中链节的重复次数叫聚合度2、官能度:指在一个单体上能和别的单体发生键合的位置数目3、加聚反应:由一种或多种单体相互加成而连接成聚合物的反应;4、缩聚反应:由一种或多种单体相互混合而连接成聚合物,同时析出(缩去)某种低分子物质(如水、氨、醉、卤化氢等)的反应;5、共聚:由两种或两种以上的单休参加聚合而形成聚合物的反应。
第四章晶体缺陷1、晶体缺陷:实际晶体中与理想的点阵结构发生偏差的区域;2、位错密度:晶体中位错的数量,是单位体积晶体中所包含的位错线总长度;3、晶界:同一种相的晶粒与晶粒的边界;4、晶界内吸附:少量杂质或合金元素在晶体内部的分布是不均匀的,它们常偏聚于晶界,称这种现象为晶界内吸附;第五章材料的相结构及相图1、固溶体:当合金相的晶体结构保持溶剂组元的晶体结构时,这种相就称为一次固溶体或端际固溶体,简称固溶体。
2、拓扑密堆积:如两种不同大小的原子堆积,利用拓扑学的配合规律,可得到全部或主要由四面体堆垛的复合相结构,形成空间利用率很高、配位数较大(12、14、15、16等)一类的中间相,称为拓扑密堆积。
3、电子浓度:固溶体中价电子数目e与原子数目之比。
4、间隙相:两组元间电负性相差大,且/1≤0.59具有简单的晶体结构的中间相5、间隙化合物:两组元间电负性相差大,且/≥0.59所形成化合物具有复杂的晶体结构。
材料科学基础名词解释汇总

组元原子有序排列的固溶体,溶质在晶格完全有序排列。 置换固溶体
当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点 阵的部分溶剂原子,这种固溶体就称为置换固溶体。 间隙固溶体
溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙固溶体。 有限固溶体
溶质在固溶体中的溶解度有一定限度,这种固溶体称为有限固溶体。 无限固溶体(连续固溶体)
位错线沿着滑移面的运动称为位错的滑移。 滑移系
晶体中一个滑移面及该面上一个滑移方向的组合称一个滑移系。 交滑移
当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续 滑移,这一过程称为交滑移。 双交滑移
如果交滑移后的位错再转回和原滑移面平行的滑移面上继续运动,则称为双交滑移。 多滑移
电子化合物是指由主要电子浓度决定其晶体结构的一类化合物,又称休姆-罗塞里相。凡具有相同的电 子浓度,则相的晶体结构类型相同。 大角度晶界
多晶材料中各晶粒之间的晶界称为大角度晶界,即相邻晶粒的位相差大于10º的晶界。 小角度晶界
相邻亚晶粒之间的位相差小于10º,这种亚晶粒间的晶界称为小角度晶界,一般小于2º,可分为倾斜 晶界、扭转晶界、重合晶界等。 固溶强化
两组元A和B组成合金时,除了形成以A为基或以B为基的固溶体外,还可能形成晶体结构与A,B两组 元均不相同的新相。由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。 配位数
晶体结构中任一原子周围最近邻且等距离的原子数。 致密度
晶体结构中原子体积占总体积的百分数。 金属键
自由电子与原子核之间静电作用产生的键合力。 共价键
材料科学基础名词解释 大全

材料科学基础名词解释大全固相烧结:固态粉末在适当的温度,压力,气氛和时间条件下,通过物质与气孔之间的传质,变为坚硬、致密烧结体的过程。
液相烧结:有液相参加的烧结过程。
2.金属键:自由电子与原子核之间静电作用产生的键合力。
3.离子键:金属原子自己最外层的价电子给予非金属原子,使自己成为带正电的正离子,而非金属得到价电子后使自己成为带负电的负离子,这样正负离子靠它们之间的静电引力结合在一起。
共价键:由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。
氢键:由氢原子同时与两个电负性相差很大而原子半径较小的原子(O,F,N等)相结合而产生的具有比一般次价键大的键力。
弗兰克缺陷:间隙空位对缺陷肖脱基缺陷:正负离子空位对的奥氏体:γ铁内固溶有碳和(或)其他元素的、晶体结构为面心立方的固溶体。
布拉菲点阵:除考虑晶胞外形外,还考虑阵点位置所构成的点阵。
不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。
玻璃化转变温度:过冷液体随着温度的继续下降,过冷液体的黏度迅速增大,原子间的相互运动变得更加困难,所以当温度降至某一临界温度以下时,即固化成玻璃。
这个临界温度称为玻璃化温度Tg。
表面能:表面原子处于不均匀的力场之中,所以其能量大大升高,高出的能量称为表面自由能(或表面能)。
半共格相界:若两相邻晶体在相界面处的晶面间距相差较大,则在相界面上不可能做到完全的一一对应,于是在界面上将产生一些位错,以降低界面的弹性应变能,这时界面上两相原子部分地保持匹配,这样的界面称为半共格界面或部分共格界面。
柏氏矢量:描述位错特征的一个重要矢量,它集中反映了位错区域内畸变总量的大小和方向,也使位错扫过后晶体相对滑动的量。
柏氏矢量物理意义:① 从位错的存在使得晶体中局部区域产生点阵畸变来说:一个反映位错性质以及由位错引起的晶格畸变大小的物理量。
② 从位错运动引起晶体宏观变形来说:表示该位错运动后能够在晶体中引起的相对位移。
武汉理工大学《材料科学基础》考研核心题库及答案

Test of Fundamentals of Materials Science 材料科学基础试题库武汉理工大学材料科学与工程学院一、填空题0001.烧结过程的主要传质机制有_____、_____、_____ 、_____,当烧结分别进行四种传质时,颈部增长x/r与时间t的关系分别是_____、_____、_____ 、_____。
0002.晶体的对称要素中点对称要素种类有_____、_____、_____ 、_____ ,含有平移操作的对称要素种类有_____ 、_____ 。
0003.晶族、晶系、对称型、结晶学单形、几何单形、布拉菲格子、空间群的数目分别是_____、_____ 、_____ 、_____ 、_____ 、_____ 。
0004.晶体有两种理想形态,分别是_____和_____。
0005.晶体是指内部质点排列的固体。
0006.以NaCl晶胞中(001)面心的一个球(Cl-离子)为例,属于这个球的八面体空隙数为,所以属于这个球的四面体空隙数为。
0007.与非晶体比较晶体具有自限性、、、、和稳定性。
0008.一个立方晶系晶胞中,一晶面在晶轴X、Y、Z上的截距分别为2a、1/2a 、2/3a,其晶面的晶面指数是。
0009.固体表面粗糙度直接影响液固湿润性,当真实接触角θ时,粗糙度越大,表面接触角,就越容易湿润;当θ,则粗糙度,越不利于湿润。
0010.硼酸盐玻璃中,随着Na2O(R2O)含量的增加,桥氧数,热膨胀系数逐渐下降。
当Na2O含量达到15%—16%时,桥氧又开始,热膨胀系数重新上升,这种反常现象就是硼反常现象。
0011.晶体结构中的点缺陷类型共分、和三种,CaCl2中Ca2+进入到KCl间隙中而形成点缺陷的反应式为。
0012.固体质点扩散的推动力是________。
0013.本征扩散是指__________,其扩散系数D=_________,其扩散活化能由________和_________ 组成。
无机材料科学基础名词解释

名词解释肖特基缺陷:正常格点上的原子,热起伏过程中获得能量离开平衡位置迁移到晶体表面,晶体内正常格点上留下空位弗伦克尔缺陷:晶格热振动时,能量足够大的原子离开平衡位置,挤到晶格间隙中,形成间隙原子,原来位置上形成空位空间群:晶体结构中一切对称要素的集合称为空间群。
本征扩散:指空位来源于晶体结构中本征热缺陷而引起质点的迁移的扩散方式;非本征扩散是由不等价杂质离子取代造成晶格空位,由此而引起的质点迁移。
固溶体:在固态条件下,一种组分(溶剂)内“溶解”了其它组分(溶质)而形成的单一、均匀的晶态固体称为固溶体。
烧结与熔融:烧结是在远低于固态物质的熔融温度下进行的,熔融时全部组元都转变为液相,而烧结时至少有一组元是固态的。
等同点:在晶体结构中占据相同的位置和具有相同的环境的点点阵(空间点阵):空间点阵,一系列在三维空间按周期性排列的几何点结点间距:行列中两个相邻结点间的距离晶体:内部质点在三维空间按周期性重复排列的固体,具有格子构造的固体基本性质:结晶均一性、各向异性、自限性、对称性、最小内能性对称:物体中相同部分之间的有规律的重复宏观晶体的对称要素:对称轴、对称中心、对称面、倒转轴对称变换(对称操作):使对称物体中各相同部分作有规律重复的变换动作对称型(点群):宏观晶体中对称要素的集合,包含了宏观晶体中全部对称要素的总和以及它们相互间的组合关系晶胞:晶体结构中的平行六面体单位,其形状大小与对应的空间格子中的平行六面体一致。
单位晶胞:能够充分反映整个晶体结构特征的最小结构单位,其形状大小与对应的单位平行六面体完全一致。
配位数:晶体结构中,原子或离子的周围,与它直接相邻结合的原子个数或所有异号离子的个数。
固相反应:广义:固相参与的化学反应;狭义:固体与固体发生化学反应生成新的固体。
固相反应速度较慢、需要高温烧结:一种或多种固体粉末经过成型,在加热到一定温度后开始收缩,在低于熔点的温度下变成致密、坚硬的烧结体的过程,包括粉末颗粒表面的粘结和粉末内部物质的传递与迁移。
(完整word版)材科基名词解释

《材料科学基础》名词解释晶体原子、分子或离子按照一定的规律周期性排列组成的固体。
非晶体原子没有长程的周期排列,无固定的熔点,各向同性等。
空间点阵指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。
晶族依据晶体结构中高次轴(n>2)的数目,将晶体划分为低级(无高次轴)、中级(一个高次轴)和高级(多于一个高次轴)晶族。
晶带轴定律所有平行于同一方向的晶面(hkl)构成的一个晶带,该方向[uvw]就称为晶带轴,则有hu+kv+lw=0,这就是晶带轴定律。
空间群晶体结构中所有对称要素(含微观对称要素)的组合所构成的对称群。
布拉菲点阵除考虑晶胞外形外,还考虑阵点位置所构成的点阵。
晶胞在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。
中间相两组元A和B组成合金时,除了形成以A为基或以B为基的固溶体外,还可能形成晶体结构与A,B两组元均不相同的新相。
由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。
配位数晶体结构中任一原子周围最近邻且等距离的原子数。
致密度晶体结构中原子体积占总体积的百分数。
金属键自由电子与原子核之间静电作用产生的键合力。
共价键相邻原子由于共享电子对所形成的价键,具有饱和性和方向性。
固溶体是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶剂原子)所形成的均匀混合的固态溶体,它保持溶剂的晶体结构类型。
间隙相当非金属(X)和金属(M)原子半径的比值rX/rM<0.59 时,形成的具有简单晶体结构的相,称为间隙相。
肖脱基空位(肖脱基缺陷)在个体中晶体中,当某一原子具有足够大的振动能而使振幅增大到一定程度时,就可能克服周围原子对它的制约作用,跳离其原来位置,迁移到晶体表面或内表面的正常结点位置上而使晶体内部留下空位,称为肖脱基空位。
弗兰克尔空位(弗兰克尔缺陷)当晶格热振动时,一些能量足够大的原子离开其平衡位置,而挤到晶格的间隙中,形成间隙原子,并在原正常格点上留下空位。
材料科学基础名词解释(全)

晶体:即内部质点在三维空间呈周期性反复分列的固体.非晶体:原子没有长程的分列,无固定熔点.各向同性等.晶体构造:指晶体华夏子或分子的分列情形,由空间点阵和构造基元构成.空间点整:指几何点在三维空间作周期性的规矩分列所形成的三维阵列,是工资的对晶体构造的抽象.晶面指数:结晶学顶用来暗示一组平行晶面的指数.晶胞:从晶体构造中掏出来的反应晶体周期性和对称性的反复单元.晶胞参数:晶胞的外形和大小可用六个参数来暗示,即晶胞参数.离子晶体晶格能:1mol离子晶体中的正负离子,由互相远离的气态联合成离子晶体时所释放的能量.原子半径:从原子核中间到核外电子的几率散布趋势于零的地位间的距离.配位数:一个原子或离子四周同种原子或异号离子的数量.极化:离子慎密聚积时,带电荷的离子所产生的电厂必定要对另一个离子的电子云产生吸引或排挤感化,使之产生变形,这种现象称为极化.同质多晶:化学构成雷同的物资在不合的热力学前提下形成构造不合的晶体的现象.类质同晶:化学构成类似或邻近的物资在雷同的热力学前提下形成具有雷同构造晶体的现象.铁电体:指具有自觉极化且在外电场感化下具有电滞回线的晶体.正.反尖晶石:在尖晶石构造中,假如A离子占领四面体闲暇,B离子占领八面体闲暇,称为正尖晶石.假如半数的B离子占领四面体闲暇,A离子和别的半数的B离子占领八面体闲暇则称为反尖晶石.反萤石构造:正负离子地位刚好与萤石构造中的相反.压电效应:因为晶体在外力感化下变形,正负电荷中间产生相对位移使晶体总电矩产生变更.构造缺点:平日把晶体点阵构造中周期性势场的畸变称为构造缺点.空位:斧正常结点没有被质点占领,成为空结点.间隙质点:质点进入正常晶格的间隙地位.点缺点:缺点尺寸处于原子大小的数量级上,三维偏向上的尺寸都很小.线缺点:指在一维偏向上偏离幻想晶体中的周期性.规矩性分列而产生的缺点.面缺点:是指在二维偏向上偏离幻想晶体中的周期性.规矩性分列而产生的缺点.弗伦克尔缺点:质点分开正常格点落后入到晶格间隙地位,特点是空位和间隙质点成对消失.肖特基缺点:质点由概况地位迁徙到新概况地位,在晶体概况形成新的一层,同时在晶体内部留下空位,特点是正负离子空位成比例消失.非化学计量缺点:是指构成上偏离化学中的定比定律所形成的缺点.电荷缺点:是指质点分列的周期性未受到损坏,但因电子或空穴的产生,使周期性势场产生畸变所产生的缺点.辐照缺点:指材料在辐照下所产生的构造的不完全性.位错:晶体已滑移部分和未滑移部分的交线.混杂位错:晶体内部已滑移和未滑移部分的交线既不垂直也不服行滑移偏向的位错.晶界:不合取向的晶粒之间的界面.堆垛层错:是斧正常堆垛次序中引入不正常次序堆垛的原子面而产生的一类面缺点.固溶体:将外来组元引入晶体,占领基质晶体质点地位或间隙地位的一部分,仍保持一个晶相,这种晶体称为固溶体.置换型固溶体:溶质原子位于点阵结点上,替代了部分溶剂原子.间隙型固溶体:溶质原子位于点阵的间隙中.非化学计量化合物:正负离子比例不成固定比例关系的一些化合物.色心:是因为电子抵偿而引起的一种缺点.熔体:特指加热到较高温度才干液化的物资的液体,即较高熔点物资的液体.熔融石英的分化进程:在氧化钠感化下,使架状{sio4}断裂的进程.缩聚:由分化进程产生的低聚合物不是一成不变的,它可以互相产生感化,形成级次较高的聚合物,同时释放出部分氧化钠,这个进程称为缩聚.桥氧.非桥氧:在硅酸盐熔体中,与两个si相连的氧称为桥氧,与一个si相连的氧称为非桥氧.粘度:是流体抵抗流淌的量度.物理意义:指单位面积.单位速度梯度下两层液体间的内摩擦力.硼反常现象:这种因为硼离子配位数变更引起机能曲线上消失转折的现象称为概况张力物理意义:感化于概况单位长度上与概况相切的力.概况能:在恒温恒压下增长一个单位概况积时所做的功.玻璃:由熔体过冷而形成的一种无定形固体.均态核化:假如熔体内部自觉成核,称为~.非均态核化:假如是由概况.界面效应,杂质或引入晶核剂等各类身分安排的成核进程,称为~.依据单键能的大小,可将氧化物分为三类:(1)玻璃收集形成体:其单键强度大于335kj/mol,这类氧化物能单独形成玻璃.(2)收集改变体:单键强度小于250,这类氧化物不克不及形成玻璃,但能改变收集构造,从而使玻璃性质改变.(3)收集中央体:其单键强度介于250~335,这类氧化物的感化介于玻璃形成体和收集改变体之间.界面:相邻两个结晶空间的接壤面.物体概况:晶体三维周期构造和真空之间的过渡区域润湿现象分为:沾湿.浸湿.铺展.接触角小于90,可润湿,大于90,不成润湿扬德方程:粘附功:指把单位粘附界面拉开所需的功.相:体系中具有雷同物理与化学性质的完全平均部分的总和称为相.组元:体系中每一个能单独分别出来并能自力消失的化学纯物资称为组元.自力组元:足以暗示形成均衡体系中各相构成所须要的起码数量标组元称为自力组元.自由度:在必定规模内,可以随意率性改变而不引起旧相消掉或新相产生的自力变量.吉布斯相律:F=C-P+n相律肯定了多相均衡体系中,体系的自由度数.自力组元数.相数和对体系的均衡状况可以或许产生影响的外界影响身分数之间的关系.运用相律可以很快的肯定均衡体系的自由度数量.凝集体系:没有气相或气相影响可疏忽不计的体系称为~.相均衡:当外界前提不变时假如体系的各类性质不随时光而改变,则体系处于均衡状况.相图:依据多相均衡的实验成果,可以绘制成几何图形用来描写这些在均衡状况下的变更关系,这种图形称为~.一致熔熔化合物:是一种稳固的化合物,与正常的纯物资一样具有固定的熔点,熔化时所产生的液相与化合物构成雷同.不一致熔熔化合物:是一种不稳固的化合物,加热这种化合物到某一温度便产生分化,分化的产品是一种液相和一种晶相,二者构成和化合物构成皆不合.可逆多晶改变相图特色:多晶改变温度低于两种晶型熔点.不成逆相反.一级变体之间的改变:不合系列和熔体之间的改变.二级变体间的改变:同系列的不合形态之间的改变,也称高下温型改变.集中:当物资内有梯度消失时,因为热活动而触发的质点定向迁徙即集中.(集中是一种传质进程,宏不雅上表示为物资的定向迁徙,本质是质点的无规矩活动)集中通量:单位时光内经由过程垂直于X轴的单位面积的原子数量.集中系数:单位浓度梯度下的集中通量.稳态集中:集中体系中,空间中随意率性一点的浓度不随时光变更,集中通量不随地位变更.非稳态集中:···,空间随意率性一点的浓度随时光变更,集中通量随地位变更.相变:在外界前提产生变更的进程中,物相于某一特定的前提下产生突变.一级相变:在临界温度.临界压力时,两相化学位相等,但化学位的一阶偏导数不相等的相变.二级相变:相变时化学位及其一阶偏导数相等,而二阶偏导数不相等的相变.集中型相变:在相变时依附原子的集中来进行的相变.无集中型相变:相变进程不消失原子的集中,或虽消失集中,但不是集中所必须的或不是重要进程的相变即为.重构型相变:相变前后有旧键损坏和新键形成,相变所需的能量高.速度慢,此类相变称为.位移型相变:相变时只是原子间键长.键角的调剂,没有旧键损坏和新键形成,相变的能量低,速度快,此类相变称为.成核速度:单位时光单位体积母相中形成新相焦点的数量.晶化速度(长大速度):单位时光新相尺寸的增长.液相不混溶或玻璃的分相:一个平均的液相或玻璃相在必定的温度和构成规模内有可能分成两个互不消融或部分消融的液相或玻璃相,并互相共存的现象.上坡集中:改变时产生浓度低的向浓度高的偏向集中,产生成分的偏聚而不是成分的均化.集中掌握的长大:新相长大速度受溶质原子的集中速度所掌握.界面掌握的长大:晶体发展取决于分子或原子从熔体中向界面集中与其反向集中之差.固态反响:固体直接介入反响并起化学变更,同时至少在固体内部或外部的一个进程中起掌握感化的反响.固态反响的两个进程:相界面上的化学反响和固相内的物资迁徙.持续反响:在固态反响中,有时反响不是一步完成,而是经由不合的中央产品才最终完成,称为持续反响.当集中速度弘远于化学反响速度时,解释化学反响掌握此进程,称为化学动力学规模.特色是:反响物经由过程产品层的集中速度弘远于接触面上的化学反响速度.泰曼温度:一种反响物开端呈现明显集中的温度.烧结宏不雅界说:粉体原料经由成型.加热到低于熔点的温度,产生凝结.气孔率降低.压缩加大.致密度进步.晶粒增大,成为坚硬的烧结体,这个进程称为烧结.烧结微不雅界说:固体平分子或原子间消失互相吸引,经由过程加热使质点获得足够的能量进行迁徙,使粉末体产生颗粒粘结,产生强度并导致致密化和再结晶的进程称为烧结.固相烧结:是指松散的粉末或经压抑具有必定外形的粉末压坯被置于不超出其熔点的设定温度中在必定的氛围呵护下,保温一准时光的操纵进程.液相烧结:烧结温度超出某一构成的熔点,因而形成液相.初次再结晶:指从塑性变形的.具有应变的基质中,发展出新的无应变晶粒的成核和长大进程.二次再结晶:是坯体中少数大晶粒尺寸的平常增长,其成果是个体晶粒尺寸的增长.。
材料科学基础名词解释

材料科学基础名词解释材料科学基础名词解释:1.材料科学:研究材料的性质、结构、制备、加工和应用的学科,旨在揭示材料的内在规律并推动材料的发展与应用。
2.材料:指一切可供人类使用的物质,包括金属、塑料、陶瓷、玻璃、复合材料等,是制造各种产品的基础。
3.性质:材料固有的特征或行为,如机械性能、热性能、电性能、磁性能等。
材料的性质决定了其在特定应用中的适用性能。
4.结构:材料内部的组织和排列方式。
结构包括原子、晶格、晶体、晶粒、晶界等层次,它们的不同排列方式和组织特征决定了材料的性质。
5.制备:指通过一系列的加工工艺将原材料或中间体转化为特定形状和性能的材料。
制备方法包括合成、提炼、熔炼、溶解、固化、烧结等。
6.加工:指对已制备好的材料进行形状和性能的改变,以满足特定应用需求。
加工方法包括锻造、轧制、深冲、焊接、切割等。
7.应用:指材料在各个领域中的具体使用场景和目的,如材料在电子、航空、化工、医疗等行业中的应用。
合理的材料选择和应用能够提高产品的性能和效益。
8.机械性能:材料在外力作用下的抗力和变形能力,包括强度、韧性、硬度、弹性等。
机械性能决定了材料的承载能力和使用寿命。
9.热性能:材料在高温或低温条件下的变化和表现,包括热膨胀系数、导热性、热稳定性等。
热性能影响着材料在高温环境下的应用和稳定性。
10.电性能:材料对电流和电磁场的响应和传导能力,包括导电性、绝缘性、电化学性能等。
电性能决定了材料在电子器件和电力系统中的应用。
11.磁性能:材料对磁场的吸引力和响应能力,包括磁导率、磁感应强度、磁饱和度等。
磁性能决定了材料在磁记录、传感器等领域的应用。
12.复合材料:由两种或两种以上材料组成的复合体。
通过不同材料的组合,利用各自的优点来提升整体性能,如强度、刚度、耐腐蚀性等。
综上所述,材料科学基础名词解释给出了材料科学中一些重要的概念和术语的定义,对于理解和应用材料科学具有重要的指导作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
玻璃——玻璃是由熔体过冷所制得的非晶态材料。
水泥——水泥是指加入适量水后可成塑性浆体,既能在空气中硬化又能在水中硬化,并能够将砂,石等材料牢固地胶结在一起的细粉状水硬性材料。
耐火材料——耐火材料是指耐火度不低于1580摄氏度的无机非金属材料。
硅质耐火材料,镁质耐火材料,熔铸耐火材料,轻质耐火材料,不定形耐火材料。
高聚物——高聚物是由一种或几种简单低分子化合物经聚合而组成的分子量很大的化合物。
胶粘剂——胶粘剂是指在常温下处于粘流态,当受到外力作用时,会产生永久变形,外力撤去后又不能恢复原状的高聚物。
合金——合金是由两种或两种以上的金属元素,或金属元素与非金属元素形成的具有金属特性的新物质
2 晶体结构
晶胞——晶胞是从晶体结构中取出来的反应晶体周期性和对称性的重复单元。
空间点阵——空间点阵是把晶体结构中原子或分子等结构基元抽象为周围环境相同的阵点之后,描述晶体结构的周期性和对称性的图像。
晶面指数——结晶学中经常用(h k l)来表示一组平行晶面,成为晶面指数。
晶面族——在对称性高的晶体(如立方晶系)中,往往有并不平行的两组以上的晶面,它们的原子排列状况是相同的,这些晶面构成一个晶面族。
氢键——氢键是指氢原子同时与两个电负性很大而原子半径较小的原子(O,F,N等)相结合所形成的键。
空间利用率(原子堆积系数)——晶胞中原子体积与晶胞体积的比值。
配位数——一个原子(或离子)周围同种原子(或异号离子)的数目成为原子或离子的配位数,用CN来表示。
哥希密特化学定律——晶体结构取决于其组成基元(原子,离子或离子团)的数量关系,大小关系及极化性能。
同质多晶——这种化学组成相同的物质,在不同的热力学条件下形成结构不同的晶体的现象,成为同质多晶。
由此所产生的每一种化学组成相同但结构不同的晶体,成为变体。
类质同晶——化学组成相似或相近的物质,在相同的热力学条件下,形成的晶体具有相同的结构,这种现象称为类质同晶现象。
位移性转变——仅仅是结构畸变,转变前后结构差异小,转变时并不打开任何键或改变最邻近的配位数,只是原子的位置发生少许位移,使次级配位有所改变。
重建性转变——不能简单地通过原子位移来实现,转变前后结构差异大,必须破坏原子间的键,形成一个具有新键的结构。
解理——晶体沿某个晶面劈裂的现象称为解理。
热释电性——热释电性是指某些像六方ZnS型的晶体,由于加热使整个晶体温度变化,结果在与该晶体c轴垂直方向的一端出现正电荷,在相反的一端出现负电荷的性质。
晶体的热释电性与晶体内部的自发极化有关。
声电效应——通过半导体进行声电相互转换的现象称为声电效应。
电光效应——电光效应是指对晶体施加电场时,晶体的折射率发生变化的效应。
铁电晶体——铁电晶体是指具有自发极化且在外电场作用下具有电滞回线的晶体。
声光效应——声光效应是指光波被声光介质中的超声波所衍射或散射的现象。
正尖晶石和反尖晶石——在尖晶石结构中,如果A离子占据四面体空隙,B离子占据占据八面体空隙,则称为正尖晶石。
反之,如果半数的B离子占据四面体空隙,A离子和另外半数的B离子占据八面体空隙,则称为反尖晶石。
正尖晶石(A)[B2]O4 反尖晶石(B)[AB]O4
同晶取代——[SiO4]四面体中心的Si4+离子可部分地被Al3+所取代,取代后的结构本身并不发生大的变化,即所谓的同晶取代,但晶体的性质却可以发生很大的变化。
3 晶体结构缺陷
热缺陷——热缺陷称为本征缺陷,是指由热起伏的原因所产生的空位和(或)间隙质点(原子或离子)。
热缺陷包括弗伦克尔缺陷和肖特基缺陷。
弗伦克尔缺陷是质点离开正常格点后进入到晶格间隙位置,其特征是空位和间隙质点成对出现。
肖特基缺陷是质点由表面位置迁移到新表面位置,在晶体表面形成新的一层,同时在晶体内部留下空位,其特征是正负离子空位成比例出现。
位错滑移——位错滑移是指在外力作用下,位错线在其滑移面(即位错线和伯氏矢量b构成的晶面)上的运动,结果导致晶体永久变形。
位错攀移——位错攀移是指在热缺陷或外力作用下,位错线在垂直其滑移面方向上的运动,结果导致晶体中空位或间隙质点的增殖或减少。
固溶体——将外来组元引入晶体结构,占据基质晶体质点位置或间隙位置的一部分,仍保持一个晶相,这种晶体成为固溶体。
4 非晶态结构与性质
缩聚——由分化过程产生的低聚合物不是一成不变的,它可以相互发生作用,形成级次较高的聚合物,同时释放出部分Na2O。
这过程成为缩聚。
硼反常现象——这种由于B3+离子配位数变化引起性能曲线上出现转折的现象,称为硼反反常现象。
5 表面结构与性质
弛豫表面——为使体系能量尽可能降低,表面上的原子常常会产生相对于正常位置的上、下位移,结果表面相中原子层的间距偏离体相原子层的间距,产生压缩或膨胀。
表面上原子的这种位移称为表面弛豫。
重构表面——重构是指表面原子层在水平方向上的周期性不同于体内,但垂直方向的层间距离与体内相同。
范德华力——分子引力,一般是指固体表面与被吸附质点(例如气体分子)之间相互作用力。
6 相平衡和相图
凝聚系统——没有气相或虽有气相但其影响可忽略不计的系统称为凝聚系统。
独立析晶——独立析晶通常是在转熔过程中发生的,由于冷却速度较快,被回吸的晶相有可能会被新析出的固相包裹起来,使转熔过程不能继续进行,从而使液相进行另一个单独的析晶过程,这就是所谓的独立析晶。
7 基本动力学过程——扩散
扩散——扩散是物质内质点运动的基本方式,当温度高于绝对零度时,任何物系内的质点都在做热运动。
当物质内有梯度(化学位、浓度、应力梯度等)存在时,由于热运动而触发(导致)的质点定向迁移即所谓的扩散。
稳态扩散与非稳态扩散——稳态扩散的特征是空间任意一点的浓度不随时间变化,扩散通量不随位置变化;非稳态扩散的特征是空间任意一点的浓度随时间变化,扩散通量随位置变化。
稳态扩散——在扩散系统中,若对于任一体积元,在任一时刻流入的物质量与流出的物质量相等,即任一点的浓度不随时间变化,则称这种状态为稳态扩散。
本征扩散与非本征扩散——本征扩散是由本征点缺陷(即热缺陷)引起的扩散;非本征扩散是由非本征点缺陷引起的扩散,又包括掺杂点缺陷和非化学计量化合物两种情况。
克肯达尔效应——由于多元系统中各组元扩散速率不同而引起的扩散偶原始界面向扩散速率快的一侧移动的现象称为克肯达尔效应。
8 材料中的相变
一级相变——在临界温度、临界压力时,两相化学位相等,但化学位的一阶偏导数不相等的相变。
二级相变——相变时化学位及其一阶偏导数相等,而二阶偏导数不相等的相变。
扩散型相变——在相变时,依靠原子(离子)的扩散来进行的相变成为扩散型相变。
非扩散型相变——相变过程不存在原子(离子)的扩散,或虽存在扩散但不是相变所必需的或不是主要过程的相变即为无扩散型相变。
10 烧结
初次再结晶——是指从塑性变形的、具有应变的基质中,生长出新的无应变晶粒的成核和长大过程。
二次再结晶——正常的晶粒长大是晶界移动,晶粒的平均尺寸增加。
如果晶界受到杂质等第二相质点的阻碍,正常的晶粒长大便会停止。
但是当坯体中若有大晶粒存在时,这些大晶粒变数较多,晶界曲率较大,能量较高,使晶界可以越过杂质或气孔而继续移向邻近小晶粒的曲率中心。
晶粒的进一步生长,增大了晶界的曲率使生长过程不断加速,直到大晶粒的边界互相接触为止。
这个过程称为二次再结晶或异常的晶粒长大。
11 腐蚀与氧化
全面腐蚀——是常见的一种腐蚀,是指整个金属表面均发生腐蚀,它可以是均匀的也可以是不均匀的。
应力腐蚀(SCC)——是指金属材料在特定腐蚀介质和拉应力共同作用下发生的脆性断裂。
应力腐蚀开裂门槛值——一般认为当拉伸应力低于某一个临界值时,不再发生断裂破坏,这个临界应力称应力腐蚀开裂门槛值,用KISCC表示。
晶间腐蚀——是金属材料在特定的腐蚀介质中沿着材料的晶界发生的一种局部腐蚀。
氧化——广义的金属氧化是金属在一定温度条件下与环境介质O2(还有S2、Cl2、N2、C 等)间发生化学反应而引起材料损耗的不可逆腐蚀过程。
12 材料的疲劳与断裂
疲劳破坏——材料或构件在交变应力(应变)作用下发生的破坏称为疲劳破坏或疲劳失效。