2019反比例函数专题复习及其答案

合集下载

2019年中考数学专题《反比例函数》复习试卷含答案解析.doc

2019年中考数学专题《反比例函数》复习试卷含答案解析.doc

2019年中考数学专题复习卷: 反比例函数一、选择题1.已知点P(1,-3)在反比例函数(k≠0)的图象上,则k的值是()A. 3B.C. -3D.2.如果点(3,-4)在反比例函数的图象上,那么下列各点中,在此图象上的是()A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)3.在双曲线y= 的任一支上,y都随x的增大而增大,则k的值可以是()A. 2B. 0C. ﹣2 D. 14.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(-6,4),则△AOC的面积为( )A. 4B. 6C. 9D. 125.如图所示双曲线y= 与分别位于第三象限和第二象限,A是y轴上任意一点,B是上的点,C是y= 上的点,线段BC⊥x轴于D,且4BD=3CD,则下列说法:①双曲线y= 在每个象限内,y随x的增大而减小;②若点B的横坐标为-3,则C点的坐标为(-3, );③k=4;④△ABC的面积为定值7.正确的有()A. I个 B. 2个 C. 3个 D. 4个6.如图,已知反比例函数y= 与正比例函数y=kx(k<0)的图象相交于A,B两点,AC垂直x轴于C,则△ABC的面积为()A. 3B. 2C. kD. k27.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.图表示的是该电路中电流I 与电阻R之间函数关系的图象,则用电阻R表示电流I的函数解析式为()A. B.C.D.8.如图,在平面直角坐标系中,四边形是菱形,,反比例函数的图象经过点,若将菱形向下平移2个单位,点恰好落在反比例函数的图象上,则反比例函数的表达式为()A. B.C.D.9.如图,在平面直角坐标系中,过点0的直线AB交反比例函数y= 的图象于点A,B,点c在反比例函数y= (x>0)的图象上,连结CA,CB,当CA=CB且Cos∠CAB= 时,k1, k2应满足的数量关系是()A. k2=2k lB. k2=-2k1C. k2=4k1D. k2=-4k110.已知如图,菱形ABCD四个顶点都在坐标轴上,对角线AC、BD交于原点O,DF垂直AB交AC于点G,反比例函数,经过线段DC的中点E,若BD=4,则AG的长为()A. B. +2C. 2+1 D. +1二、填空题11.反比例函数的图像经过点(2,3),则的值等于________.12.若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为________13.若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y= (k为常数)的图象上,则y1、y2、y3的大小关系为________.14.如图,点为矩形的边的中点,反比例函数的图象经过点,交边于点.若的面积为1,则________。

2019年中考数学总复习《反比例函数》专项复习练习含答案

2019年中考数学总复习《反比例函数》专项复习练习含答案

2019 初三数学中考复习 反比例函数 专项复习练习1.若函数y =(m 2+2m)xm 2+m -1 是关于x 的反比例函数,则m 的值是( A )A .-1B .1C .±1D .无法确定 2. 已知反比例函数y =6x,当1<x <3时,y 的最小整数值是( A )A .3B .4C .5D .63.(2019·黔西南州)如图,反比例函数y =2x 的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为( B )A .2B .4C .5D .8,第2题图) ,第3题图)4.反比例函数y =k x 和正比例函数y =mx 的图象如图.由此可以得到方程kx=mx 的实数根为( C )A .x =-2B .x =1C .x 1=2,x 2=-2D .x 1=1,x 2=-25.正比例函数y 1=k 1x 的图象与反比例函数y 2=k 2x 的图象相交于A ,B 两点,其中点B 的横坐标为-2,当y 1<y 2时,x 的取值范围是( B )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >26.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y =-1x 图象上的点,并且y 1<0<y 2<y 3,则下列各式中正确的是( D )A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 2<x 3<x 17.在同一直角坐标系中,函数y =-ax与y =ax +1(a≠0)的图象可能是( B )8. 当k >0时,反比例函数y =kx和一次函数y =kx +2的图象大致是( C )9.(原创题)反比例函数y =a -1x经过点(-1,2),则a 2019的值是__-1__. 10.已知点A(x 1,y 1),B(x 2,y 2)都在y =6x图象上.若x 1x 2=-3,则y 1y 2的值为__-12__.11.如图,点A ,B 是双曲线y =6x 上的点,分别过点A ,B 作x 轴和y 轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为__8__.12.已知一次函数y =3x +m 与反比例函数y =m -3x 的图象有两个交点,当m =__5__时,有一个交点的纵坐标为6.13.如图,过点P(4,3)作PA⊥x 轴于点A ,PB ⊥y 轴于点B ,且PA ,PB 分别与某双曲线上的一支交于点C ,点D ,则AC BD 的值为__34__.14.(导学号 30042157)(2019·烟台)如图,矩形OABC 的顶点A ,C 的坐标分别是(4,0)和(0,2),反比例函数y =kx (x >0)的图象过对角线的交点P 并且与AB ,BC 分别交于D ,E 两点,连接OD ,OE ,DE ,则△ODE 的面积为__154__.15.如图,在平面直角坐标系中,一条直线与反比例函数y =8x (x >0)的图象交于A ,B 两点,与x 轴交于点C ,且点B 是AC 的中点,分别过点A ,B 作x 轴的平行线,与反比例函数y =2x (x >0)的图象交于点D ,E ,连接DE ,则四边形ABED 的面积为__92__.16. 如图,在平面直角坐标系中,过点M(-3,2)分别作x 轴、y 轴的垂线与反比例函数y =4x的图象交于A ,B 两点,则四边形MAOB 的面积为__10___.17.如图,直线y =x -1与反比例函数y =kx 的图象交于A ,B 两点,与x 轴交于点C ,已知点A 的坐标为(-1,m).(1)求反比例函数的解析式;(2)若点P(n ,-1)是反比例函数图象上一点,过点P 作PE⊥x 轴于点E ,延长EP 交直线AB 于点F ,求△CEF 的面积.解:(1)将点A 的坐标代入y =x -1,可得m =-1-1=-2,将点A(-1,-2)代入反比例函数y =kx ,可得k =-1×(-2)=2,故反比例函数解析式为y =2x(2)将点P 的纵坐标y =-1,代入反比例函数关系式可得x =-2,将点F 的横坐标x =-2代入直线解析式可得y =-3,故可得EF =3,CE =OE +OC =2+1=3, 故可得S △CEF =12CE×EF=9218.如图,在矩形OABC 中,OA =3,OC =2,F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数y =kx(k >0)的图象与BC 边交于点E.(1)当F 为AB 的中点时,求该函数的解析式;(2)当k 为何值时,△EFA 的面积最大,最大面积是多少?解:(1)∵在矩形OABC 中,OA =3,OC =2,∴B(3,2),∵F 为AB 的中点,∴F(3,1),∵点F 在反比例函数y =k x (k >0)的图象上,∴k =3,∴该函数的解析式为y =3x(x >0)(2)由题意知E ,F 两点坐标分别为E(k 2,2),F(3,k 3),∴S △EFA =12AF·BE=12×13k(3-12k)=12k -112k 2=-112(k 2-6k +9-9)=-112(k -3)2+34,当k =3时,S 有最大值,S 最大值=3419. 如图,Rt△ABO 的顶点O 在坐标原点,点B 在x 轴上,∠ABO=90°,∠AOB=30°,OB =23,反比例函数y =kx(x >0)的图象经过OA 的中点C ,交AB 于点D.(1)求反比例函数的关系式;(2)连接CD ,求四边形CDBO 的面积.解:(1)∵∠ABO=90°,∠AOB=30°,OB =23,∴AB=33OB =2,作CE⊥OB 于E ,∵∠AB O =90°,∴CE∥AB,∴OC=AC ,∴OE=BE =12OB =3,CE =12AB =1,∴C(3,1),∵反比例函数y =kx(x >0)的图象经过OA 的中点C ,∴1=k3,∴k=3,∴反比例函数的关系式为y =3x(2)∵OB=23,∴D 的横坐标为23,代入y =3x 得y =12,∴D(23,12),∴BD=12,∵AB=2,∴AD=32,∴S △ACD =12AD·BE=12×32×3=334,∴S 四边形CDBO=S △AOB -S △ACD =12OB·AB-334=12×2×23-334=5342019-2020学年数学中考模拟试卷一、选择题1.2018年12月27日,国家发展改革委发布《关于全力做好2019年春运工作的意见》显示预测,2019年春运全国民航旅客发送量将达到7300万人次,比上一年增长12%.其中7300万用科学记数法表示为( ) A .77310⨯B .77.310⨯C .87.310⨯D .80.7310⨯2.某校九年级四班数学兴趣小组有5名成员,身高(单位:cm )分别为165、172、168、170、175.增加1名身高为170cm 的成员后,现在兴趣小组成员的身高与原来相比( ) A .平均数变小,方差不变 B .平均数不变,方差不变 C .平均数不变,方差变大D .平均数不变,方差变小3.如图是二次函数y =ax 2+bx+c 的部分图象,由图象可知,满足不等式ax 2+bx+c >0的x 的取值范围是( )A.﹣1<x <5B.x >5C.x <﹣1且x >5D.x <﹣1或x >54.下列说法正确的是( )A.了解全国中学生最喜爱哪位歌手,适合全面调查.B.甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S 甲2=5,S 乙2=0.5,则甲麦种产量比较稳.C.某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D.一组数据:3,2,5,5,4,6的众数是5. 5.如图,正方形的边长为,点的坐标为,点在轴上,若反比例函数的图象过点,则该反比例函数的表达式为( )A. B. C. D.6.某市的商品房原价为12000元/m 2,经过连续两次降价后,现价为9200元/m 2,设平均每次降价的百分率为x ,则根据题意可列方程为( ) A .12000(1﹣2x )=9200 B .12000(1﹣x )2=9200 C .9200(1+2x )=12000D .9200(1+x )2=120007.学校环保小组的同学随机调查了某小区10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,7,10,6,9,利用学过的统计知识,根据上述数据估计该小区200户家庭一周内共需要环保方便袋约( ) A .200只;B .1400只;C .9800只;D .14000只.8.如图,四边形ABCD 内接于⊙O ,E 是BC 延长线上一点,下列等式中不一定成立的是( )A .∠1=∠2B .∠3=∠5C .∠BAD=∠DCED .∠4=∠69.样本数据3,a ,4,b ,8的平均数是5,众数是3,则这组数据的中位数是( ) A .2B .3C .4D .810.下列运算正确的是( ) A .5210()a a -= B .6262144a a a a-÷⋅=- C .32264()a b a b -=D .23a a a -+=-11.若数a 使关于x 的不等式组()3x a 2x 11x2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=ay 1-有整数解,则满足条件的所有整数a 的个数是( )A .5B .4C .3D .212.如图,平面直角坐标系xOy 中,四边形OABC 的边OA 在x 轴正半轴上,BC ∥x 轴,∠OAB =90°,点C (3,2),连接OC .以OC 为对称轴将OA 翻折到OA′,反比例函数y =kx的图象恰好经过点A′、B ,则k 的值是( )A .9B .133C .16915D .3二、填空题13.如图,在Rt △ABC 中,∠ABC =90°,3tan 2C ∠=.将△ABC 绕点A 逆时针旋转60°,得到△AB'C'(点B ,C 的对应点分别为点B′,C′),延长C′B′分别交AC ,BC 于点D ,E ,若DE =2,则AD 的长为_____.14.如图,扇形纸扇完全打开后,∠BAC=120°,AB=AC=30厘米,则BC 的长为_____厘米.(结果保留π)15.计算的值是________.16.将5700 000用科学记数法表示为______.17.如图,在平面直角坐标系xOy 中,已知抛物线y =﹣x (x ﹣3)(0≤x≤3)在x 轴上方的部分,记作1C ,它与x 轴交于点O ,1A ,将1C 绕点1A 旋转180°得2C ,2C 与x 轴交于另一点2A .请继续操作并探究:将2C 绕点2A 旋转180°得3C ,与x 轴交于另一点3A ;将3C 绕点3A 旋转180°得4C ,与x 轴交于另一点4A ,这样依次得到x 轴上的点1A ,2A ,3A ,…,n A ,…,及抛物线1C ,2C ,…,n C ,…则n C 的顶点坐标为_____.18.计算:8﹣18_____. 三、解答题19.某中学准各去湿地公园开展社会实践活动,学校给出A :十八弯,B :长广溪,C :九里河,D :贡湖湾,共四个目的地.为了解学生最喜欢哪一个目的地,随机抽取了部分学生进行调査,并将调査结果绘制了如下两幅不完整的统计图.请回答下列问题:(1)这次被调査的学生共有人.(2)请你将条形统计图补充完整.(3)扇形统计图中D项目对立的扇形的圆心角度数是°.(4)已知该校学生2400人,请根据调査结果估计该校最喜欢去长广溪湿地公园的学生人数.20.计算:2sin60°+| 3﹣3|+(π﹣2)0﹣(12)﹣1.21.读下面的题目及分析过程,并按要求进行证明。

人教版九年级数学中考反比例函数专项练习及参考答案

人教版九年级数学中考反比例函数专项练习及参考答案

人教版九年级数学中考反比例函数专项练习命题点1 图象与性质1.一台印刷机每年可印刷的书本数量 y(万册)与它的使用时间x(年)成反比例关系,当x =2时,y =20.则y 与x 的函数图象大致是(C)A B C D2.反比例函数y =mx 的图象如图所示,以下结论:①常数m <-1;②在每个象限内,y 随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h <k ;④若P(x ,y)在图象上,则P ′(-x ,-y)也在图象上.其中正确的是(C)A .①②B .②③C .③④D .①④3.如图,函数y =⎩⎪⎨⎪⎧1x (x >0),-1x (x <0)的图象所在坐标系的原点是(A)A .点MB .点NC .点PD .点Q4.定义新运算:a ⊕b =⎩⎪⎨⎪⎧ab(b >0),-ab(b <0). 例如:4⊕5=45,4⊕(-5)=45.则函数y =2⊕x(x≠0)的图象大致是(D)A B C D5.如图,若抛物线y =-x2+3与x 轴围成的封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数y =kx(x >0)的图象是(D)A B CD命题点2 反比例函数、一次函数与几何图形综合6.如图,四边形ABCD 是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y =mx (x>0)的图象经过点D ,点P 是一次函数y =kx +3-3k(k ≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算说明一次函数y =kx +3-3k(k ≠0)的图象一定经过点C ;(3)对于一次函数y =kx +3-3k(k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围.(不必写出过程)解:(1)∵B(3,1),C(3,3),四边形ABCD 是平行四边形, ∴AD =BC =2,AD ∥BC ,BC ⊥x 轴.∴AD ⊥x 轴. 又∵A(1,0),∴D(1,2).∵点D 在反比例函数y =mx 的图象上,∴m =1×2=2.∴反比例函数的解析式为y =2x .(2)当x =3时,y =kx +3-3k =3,∴一次函数y =kx +3-3k(k ≠0)的图象一定过点C. (3)设点P 的横坐标为a ,则23<a <3.命题点3 反比例函数的实际应用(8年2考)7.(2019·杭州)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数解析式;(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围;②方方能否在当天11点30分前到达B 地?说明理由.解:(1)∵vt =480,且全程速度限定为不超过120千米/小时,∴v 关于t 的函数解析式为v =480t(t ≥4).(2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时.将t =6代入v =480t ,得v =80;将t =245代入v =480t,得v =100.∴小汽车行驶速度v 的范围为80≤v ≤100.②方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480t ,得v =9607.∵9607>120,超速了. 故方方不能在当天11点30分前到达B 地.基础训练1.(2019·柳州)反比例函数y =2x的图象位于(A)A .第一、三象限B .第二、三象限C .第一、二象限D .第二、四象限2.(2019·哈尔滨)点(-1,4)在反比例函数y =kx 的图象上,则下列各点在此函数图象上的是(A)A .(4,-1)B .(-14,1)C .(-4,-1)D .(14,2)3.(2019·邢台模拟)已知甲圆柱型容器的底面积为30 cm 2,高为8 cm ,乙圆柱型容器底面积为x cm 2.若将甲容器装满水,全部倒入乙容器中(乙容器没有水溢出),则乙容器水面高度y(cm)与x(cm 2)之间的大致图象是(C)A B C D4.(2019·唐山乐亭县模拟)若点(x 1,y 1),(x 2,y 2)都是反比例函数y =-6x 图象上的点,并且y 1<0<y 2,则下列结论中正确的是(A)A .x 1>x 2B .x 1<x 2C .y 随x 的增大而减小D .两点有可能在同一象限5.(2019·唐山滦南县一模)如图,正比例函数y =x 与反比例函数y =4x 的图象交于A ,B 两点,其中A(2,2),当y =x 的函数值大于y =4x的函数值时,x 的取值范围为(D)A .x >2B .x <-2C .-2<x <0或0<x <2D .-2<x <0或x >26.(2019·石家庄模拟)已知反比例函数y =kx 的图象过第二、四象限,则一次函数y =kx +k的图象大致是(B)A B C D7.(2019·唐山路北区模拟)已知点P(m ,n)是反比例函数y =-3x 图象上一点,当-3≤n <-1时,m 的取值范围是(A)A .1≤m <3B .-3≤m <-1C .1<m ≤3D .-3<m ≤-18.(原创)(2017·河北T15变式)将九年级某班40名学生的数学测试成绩分为5组,第1~4组的频率分别为0.3,0.25,0.15,0.2,第5组的频数记为k ,则反比例y =kx (x >0)的图象是(D)A B C D9.(原创)(2019·河北T12变式)如图,函数y =⎩⎪⎨⎪⎧m x (x >0),-m x (x<0)的图象如图所示,以下结论:①常数m >0;②在每个象限内,y 随x 增大而减小;③若点A(-2,a),B(3,b)在图象上,则a <b ;④若P(x ,y)在图象上,则P ′(-x ,y)也在图象上,其中正确的是(D)A .①②B .②③C .③④D .①④10.(2019·兰州)如图,矩形OABC 的顶点B 在反比例函数y =kx (x >0)的图象上,S矩形OABC=6,则k =6.11.(2019·北京)在平面直角坐标系xOy 中,点A(a ,b)(a >0,b >0)在双曲线y =k 1x 上,点A 关于x 轴的对称点B 在双曲线y =k 2x,则k 1+k 2的值为0.12.(2019·盐城)如图,一次函数y =x +1的图象交y 轴于点A ,与反比例函数y =kx (x >0)的图象交于点B(m ,2).(1)求反比例函数的解析式; (2)求△AOB 的面积.解:(1)∵点B(m ,2)在直线y =x +1上, ∴2=m +1,解得m =1. ∴点B 的坐标为(1,2).∵点B(1,2)在反比例函数y =kx (x >0)的图象上,∴2=k1,解得k =2.∴反比例函数的解析式是y =2x.(2)将x =0代入y =x +1,得y =1,则点A 的坐标为(0,1). ∵点B 的坐标为(1,2), ∴△AOB 的面积为12×1×1=12.能力提升13.(2019·石家庄新华区模拟)如图,在平面直角坐标系中,点A(0,2),点P 是双曲线y =kx (x >0)上的一个动点,作PB ⊥x 轴于点B ,当点P 的横坐标逐渐减小时,四边形OAPB 的面积将会(C)A .逐渐增大B .不变C .逐渐减小D .先减小后增大14.(2019·陕西)如图,D 是矩形AOBC 的对称中心,A(0,4),B(6,0).若一个反比例函数的图象经过点D ,交AC 于点M ,则点M 的坐标为(32,4).16.(2019·秦皇岛海港区模拟)如图,在平面直角坐标系中,▱ABCD 的顶点A(1,b),B(3,b),D(2,b +1).(1)点C 的坐标是(4,b +1)(用b 表示);(2)双曲线y =kx 过▱ABCD 的顶点B 和D ,求该双曲线的解析式;(3)如果▱ABCD 与双曲线y =4x(x >0)总有公共点,求b 的取值范围.解:(2)∵双曲线y =kx 过▱ABCD 的顶点B(3,b)和D(2,b +1),∴3b =2(b +1),解得b =2,即B(3,2),D(2,3). 则该双曲线解析式为y =6x .(3)将A(1,b)代入y =4x,得b =4;将C(4,b +1)代入y =4x,得b +1=1,即b =0.则▱ABCD 与双曲线y =4x(x >0)总有公共点时,b 的取值范围为0≤b ≤4.17.如图为某公园“水上滑梯”的侧面图,其中BC 段可看成是一段双曲线,建立如图的直角坐标系后,其中,矩形AOEB 为向上攀爬的梯子,OA =5米,进口AB ∥OD ,且AB =2米,出口C 点距水面的距离CD 为1米,则B ,C 之间的水平距离DE 的长度为(D)A .5米B .6米C .7米D .8米18.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.(2)结论应用:①如图2,点M ,N 在反比例函数y =kx (x >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F ,试证明:MN ∥EF ;②若①中的其他条件不变,只改变点M ,N 的位置,如图3所示,请判断MN 与EF 是否平行?解:(1)AB ∥CD.理由:过点C 作CG ⊥AB 于点G ,过点D 作DH ⊥AB 于点H , ∴∠CGA =∠DHB =90°.∴CG ∥DH. ∵△ABC 和△ABD 的面积相等, ∴CG =DH.∴四边形CGHD 是矩形.∴AB ∥CD.(2)①证明:连接MF ,NE ,设M(x 1,y 1),N(x 2,y 2),∵点M ,N 在反比例函数y =kx (x >0)的图象上,∴x 1y 1=k ,x 2y 2=k. ∵ME ⊥y 轴,NF ⊥x 轴,∴EM =x 1,OE =y 1,OF =x 2,NF =y 2. ∴S △EFM =12x 1·y 1=12k ,S △EFN =12x 2y 2=12k.∴S △EFM =S △EFN ,由(1)中的结论可知,MN ∥EF.②MN ∥EF ,理由:连接MF ,NE ,设M(x 1,y 1),N(x 2,y 2). ∵M ,N 在反比例函数y =kx (k >0)的图象上,∴x 1y 1=k ,x 2y 2=k.∵ME ⊥y 轴,NF ⊥x 轴,∴EM =x 1,OE =y 1,OF =-x 2,NF =-y 2. ∴S △EFM =12x 1·y 1=12k ,S △EFN =12(-x 2)(-y 2)=12k.∴S △EFM =S △EFN .由(1)中的结论可知,MN ∥EF.反比例函数中的面积问题1.(2019·枣庄)如图,在平面直角坐标系中,等腰Rt △ABC 的顶点A ,B 分别在x 轴、y 轴的正半轴上,∠ABC =90°,CA ⊥x 轴,点C 在函数y =kx (x >0)的图象上.若AB =1,则k的值为(A)A .1 B.22C. 2 D .22.如图,A ,B 两点在双曲线y =4x(x >0)上,分别经过A ,B 两点向x 轴作垂线段,已知S阴影=1,则S 1+S 2=(D)A .3B .4C .5D .63.(2019·黄冈)如图,一直线经过原点O ,且与反比例函数y =kx (k>0)相交于点A ,B ,过点A 作AC ⊥y 轴,垂足为C ,连接BC.若△ABC 面积为8,则k =8.4.如图,A ,B 是反比例函数y =2x 的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则(B)A .S =2B .S =4C .2<S <4D .S >45.(2019·郴州)如图,点A ,C 分别是正比例函数y =x 与反比例函数y =4x 的图象的交点,过A 点作AD ⊥x 轴于点D ,过C 点作CB ⊥x 轴于点B ,则四边形ABCD 的面积为8.6.如图,AB 是反比例函数y =3x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是1和3,则S △AOB =4.7.(2019·鸡西)如图,在平面直角坐标系中,点O 为坐标原点,▱OABC 的顶点A 在反比例函数y =1x (x >0)的图象上,顶点B 在反比例函数y =5x (x >0)的图象上,点C 在x 轴的正半轴上,则▱OABC 的面积是(C)A.32B.52C .4D .68.如图,在平面直角坐标系中,点A 是x 轴上任意一点,BC 平行于x 轴,分别交反比例函数y =3x (x >0),y =kx(x <0)的图象于B ,C 两点.若△ABC 的面积为2,则k 的值为-1.9.(2019·株洲)如图所示,在平面直角坐标系xOy 中,点A ,B ,C 为反比例函数y =k x (k >0)图象上不同的三点,连接OA ,OB ,OC ,过点A 作AD ⊥y 轴于点D ,过点B ,C 分别作BE ,CF 垂直x 轴于点E ,F ,OC 与BE 相交于点M ,记△AOD ,△BOM ,四边形CMEF 的面积分别为S 1,S 2,S 3,则(B)A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 2310.(2019·本溪)如图,在平面直角坐标系中,等边△OAB 的边OA 和菱形OCDE 的边OE 都在x 轴上,点C 在OB 边上,S △ABD =3,反比例函数y =kx (x >0)的图象经过点B ,则k 的值为3.。

专题03 反比例函数(广东专版)-2019年中考真题数学试题分项汇编(解析版)

专题03 反比例函数(广东专版)-2019年中考真题数学试题分项汇编(解析版)

专题03 反比例函数1.(2019•广州)若点A(-1,y1),B(2,y2),C(3,y3)在反比例函数y6x=的图象上,则y1,y2,y3的大小关系是A.y3<y2<y1B.y2<y1<y3 C.y1<y3<y2D.y1<y2<y3【答案】C【解析】∵点A(-1,y1),B(2,y2),C(3,y3)在反比例函数y6x=的图象上,∴y161==--6,y262==3,y363==2,又∵-6<2<3,∴y1<y3<y2.故选C.【名师点睛】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.2.(2019年广东省湛江市霞山区中考数学一模试卷)已知反比例函数2yx=,下列结论中不正确的是A.图象经过点(-1,-2)B.图象在第一、三象限C.当x>1时,0<y<2 D.当x<0时,y随着x的增大而增大【答案】D【解析】A、∵当x=-时,y=-2,∴此函数图象过点(-1,-2),故本选项正确;B、∵k=3>0,∴此函数图象的两个分支位于一三象限,故本选项正确;C、∵当x=1时,y=2,∴当x>1时,0<y<2,故本选项正确;D、∵k=2>0,∴当x<0时,y随着x的增大而减小,故本选项错误,故选D.【名师点睛】此题考查反比例函数的性质,解题关键在于熟练掌握反比例函数图象上点的坐标特点.3.(2019年广东省汕头市澄海区中考数学一模试卷)如图,已知双曲线y=2x经过Rt△OAB的直角边AB的中点P,则△AOP的面积为A.12B.1C.2 D.4【答案】B【解析】∵双曲线y=2x经过P,∴S△ABP=||2k=1,∵P为AB边上的中点,∴S△AOP=S△ABP=1,故选B.【名师点睛】考查了反比例函数的比例系数的几何意义,解题的关键是了解两个三角形的面积相等.4.(广东省深圳市龙岗区实验学校2019届中考数学第二次模拟检测试题)如图,点A在双曲线y=kx上,B在y轴上,且AO=AB,若△ABO的面积为6,则k的值为A.6 B.-6 C.12 D.-12 【答案】A【解析】如图,过点A作AD⊥y轴于点D,∵AB=AO,△ABO的面积为6,∴S△ADO=12|k|=3,又反比例函数的图象位于第一、三象限,k>0,则k=6.故选A.【名师点睛】本题考查反比例函数系数k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.也考查了等腰三角形的性质以及反比例函数图象上点的坐标特征.5.(广东省惠来县2019届九年级初中毕业班调研考试数学试题)在同平面直角坐标系中,函数y=x-1与函数y=1x的图象大致是A.B.C.D.【答案】D【解析】函数y=1x中k=1>0,故图象在第一、三象限;函数y=x-1的图象在第一、三、四象限,故选D.【名师点睛】本题考查反比例函数与一次函数图象,关键是掌握一次函数图象与系数的关系.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.6.(广东省惠州市博罗县2019届九年级中考一模数学试卷)如图,已知A,B是反比例函数y=kx(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为r,则S关于t的函数图象大致为A.B.C .D .【答案】C【解析】设∠AOM =α,点P 运动的速度为a , 当点P 从点O 运动到点A 的过程中,S 22(cos )(sin )1cos sin 22at at a t αααα⋅⋅⋅==⋅⋅,从而可知图象本段应为抛物线,且S 随着t 的增大而增大; 当点P 从A 运动到B 时,由反比例函数性质可知△OPM 的面积为12k ,保持不变, 故本段图象应为与横轴平行的线段;当点P 从B 运动到C 过程中,OM 的长在减少,△OPM 的高与在B 点时相同, 故本段图象应该为一段下降的线段,故选C .【名师点睛】本题考查了反比例函数图象性质、锐角三角函数性质,解题的关键是明确点P 在O →A 、A →B 、B →C 三段位置时三角形OMP 的面积计算方式.7.(2019•深圳)如图,在Rt △ABC 中,∠ABC =90°,C (0,-3),CD =3AD ,点A 在反比例函数y k x=图象上,且y 轴平分∠ACB ,求k =__________.【解析】如图,过A 作AE ⊥x 轴,垂足为E ,∵C (0,-3),∴OC =3,可证△ADE ∽△CDO , ∴13AE DE AD CO OD CD ===,∴AE =1. 又∵y 轴平分∠ACB ,CO ⊥BD ,∴BO =OD , ∵∠ABC =90°,∴△ABE ~COD ,∴AE BEOD OC=, 设DE =n ,则BO =OD =3n ,BE =7n ,∴1733n n =,∴n 7=,∴OE =4n 7=,∴A (7,1),∴k 177=⨯=.故答案为:7. 【名师点睛】本题考查解直角三角形、坐标与图形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考选择题中的压轴题.8.(广东省湛江雷州市2019届九年级中考模拟联考数学试题)已知1(4)A y -,,2(1)B y -,是反比例函数4y x=图象上的两个点,则1y 与2y 的大小关系为__________. 【答案】12y y >【解析】∵A (-4,y 1),B (-1,y 2)是反比例函数y =4x图象上的两个点, ∴-4y 1=4,-1·y 2=4, ∴y 1=-1,y 2=-4,∴y 1>y 2.故答案为:y 1>y 2.【名师点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y =kx(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .9.(2019年广东省深圳市福田区中考数学三模试卷)如图,正方形ABCD 的顶点A 、D 分别在x 轴、y 轴上,∠ADO =30°,OA =2,反比例函y =kx经过CD 的中点M ,那么k =__________.【解析】如图,作CE⊥y轴于点E.∵正方形ABCD的顶点A、D分别在x轴、y轴上,∴∠CED=∠DOA=90°,∠DCE=∠ADO,CD=DA,∴△CDE≌△DAO,∴DE=AO=2,又∵∠ODA=30°,∴Rt△AOD中,AD=2AO=4,DO CE,∴EO∴C(D(0,∵M是CD的中点,∴M,∵反比例函数y=kx经过CD的中点M,∴k(+6,+6.【名师点睛】本题考查反比例函数图象上点的坐标特征和正方形的性质,解题的关键是熟练掌握反比例函数图象上点的坐标特征和正方形的性质.10.(广东省江门市第二中学2019届九年级中考数学第一次模拟考试题)如图,A、B两点在双曲线y=5x上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=2,则S1+S2=__________.【答案】6【解析】根据题意得S 1+S 阴影=S 2+S 阴影=5,而S 阴影=2,所以S 1=S 2=3,所以S 1+S 2=6.故答案为:6. 【名师点睛】本题考查了比例系数k 的几何意义:在反比例函数y =kx图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |,且保持不变. 11.(广东省中山市第一中学2019届九年级5月质量调研检测数学试题)如图,函数1y kx b =+与2k y x=交与点A 、B 两点,且A 、B 两点的横坐标分别是-1,3,则满足21y y <的x 的取值范围是__________.【答案】-3<x <0或x >2【解析】∵一次函数1y kx b =+与反比例函数2ky x=交于A ,B 两点, 且A ,B 两点的横坐标分別为-1,3,故满足21y y <的x 的取值范围是x <-1或0<x <3, 故答案为:-3<x <0或x >2.【名师点睛】此题考查反比例函数的图象和一次函数的图象,解题关键在于观察函数图象.12.(2019年广东省深圳市二十三校联考中考数学4月份模拟试卷)如图在平面直角坐标系中,周长为12的正六边形ABCDEF 的对称中心与原点O 重合,点A 在x 轴上.点B ,在反比例函数y =kx位于第一象限的图象上.则k 的值为__________.【答案】3【解析】如图,连接OB,∵周长为12的正六边形ABCDEF的对称中心与原点O重合,∴正六边形ABCDEF的边长为2,∴OB=2,BM=1,∵OM⊥BC,∴OM==点B在反比例函数y=kx位于第一象限的图象上,点B的坐标为(1,3).将点(1,3)代入y=kx中,得k=3.故故答案为:k=3.【名师点睛】本题考查了正多边形性质,锐角三角函数,反比例函数的性质,等边三角形的性质和判定的应用,关键是求出B的坐标.13.(2019•广州)如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(-1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y3nx-=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.【解析】(1)将点P(-1,2)代入y=mx,得:2=-m,解得:m=-2,∴正比例函数解析式为y=-2x;将点P(-1,2)代入y3nx-=,得:2=-(n-3),解得:n=1,∴反比例函数解析式为y2x =-.联立正、反比例函数解析式成方程组,得:22y xyx=-⎧⎪⎨=-⎪⎩,解得:111 2x y =-⎧⎨=⎩,2212xy=⎧⎨=-⎩,∴点A的坐标为(1,-2).(2)∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴∠DCP=∠BAP,即∠DCP=∠OAE.∵AB⊥x轴,∴∠AEO=∠CPD=90°,∴△CPD∽△AEO.(3)∵点A的坐标为(1,-2),∴AE=2,OE=1,AO==∵△CPD∽△AEO,∴∠CDP=∠AOE,∴sin∠CDB=sin∠AOEAEAO===.【名师点睛】本题考查了待定系数法求一次函数解析式、待定系数法反比例函数解析式、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、菱形的性质、相似三角形的判定与性质以及解直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出m,n的值;(2)利用菱形的性质,找出∠DCP=∠OAE,∠AEO=∠CPD=90°;(3)利用相似三角形的性质,找出∠CDP=∠AOE.14.(2019•广东)如图,一次函数y =kx +b 的图象与反比例函数y 2k x=的图象相交于A 、B 两点,其中点A 的坐标为(-1,4),点B 的坐标为(4,n ). (1)根据图象,直接写出满足kx +b 2k x>的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP ∶S △BOP =1∶2,求点P 的坐标.【解析】(1)∵点A 的坐标为(-1,4),点B 的坐标为(4,n ).由图象可得:kx +b 2k x >的x 的取值范围是x <-1或0<x <4. (2)∵反比例函数y 2kx=的图象过点A (-1,4),B (4,n ),∴k 2=-1×4=-4,k 2=4n , ∴n =-1, ∴B (4,-1),∵一次函数y =kx +b 的图象过点A ,点B , ∴441k b k b -+=⎧⎨+=-⎩,解得:k =-1,b =3,∴直线解析式y =-x +3,反比例函数的解析式为y 4x=-. (3)如图,设直线AB 与y 轴的交点为C ,∴C(0,3),∵S△AOC12=⨯3×132=,∴S△AOB=S△AOC+S△BOC12=⨯3×1132+⨯⨯4152=,∵S△AOP∶S△BOP=1∶2,∴S△AOP1515 232 =⨯=,∴S△COP5322=-=1,∴12⨯3·x P=1,∴x P23=,∵点P在线段AB上,∴y23=-+373=,∴P(23,73).【名师点睛】本题考查了一次函数与反比例函数的综合题,涉及了待定系数法,函数与不等式,三角形的面积等,熟练掌握相关知识是解题的关键.注意数形结合思想的应用.15.(2019年广东省佛山市顺德区中考数学三模试卷)如图,反比例函数y=2x的图象和一次函数的图象交于A、B两点,点A的横坐标和点B的纵坐标都是1.(1)在第一象限内,写出关于x的不等式kx+b≥2x的解集;(2)求一次函数的表达式;(3)若点P(m,n)在反比例函数图象上,且关于y轴对称的点Q恰好落在一次函数的图象上,求m2+n2的值.【解析】(1)∵反比例函数y=2x的图象和一次函数的图象交于A、B两点,点A的横坐标和点B的纵坐标都是1,∴A(1,2),B(2,1),∴在第一象限内,不等式kx+b≥2x的解集为1≤x≤2,故答案为:1≤x≤2.(2)设一次函数的解析式为y=kx+b,∵经过A(1,2),B(2,1)点,∴221k bk b+=⎧⎨+=⎩,解得13kb=-⎧⎨=⎩,∴一次函数的解析式为y=-x+3.(3)∵点P(m,n),∴Q(-m,n),∵点P在反比例函数图象上,∴mn=2,∵点Q恰好落在一次函数的图象上,∴n=m+3,∴m(m+3)=2,∴m2+3m=2,∴m2+n2=m2+(m+3)2=2m2+6m+9=2(m2+3m)+9=2×2+9=13.【名师点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.16.(广东省广州市荔湾区2019届九年级中考第一次模拟考试数学试题)如图,在平面直角坐标系中,四边形ABCD为正方形,点A的坐标为(0,3),点B的坐标为(0,-4),反比例-函数y=kx(k≠0)的图象经过点C.(1)求反比例函数的解析式;(2)点P是反比例函数在第二象限的图象上的一点,若△PBC的面积等于正方形ABCD的面积,求点P的坐标.【解析】(1)∵点A 的坐标为(0,3),点B 的坐标为(0,-4),∴AB =7,∵四边形ABCD 为正方形,∴点C 的坐标为(7,-4),代入y =k x,得k =-28,), ∴反比例函数的解析式为y =-28x. (2)设点P 到BC 的距离为h .∵△PBC 的面积等于正方形ABCD 的面积, ∴12×7×h =72,解得h =14, ∵点P 在第二象限,y P =h -4=10,此时,x P =-2810=-514, ∴点P 的坐标为(-514,10). 【名师点睛】本题考查了用待定系数法求反比例函数的解析式,反比例函数系数k 的几何意义,正方形的性质以及三角形和正方形的面积等,根据正方形的性质求得C 的坐标是解题的关键.。

2019年中考数学专题:反比例函数及答案

2019年中考数学专题:反比例函数及答案

反比例函数一、单选题1.在函数y=的图象上有三点(-1,y1),(-,y2),(,y3)则函数值y1、y2、y3的大小关系是( )A. y2<y3<y1B. y3<y2<y1C. y1<y2<y3D. y3<y1<y2.2.如图,Rt△ABC中AB=3,BC=4,∠B=90°,点B、C在两坐标轴上滑动.当边AC⊥x轴时,点A刚好在双曲线y=上,此时下列结论不正确的是()A. 点B为(0,)B. AC边的高为C. 双曲线为y=D. 此时点A与点O距离最大3.如图,菱形ABCD的两个顶点B、D在反比例函数的图像上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A. ﹣5B. ﹣4C. ﹣3D. ﹣24.已知A(2,y1),B(﹣3,y2),C(﹣5,y3)三个点都在反比例函数y=﹣的图象上,比较y1,y2,y3的大小,则下列各式正确的是()A. y1<y2<y3B. y1<y3<y2C. y2<y3<y1D. y3<y2<y15.一次函数y=-x+1(0≤x≤10)与反比例函数y= (-10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A. - ≤x≤1B. - ≤x≤C. - ≤x≤D. 1≤x≤6.如图,一次函数y=ax+b的图象与x轴、y轴交于A、B两点,与反比例函数的图象相交于C、D 两点,分别过C、D两点作y轴,x轴的垂线,垂足为E、F,连接CF、DE,有下列结论:①△CEF与△DEF 的面积相等;②EF∥CD;③△DCE≌△CDF;④AC=BD;⑤△CEF的面积等于,其中正确的个数有()A. 2B. 3C. 4D. 57.如图,有反比例函数,的图象和一个圆,则图中阴影部分的面积是()A. πB. 2πC. 4πD. 条件不足,无法求8.如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,与OA交于点P,且OA2﹣AB2=18,则点P的横坐标为()A. 9B. 6C. 3D. 39.如图,直线y=﹣x+m(m>0)与x轴交于点C,与y轴交于点D,以CD为边作矩形ANCD,点A在x 轴上.双曲线y= 经过点B,与直线CD交于点E,则点E的坐标为()A. (,﹣)B. (4,﹣)C. (,﹣)D. (6,﹣1)二、填空题10.如图,它是反比例函数y= 图象的一支,根据图象可知常数m的取值范围是________.11.若反比例函数的图象在第二、四象限,m的值为________12.如图,正方形ABCD的两个顶点A,D分别在x轴和y轴上,CE⊥y轴于点E,OA=2,∠ODA=30°.若反比例函数y=的图象过CE的中点F,则k的值为________.13.如图,已知直线y=x+4与双曲线y= (x<0)相交于A、B两点,与x轴、y轴分别相交于D、C两点,若AB= ,则k=________三、解答题14.若函数y=(m+1)x m²+3m+1是反比例函数,求m的值.15.如图,点P(-3,1)是反比例函数的图象上的一点.(1)求该反比例函数的解析式;(2)设直线与双曲线的两个交点分别为P和P′,当<时,直接写出x的取值范围.四、综合题16.如图,一次函数y=kx+b与反比例函数y= (x>0)的图象交于A(m,6),B(3,n)两点.(1)直接写出m=________,n=________;(2)根据图象直接写出使kx+b<成立的x的取值范围________;(3)在x轴上找一点P使PA+PB的值最小,求出P点的坐标.17.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线y= 上的概率.18.如图,已知反比例函数y=的图象经过点A(﹣3,﹣2).(1)求反比例函数的解析式;(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.参考答案一、单选题1. D2. D3.C4.B5.B6. C7. B8.C9.D二、填空题10.m>511.-212.6+213.-3三、解答题14.解:由函数y=(m+3)x m²+3m+1为反比例函数可知m2+3m+1=-1,且m+1≠0解得m=-1(舍去),m=-2,m的值是-215.(1)∵点P(-3,1)在反比例函数的图象上,由得.∴反比例函数的解析式为.(2)或.四、综合题16.(1)1;2(2)0<x<1或x>3(3)解:由(1)知A点坐标为(1,6),B点坐标为(3,2),则点A关于x的轴对称点C的坐标(1,﹣6),设直线BC的解析式为y=kx+b,将点B、C坐标代入,得:,解得:,则直线BC的解析式为y=4x﹣10,当y=0时,由4x﹣10=0得:x= ,∴点P的坐标为(,0).17.(1)解:根据题意画出树状图如下:(2)解:当x=﹣1时,y= =﹣2;当x=1时,y= =2;当x=2时,y= =1.∴一共有9种等可能的情况,点(x,y)落在双曲线y= 上有2种情况:(1,2),(2,1),∴点(x,y)落在双曲线y= 上的概率为:18.(1)解:因为反比例函数y=的图象经过点A(﹣3,﹣2),把x=﹣3,y=﹣2代入解析式可得:k=6,所以解析式为:y=(2)解:∵k=6>0,∴图象在一、三象限,y随x的增大而减小,又∵0<1<3,∴B(1,m)、C(3,n)两个点在第一象限,∴m>n.。

2019届中考复习反比例函数K的几何意义专题试卷含答案

2019届中考复习反比例函数K的几何意义专题试卷含答案

2019届中考复习反比例函数K 的几何意义专题试卷含答案一、选择题1、如图1,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A、逐渐增大B、不变C、逐渐减小D、先增大后减小2、如图2,已知P是反比例函数y=(x>0)图象上一点,点B的坐标为(5,0),A是y轴正半轴上一点,且AP⊥BP,AP:BP=1:3,那么四边形AOBP的面积为()A、16B、20C、24D、283、如图3,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC ﹣S△BAD为()A、36B、12C、6D、3图1 图2 图3 4、如图4,反比例函数y= 的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A、2B、4C、5D、85、如图5,在平面直角坐标系中,点A在第一象限,AB⊥y轴于点B,函数(k>0,x>0)的图象与线段AB交于点C,且AB=3BC.若△AOB的面积为12,则k的值为()A、4 B、6 C、8 D、126、如图6,A是双曲线y=﹣上一点,过点A向x轴作垂线,垂足为B,向y轴作垂线,垂足为C,则四边形OBAC的面积为()A、6B、5C、10D、﹣5图4 图5 图6 7、如图7,过反比例函数y= (x>0)的图像上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A、2B、3C、4D、58、如图8,在平面直角坐标系xOy中,⊙A切y轴于点B,且点A在反比例函数y= (x>0)的图象上,连接OA交⊙A于点C,且点C为OA中点,则图中阴影部分的面积为()A、4 ﹣B、4C、2D、2图7 图8二、填空题9、如图9,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数y= 的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=________.10、如图10,以▱ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数的图象交BC于D,连接AD,则四边形AOCD的面积是________.11、如图11,在平面直角坐标系中,反比例函数(x>0)的图象交矩形OABC 的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=________ .]图9 图10 图11 12、如图12,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数(x>0)和(x>0)的图象交于P、Q、两点,若S△POQ=14,则k的值为________ .13、如图13,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,反比例函数(x>0)的图像经过点A,若S△BEC=10,则k等于________.14、如图14,双曲线y=经过Rt△OMN斜边ON上的点A,与直角边MN相交于点B,已知OA=2AN,△OAB的面积为6,则k的值是________图12 图13 图1415、反比例反数y=(x>0)的图象如图15所示,点B在图象上,连接OB并延长到点A,使AB=OB,过点A作AC∥y轴交y=(x>0)的图象于点C,连接BC、OC,S△BOC=3,则k=________ .16、如图16,矩形ABCD的顶点A,B的坐标分别是A(﹣1,0),B(0,﹣2),反比例函数y=的图象经过顶点C,AD边交y轴于点E,若四边形BCDE的面积等于△ABE面积的5倍,则k的值等于________ .17、如图17,在平面直角坐标系中,△ABC的边AB∥x轴,点A在双曲线y=(x<0)上,点B在双曲线y=(x>0)上,边AC中点D在x轴上,△ABC的面积为8,则k= ________.图15 图16 图1718、如图18所示,反比例函数y= (k≠0,x>0)的图象经过矩形OABC 的对角线AC的中点D.若矩形OABC的面积为8,则k的值为________ 19、如图19,点A,B在反比例函数y= (k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是________20、如图20,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B,C在反比例函数(x>0)的图象上,则△OAB的面积等于________ .图18 图19 图2021、如图21,直线l⊥x轴于点P,且与反比例函数y1(x>0)及y2= (x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=________.22、如图22,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠AOB=30°,AB=BO,反比例函数y= (x<0)的图象经过点A,若S△ABO= ,则k的值为________.23、如图23,反比例函数y= (k≠0)的图象经过A,B两点,过点A作AC⊥x 轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE的面积为2,则k的值为________.图21 图22 图2324、如图,点A是反比例函数y1= (x>0)图象上一点,过点A作x轴的平行线,交反比例函数y2= (x>0)的图象于点B,连接OA、OB ,若△OAB的面积为2,则k的值为________.25、如图,等腰△ABC中,AB=AC,BC∥x轴,点A,C在反比例函数y= (x>0)的图象上,点B在反比例函数y= (x>0)的图象上,则△ABC的面积为________.26、如图,已知A是双曲线y= (x>0)上一点,过点A作AB∥y轴,交双曲线y=﹣(x>0)于点B,过点B作BC⊥AB交y轴于点C,连接AC,则△ABC的面积为________.27、如图,已知点A是双曲线y= 在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边做等腰直角△ABC,点C 在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y= (k<0)上运动,则k的值是________28、如图,点P(3a,a)是反比例函y= (k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为________.29、如图,点A在双曲线y= 上,点B在双曲线y= 上,且AB∥y轴,C,D在y轴上,若四边形ABCD为平行四边形,则它的面积为________.30、如图,在直角坐标系中,矩形OABC的顶点A在x轴上,顶点C在y 轴上,B(4,3),连接OB,将△OAB沿直线OB翻折,得△ODB,OD与BC相交于点E,若双曲线经过点E,则k= ;答案解析部分一、单选题1、【答案】C【考点】反比例函数系数k的几何意义【解析】【解答】解:设点P的坐标为(x,),∵PB⊥y轴于点B,点A是x轴正半轴上的一个定点,∴四边形OAPB是个直角梯形,∴四边形OAPB的面积=(PB+AO)•BO=(x+AO)•=+=+•,∵AO是定值,∴四边形OAPB的面积是个减函数,即点P的横坐标逐渐增大时四边形OAPB的面积逐渐减小.故选:C.【分析】由双曲线y=(x>0)设出点P的坐标,运用坐标表示出四边形OAPB的面积函数关系式即可判定.2、【答案】B【考点】反比例函数系数k的几何意义,相似三角形的判定与性质【解析】【解答】解:作PM⊥x轴,PN⊥y轴.则△APN∽△BPM∴=∴P纵坐标比横坐标是3:1,设P的横坐标是x,则纵坐标是3x.3x=即:x2=4∴x=2∴P的坐标是:(2,6)∴PB方程y=﹣2x+2PA方程y=x+5∴A的坐标是(0,5)连接OP,三角形OPA面积=5,三角形OPB面积=15,∴四边形AOBP的面积为20.故选B.【分析】作PM⊥x轴,PN⊥y轴.则△APN∽△BPM,即可得到P纵坐标比横坐标是3:1,从而求得P的坐标,进而求得面积.3、【答案】D【考点】反比例函数系数k的几何意义,等腰直角三角形【解析】【解答】解:设△OAC和△BAD的直角边长分别为a、b,则点B的坐标为(a+b,a﹣b).∵点B在反比例函数y= 的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=6.∴S△OAC﹣S△BAD= a2﹣b2= (a2﹣b2)= ×6=3.故选D.【分析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.本题考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.本题属于基础题,难度不大,解决该题型题目时,设出等腰直角三角形的直角边,用其表示出反比例函数上点的坐标是关键.4、【答案】B【考点】反比例函数系数k的几何意义【解析】【解答】解:∵y= ,∴OA•OD=2.∵D是AB的中点,∴AB=2AD.∴矩形的面积=OA•AB=2AD•OA=2×2=4.故选:B.【分析】由反比例函数的系数k的几何意义可知:OA•AD=2,然后可求得OA•AB的值,从而可求得矩形OABC的面积.本题主要考查的是反比例函数k的几何意义,掌握反比例函数系数k的几何意义是解题的关键.5、【答案】C【考点】反比例函数系数k的几何意义【解析】【解答】解:连结OC,如图,∵AB⊥y轴于点B,AB=3BC,∴S△AOB=3S△BOC,∴S△BOC= ×12=4,∴|k|=4,而k>0,∴k=8.故选C.【分析】连结OC,如图,根据三角形面积公式,由AB=3BC得到S△AOB=3S△BOC,可计算出S△BOC=4,再根据反比例函数比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.6、【答案】B【考点】反比例函数系数k的几何意义【解析】【解答】解:∵点A在双曲线y=﹣上,且AC⊥y轴,AB⊥x轴,∴S矩形OBAC=|k|=5.故选B.【分析】由“点A在双曲线y=﹣上,且AC⊥y轴,AB⊥x轴”结合反比例函数系数k的几何意义,即可得出四边形OBAC的面积.7、【答案】C【考点】反比例函数的性质,反比例函数系数k的几何意义【解析】【解答】解:∵点A是反比例函数y= 图像上一点,且AB⊥x轴于点B,∴S△AOB= |k|=2,解得:k=±4.∵反比例函数在第一象限有图像,∴k=4.故选C.【分析】根据点A在反比例函数图像上结合反比例函数系数k的几何意义,即可得出关于k的含绝对值符号的一元一次方程,解方程求出k值,再结合反比例函数在第一象限内有图像即可确定k值.8、【答案】D【考点】反比例函数系数k的几何意义,扇形面积的计算【解析】【解答】解:连接AB,BC,∵点A在反比例函数y= (x>0)的图象上,∴S△AOB= ×4 =2 ,∴OB•AB=2 ,∵点C为OA中点,∴BC= OA=AC,∴△ABC是等边三角形,∴∠OAB=60°,∴=tan60°= ,∴OB= AB,∴•AB•AB=2 ,∴AB=2,∴S扇形= = = ,∴S阴影=S△AOB﹣S扇形=2 ﹣,故选D.【分析】连接AB,根据反比例函数系数k的几何意义得出S△AOB=2 ,根据点C 为OA中点,得出AB= OA,即可求得∠OAB=60°,根据面积求得AB的长,然后求得扇形的面积,即可求得阴影的面积.二、填空题9、【答案】6【考点】反比例函数系数k的几何意义【解析】【解答】解:∵点P(6,3),∴点A的横坐标为6,点B的纵坐标为3,代入反比例函数y= 得,点A的纵坐标为,点B的横坐标为,即AM= ,NB= ,∵S四边形OAPB=12,即S矩形OMPN﹣S△OAM﹣S△NBO=12,6×3﹣×6×﹣×3×=12,解得:k=6.故答案为:6.【分析】根据点P(6,3),可得点A的横坐标为6,点B的纵坐标为3,代入函数解析式分别求出点A的纵坐标和点B的横坐标,然后根据四边形OAPB的面积为12,列出方程求出k的值.本题考查了反比例函数系数k的几何意义,解答本题的关键是根据点A、B的纵横坐标,代入解析式表示出其坐标,然后根据面积公式求解.10、【答案】9【考点】反比例函数系数k的几何意义,平行四边形的性质【解析】【解答】解:∵四边形ABCD是平行四边形,A、C的坐标分别是(2,4)、(3,0),∴点B的坐标为:(5,4),把点A(2,4)代入反比例函数y=得:k=8,∴反比例函数的解析式为:y=;设直线BC的解析式为:y=kx+b,把点B(5,4),C(3,0)代入得:,解得:k=2,b=﹣6,∴直线BC的解析式为:y=2x﹣6,解方程组得:,或(不合题意,舍去),∴点D的坐标为:(4,2),即D为BC的中点,∴△ABD的面积=平行四边形ABCD的面积,∴四边形AOCD的面积=平行四边形ABCO的面积﹣△ABD的面积=3×4﹣×3×4=9;故答案为:9.【分析】先求出反比例函数和直线BC的解析式,再求出由两个解析式组成方程组的解,得出点D的坐标,得出D为BC的中点,△ABD的面积=平行四边形ABCD的面积,即可求出四边形AOCD的面积.11、【答案】3【考点】反比例函数系数k的几何意义【解析】【解答】解:连接OB,如图所示:∵四边形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面积=△OBC的面积,∵D、E在反比例函数y=(x>0)的图象上,∴△OAD的面积=△OCE的面积,∴△OBD的面积=△OBE的面积=四边形ODBE的面积=3,∵BE=2EC,∴△OCE的面积=△OBE的面积=,∴k=3;故答案为:3.【分析】连接OB,由矩形的性质和已知条件得出△OBD的面积=△OBE的面积=四边形ODBE的面积=3,在求出△OCE的面积,即可得出k的值.12、【答案】-20【考点】反比例函数系数k的几何意义,反比例函数与一次函数的交点问题【解析】【解答】解:∵S△POQ=S△OMQ+S△OMP,∴|k|+×|8|=14,∴|k|=20,而k<0,∴k=﹣20.故答案为﹣20.【分析】由于S△POQ=S△OMQ+S△OMP,根据反比例函数比例系数k的几何意义得到|k|+×|8|=14,然后结合函数y=的图象所在的象限解方程得到满足条件的k 的值.13、【答案】20【考点】反比例函数系数k的几何意义,相似三角形的判定与性质【解析】【解答】∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC,∠DBC=∠ACB,又∠DBC=∠EBO,∴∠EBO=∠ACB,又∠BOE=∠CBA=90°,∴△BOE∽△CBA,∴,即BC×OE=BO×AB.又∵S△BEC=10,即BC×OE=20=BO×AB=|k|.又由于反比例函数图象在第一象限,k>0.所以k等于20.故答案为:20.【分析】先根据题意证明△BOE∽△CBA,根据相似比及面积公式得出BO×AB的值即为|k|的值,再由函数所在的象限确定k的值.此题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.14、【答案】【考点】反比例函数系数k的几何意义【解析】【解答】解:作AC⊥x轴于C,如图,设A点坐标为(2a,),∵OA=2AN,∴OC=2CM,∴OM=3a,∴B点坐标为(3a,),∵S△AOB+S△BOM=S△AOC+S梯形ABMC,而△OAB的面积为6,S△BOM=S△AOC,∴S梯形ABMC=6,∴(+)•a=6,∴k=.故答案为.【分析】作AC⊥x轴于C,如图,设A点坐标为(2a,),由于OA=2AN,则OC=2CM,所以OM=3a,根据反比例函数图象上点的坐标特征得到B点坐标为(3a,),则S△AOB+S△BOM=S△AOC+S梯形ABMC,根据反比例函数y=(k≠0)系数k的几何意义得到S△BOM=S△AOC,所以S梯形ABMC=6,利用梯形的面积公式得到(+)•a=6,解得k=.15、、【答案】4【考点】反比例函数系数k的几何意义【解析】【解答】解:如图:延长AC交x轴于D点,设B点坐标为(a,),由AB=OB,得A(2a,),D(2a,0).由AB=OB,得S△ABC=S△BOC=3,S△COD=OD•CD=k.由三角形面积的和差,得S△AOD﹣S△COD=S△AOC,即×2a×﹣k=6.解得k=4.故答案为:4.【分析】根据线段中点的性质,可得A点坐标,根据三角形的中线分三角形所得两个三角形的面积相等,可得S△ABC=S△BOC=3,根据反比例函数的定义,可得△COD的面积,根据三角形面积的和差,可得关于k的方程,根据解方程,可得答案.16、【答案】【考点】反比例函数系数k的几何意义【解析】【解答】解:如图,作CF⊥y轴于F,作EG⊥BC于G,∵∠EGB=∠EAB=∠ABG=90°,∴四边形ABGE是矩形,在△AEB和△GBE中,,∴△AEB≌△GBE(SSS),∵A、B的坐标分别是A(﹣1,0)、B(0,﹣2),∴AB直线解析式为:y=kx+b,。

2019年中考数学函数及其图象(反比例函数)专题(有答案)

2019年中考数学函数及其图象(反比例函数)专题(有答案)

2019年中考数学函数及其图象(反比例函数)专题(有答案)一、单选题(共3题;共6分)1.验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表.根据表中数据,可得y关于x的函数表达式为()A. B. C. D.2.点(-1,4)在反比例函数y= 的图象上,则下列各点在此函数图象上的是( ).A. (4,-1)B. (,1)C. (-4,-1)D. (,2)3.已知某函数的图象C与函数y= 的图象关于直线y=2对称下列命题:①图象C与函数y= 的象交于点(,2);②(,-2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B (x2,y2)是图象C上任意两点,若x1>x2,则y1-y2,其中真命题是()A. ①②B. ①③④C. ②③④D. ①②③④二、填空题(共4题;共4分)4.如图,矩形ABCD的顶点A,C都在曲线y= (常数k>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是________.5.如图,已知在平面直角坐标系xoy中,直线分别交x轴,y轴于点A和点B,分别交反比例函数,的图象于点C和点D,过点C作CE⊥x轴于点E,连结OC,OD. 若△COE的面积与△DOB的面积相等,则k的值是________.6.如图,在平面直角坐标系中,O为坐标原点,ABCD的边AB在x轴上,顶点D在y轴的正半轴上,点C在第一象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处,点B恰好为OE的中点,DE与BC 交于点F。

若y= (k≠0)图象经过点C,且S△BEF=1,则k的值为________ 。

7.如图,过原点的直线与反比例函数y= (k>0)的图象交于A,B两点,点A在第一象限点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为________.三、解答题(共3题;共35分)8.如图,在直角坐标系中,已知点(4,0),等边三角形的顶点在反比例函数的图象上(1)求反比例函数的表达式.(2)把△向右平移个单位长度,对应得到△,当这个函数图象经过△一边的中点时,求的值.9.方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为(单位:千米/小时),且全程速度限定为不超过120千米/小时。

北京市海淀区2019届中考复习《反比例函数》专题复习练习含答案

北京市海淀区2019届中考复习《反比例函数》专题复习练习含答案

北京市海淀区普通中学2019届初三中考数学复习 反比例函数 专题复习练习题1.下列函数中,y 是x 的反比例函数的是( )A .y =1x 2B .xy =8C .y =2x +5D .y =3x+5 2.当x >0时,四个函数y =-x ,y =2x +1,y =-1x ,y =2x,其中y 随x 的增大而增大的函数有( )A .1个B .2个C .3个D .4个3.某公司计划新建一个容积V(m 3)一定的长方体污水处理池,池的底面积S(m 2)与其深度h(m )之间的函数关系式为S =V h(h≠0),这个函数的图象大致是图中的( )4.已知一块蓄电池的电压为定值,以此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图,如果以此蓄电池为电源的用电器限制电流不超过10 A ,那么此用电器的可变电阻为( )A .不小于3.2 ΩB .不大于3.2 ΩC .不小于12 ΩD .不大于12 Ω5.函数y =-ax +a 与y =-a x(a≠0)在同一平面直角坐标系中的图象可能是( )6.若函数y =2x +1与函数y =k x 的图象相交于点(2,m),则下列各点不在函数y =k x的图象上的是( )A .(-2,-5) B.⎝ ⎛⎭⎪⎫52,4 C .(-1,10) D .(5,2) 7.如图,双曲线y =k x(k >0)经过矩形OABC 的边BC 的中点E ,交AB 于点D ,若梯形ODBC 的面积为3,则双曲线的解析式为( )A .y =1xB .y =2xC .y =3xD .y =6x8. 已知y -2与x 成反比例,当x =3时,y =1,则y 与x 之间的函数解析式为_______________.9. 反比例函数y =m +1x的图象经过(2,1),则m 的值是________. 10.若A(a ,b),B(a -2,c)两点均在函数y =1x的图象上,且a <0,则b 与c 的大小关系为________.11. 双曲线y =m -1x在每个象限内,函数值y 随着x 的增大而增大,则m 的取值范围是________.12.已知点A(x 1,y 1),B(x 2,y 2)都在反比例函数y =9x的图象上,若x 1x 2=-3,则y 1y 2的值为________.13.一块长方体大理石板的A ,B ,C 三个面上的边长如图,如果大理石板的A 面向下放在地上时地面所受压强为m 帕,那么把大理石板的B 面向下放在地上时,地面所受压强是________帕.14. 已知函数y =(n +3)xn 2+2n -9是反比例函数,且在每一个象限内,y 随x 增大而减小,求其函数解析式.15. 由物理学知识知道,在力F(N )的作用下,物体会在力F 的方向上发生位移s(m ),力F 所做的功W(J )满足W =Fs ,当W 为定值时,F 与s 之间的函数图象如图所示.(1)力F 所做的功是多少?(2)试确定F 与s 之间的函数解析式;(3)当F =4 N 时,s 是多少?答案:1—7 BBCAC CB8. y =-3x +29. 110. b <c11. m <112. -2713. 3m14. 解:由题意得⎩⎪⎨⎪⎧n 2+2n -9=-1,n +3>0,解得n =2,故函数解析式是y =5x .15. 解:(1)W =Fs ,把(2,7.5)代入,得W =7.5×2=15(J ).(2)F =15s (s >0).(3)当F =4 N 时,s =154 m .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数专题复习考点一:反比例函数的概念 反比例函数的三种形式:__xk y =_、 _1-=kx y __、 _k xy =_其中要求_0≠k _. 1.下列函数中,y 是x 的反比例函数的是( D ). A .1)1(=-y x B .11+=x y C .21xy = D .x y 31=2.若y=(a-1)2a x-是反比例函数,则a=( B ).A .a=1B .a=-1C .a=0D .任意实数3.已知y=y 1+y 2,y 1与x 成正比例,y 2与x 2成反比例,且x=2与x=3时,y 的值都等于19,写出y 与x 的函数关系式_______y=5x+236x __________________________. 考点二:反比例函数的图像性质当K>0时,其图像两支曲线分别位于第一,三象限内;在每一个象项,y 随x 增大而减少. 当K<0时,其图像两支曲线分别位于第二,四象限内;在每一个象项,y 随x 增大而增大. 1.已知反比例函数xk y 2-=,其图象在第一、三象限内,则k 的取值范围为___k>2____ 2.反比例函数xmy =的图像两支分布在第二、四象限,则点(m ,m -2)在第__三___象限。

3.若反比例函数22)12(-+=k x k y 的图像经过二、四象限,则k = ___-1____.4. 反比例函数22(31)my m x -=-图象在所在的象限内,y 随x 增大而增大,则m =_-1____. 5.若点(1,2y -)、),1(2y -、),3(3y -都在反比例函数xy 2-=的图象上,则321,,y y y 的大小关系是( B ).A .231y y y << B. 213y y y << C. 321y y y << D. 132y y y << 6.三个反比例函数xk y x ky x k y 321,,===在x 轴上方 的图象,由此观察得到321,,k k k 的大小关系为 ( C ). A .1k >2k >3k B .2k >3k >1k C .3k >2k >1k D .3k >1k >2k考点三:点在反比例函数上或反比例函数经过某点要判断所给的另外的点是否在该图象上,可以将其坐标代入求得的反比例函数解析式中,若满足左边=右边,则在,若不满足左边=右边,则不在. 1.函数xky =的图象经过点(1,—2),则函数y=kx+1的图象不经过( C )。

A .第一象限 B.第二象限 C.第三象限 D.第四象限 2. 已知点(3,1)在反比例函数的图像上.①这个函数的图像分布在那些象限?y 随x 的变化如何变化? (第一、三象限,y 随x 的的增大而减小。

) ②请判断:点6(6,)2B 与点12(,)23C --是否在函数的图像上,并说明理由 (点B 是在函数的图像上,C 点不在。

)考点四:反比例函数与交点问题、与方程、不等式关系1.函数1ky x-=的图象与直线y x =没有交点,则k 的取值范围是( A ) A .1k > B .1k < C .1k >- D .1k <-2.已知一次函数1-=kx y 的图像与反比例函数xy 2=的图像的一个交点坐标为(2,1),那么另一个交点的坐标是( B )A .(-2,1)B .(-1,-2)C .(2,-1)D .(-1,2)3.已知一次函数y=3x+m 与反比例函数y=3m x-的图象有两个交点,当m=__5___时,有一个交点的纵坐标为6.4.(2009年聊城冠二模)如下图,是一次函数与反比例函数的图像,则关于的方程的解为( C ) A .,B .,C .,D .,5.如图,半径为5的⊙P 与轴交于点M (0,-4),N (0,-10),函数的图像过点P ,则= 28 . 考点五:反比例函数与面积问题则垂足为轴的垂线作过有上任意一点是双曲线设,,)1(:,)0(),(A x P k xky n m P ≠=||21||||2121k n m AP OA S OAP =•=⋅⋅=∆).(||||||,,,,)2(如图所示则垂足分别为轴的垂线轴分别作过矩形k n m AP OA S B A y x P OAPB =•=⋅=1.在y=1x的图象中,阴影部分面积不为1的有( B ). b kx y +=xy 2=x xb kx 2=+11=x 22=x 21-=x 12-=x 11=x 22-=x 21=x 12-=x P(Aoy xB2.如图(1),A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( B ) A . 2S = B . 4S = C .24S << D .4S >3.如图(2),是双曲线 y=x 6, y=x2在第一象限内的图象,直线AB ∥x 轴分别交双曲线于A 、B 两点,则△AOB 面积为(C ) A 、4 B 、3 C 、2D 、1 4.如图(3)已知双曲线(0)ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为( B ) A .12 B .9 C .6 D .45.如图(4)直线(>0)与双曲线在第一象限内交点面积为R ,与轴交点为P ,与轴交点为Q ;作RM ⊥轴于点M ,若△OPQ 与△PRM 的面积是4:1,则3 .6. 如右图在反比例函数的图象上有三点P 1、P 2、P 3, 它们的 横坐标依次为1、2、3, 分别过这3个点作x 轴、y 轴的垂线, 设图中阴影 部分面积依次为S 1、S 2、S 3, 则_______4_____. 考点五:反比例函数与最短问题1.(2013江西)如图,直线y =x +a -2与双曲线y=x4交于A ,B 两点,则当线段AB 的长度取最小值时,a 的值为( C ). A .0 B .1 C .2D .5考点六:反比例函数的图像与位置关系 1. 反比例函数2k y x-=与正比例函数2y kx =在同一坐标系中的图象不可能...是( D )A .B .C .D .DBAyxOC )0(4>-=x xy 123S S S ++=x yOx yO x yO xyO (1)(2)(3)(4)考点七:反比例函数与实际问题1. 某气球充满一定质量的气体后,当温度不变时,气球内的气体的气压P (kPa )是气体体积V (m 3)的反比例函数,其图象如图所示,当气球内的气压大于140kPa 时,•气球将爆炸,为了安全起见,气体体积应( B ).2. A .不大于2435m 3 B .不小于2435m 3C .不大于2437m 3D .不小于2437m 32.向高层建筑屋顶的水箱注水,水对水箱底部的压强p 与水深h 的函数关系的图象是(水箱能容纳的水的最大高度为H )图中的( D ).3.制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y (℃),从加热开始计算的时间为x (分钟).据了解,设该材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么操作时间是多少?解:(1)材料加热时,设y=ax+15(a ≠0), 由题意得60=5a+15,解得a=9,∴材料加热时,y 与x 的函数关系式为y=9x+15(0≤x ≤5).停止加热时,设y=x k (k ≠0),由题意得60=5k,解得k=300, ∴停止加热进行操作时y 与x 的函数关系式为y=x300(5≤x ≤20);(2)把y=15代入y=x300,得x=20,∴从开始加热到停止操作,共经历了20分钟.操作时间为20-5=15分钟 答:操作时间为15分钟。

4.公司有海产品共2 104千克,为寻求合适的销售价格,进行了8天试销,情况如下:第1天 第2天 第3天 第4天 第5天 第6天 第7天 第8天 售价x(元/千克) 400 250 240 200 150 125 120 销售量y(千克)304048608096100观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1) 写出这个反比例函数的解析式,并补全表格;( D ) (B ) (A ) (C ) h p O H h p O H h p O H H h p O(2) 在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3) 在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务? 解:(1)∵xy=12000,函数解析式为y=x12000, 将y=40和x=240代入上式中求出相对应的x=300和y=50,故填表如下:第1天 第2天 第3天 第4天 第5天 第6天 第7天 第8天售价x (元/千克) 400300 250 240 200 150 125 120 销售量 y (千克)30404850608096100(2)销售8天后剩下的数量m=2104-(30+40+48+50+60+80+96+100)=1600(千克), 当x=150时,y=15012000=80.∴y m =1600÷80=20(天),∴余下的这些海产品预计再用20天可以全部售出.(3)1600-80×15=400(千克),400÷2=200(千克/天), 即如果正好用2天售完,那么每天需要售出200千克. 当y=200时,x20012000=60.所以新确定的价格最高不超过60元/千克才能完成销售任务.考考点八:反比例函数的规律题1. 已知是正整数,是反比例函数图象上的一列点,其中.记,,若(是非零常数),则的值是_______(用含和的代数式表示).【答案】2.如图,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3…△P n A n-1A n 都是等腰直角三角形,点P 1、P 2、P 3…P n 都在函数y=x4(x >0)的图象上,斜边OA 1、A 1A 2、A 2A 3…A n-1A n 都在x 轴上. (1)求A 1、A 2点的坐标;(2)猜想A n 点的坐标.(直接写出结果即可)解:(1)根据等腰直角三角形的性质,可设点P 1(x ,y ), 又y=x4 ,则x 2=4,x=±2(负值舍去), 再根据等腰三角形的三线合一,得A 1的坐标是(4,0), 设点P 2的坐标是(4+y ,y ),又y=x4,则y (4+y )=4,又y >0,则y=2 2-2, n 111222(,),(,),,(,),n n n P x y P x y P x y ky x=121,2,,,n x x x n ===112A x y =223A x y =1n n n A x y +=,,1A a =a 12n A A A a n (2)1na n +再根据等腰三角形的三线合一,得A 2的坐标是(4 2,0);(2)可进一步求得点A3的坐标是(4 3,0),推而广之,则An 点的坐标是(4 n ,0). 考点九:反比例函数的综合题1.(临沂)如图,一次函数y=kx+b 与反比例函数y=xm的图象相较于A (2,3),B (﹣3,n )两点.(1)求一次函数与反比例函数的解析式; (2)根据所给条件,请直接写出不等式kx+b >xm的解集; (3)过点B 作BC ⊥x 轴,垂足为C ,求S △ABC .(1)∵点A (2,3)在y=x m的图象上,∴m=6, ∴反比例函数的解析式为:y=x 6,∴n=36-=-2,∵A (2,3),B (-3,-2)两点在y=kx+b 上,∴由3=2k+b,−2=−3k+b 解得:k =1,b =1, ∴一次函数的解析式为:y=x+1; (2)-3<x <0或x >2;(3)以BC 为底,则BC 边上的高AE 为3+2=5, ∴S △ABC=21×2×5=5. 2.(聊城)如图,已知一次函数y =kx +b 的图象交反比例函数42(0)my x x-=>的图象于点A 、B ,交x 轴于点C . (1)求m 的取值范围;(2)若点A 的坐标是(2,-4),且 BC AB = 13,求m 的值和一次函数的解析式.解:(1)根据题意,反比例函数图象位于第四象限,∴4-2m <0,解得m >2; (2)∵点A (2,-4)在反比例函数图象上,∴224m-=-4,解得m=6, ∴反比例函数解析式为y=-x8, ∵AB BC =31,∴AC BC =41, 设点B 的坐标为(x ,y ),则点B 到x 轴的距离为-y ,点A 到x 轴的距离为4,∴4y -=AC BC =41,解得y=-1, ∴x8-=-1,解得x=8,∴点B 的坐标是B (8,-1),设这个一次函数的解析式为y=kx+b ,∵点A 、B 是一次函数与反比例函数图象的交点,∴2k+b =−4,8k+b =−1,解得k =21,b =−5, ∴一次函数的解析式是y=21x-5. 3.(枣庄市)如图一次函数y =ax +b 的图象与反比例函数y = kx的图象交于A 、B 两点,与x 轴交于点C ,与y 轴交于点D ,已知OA =10,点B 的坐标为(m ,-2),t a n ∠AOC = 1 3. (1)求反比例函数的解析式; (2)求一次函数的解析式;(3)在y 轴上存在一点P ,使△PDC 与△CDO 相似,求P 点的坐标. 解:(1)过A 作AE 垂直x 轴,垂足为E , ∵tan ∠AOC= 13,∴OE=3AE ∵OA=10,OE 2+AE 2=10,∴AE=1,OE=3∴点A 的坐标为(3,1).∵A 点在双曲线上,∴1=3k,∴k=3. ∴双曲线的解析式为y =x3。

相关文档
最新文档