中考数学专题《反比例函数》综合检测试卷及答案

合集下载

中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。

中考数学压轴题专题反比例函数的经典综合题附答案

中考数学压轴题专题反比例函数的经典综合题附答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y= (k>0,x>0)的图象上,点D的坐标为(,2).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y= (k>0,x >0)的图象上时,求菱形ABCD平移的距离.【答案】(1)解:作DE⊥BO,DF⊥x轴于点F,∵点D的坐标为(,2),∴DO=AD=3,∴A点坐标为:(,5),∴k=5 ;(2)解:∵将菱形ABCD向右平移,使点D落在反比例函数y= (x>0)的图象上D′,∴DF=D′F′=2,∴D′点的纵坐标为2,设点D′(x,2)∴2= ,解得x= ,∴FF′=OF′﹣OF= ﹣ = ,∴菱形ABCD平移的距离为,同理,将菱形ABCD向右平移,使点B落在反比例函数y= (x>0)的图象上,菱形ABCD平移的距离为,综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】(1)根据菱形的性质和D的坐标即可求出A的坐标,代入求出即可;(2)B和D可能落在反比例函数的图象上,根据平移求出即可.2.已知反比例函数y= 的图象经过点A(﹣,1).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB.判断点B是否在此反比例函数的图象上,并说明理由;(3)已知点P(m, m+6)也在此反比例函数的图象上(其中m<0),过P点作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是,设Q点的纵坐标为n,求n2﹣2 n+9的值.【答案】(1)解:由题意得1= ,解得k=﹣,∴反比例函数的解析式为y=﹣(2)解:过点A作x轴的垂线交x轴于点C.在Rt△AOC中,OC= ,AC=1,∴OA= =2,∠AOC=30°,∵将线段OA绕O点顺时针旋转30°得到线段OB,∴∠AOB=30°,OB=OA=2,∴∠BOC=60°.过点B作x轴的垂线交x轴于点D.在Rt△BOD中,BD=OB•sin∠BOD= ,OD= OB=1,∴B点坐标为(﹣1,),将x=﹣1代入y=﹣中,得y= ,∴点B(﹣1,)在反比例函数y=﹣的图象上(3)解:由y=﹣得xy=﹣,∵点P(m, m+6)在反比例函数y=﹣的图象上,其中m<0,∴m( m+6)=﹣,∴m2+2 m+1=0,∵PQ⊥x轴,∴Q点的坐标为(m,n).∵△OQM的面积是,∴OM•QM= ,∵m<0,∴mn=﹣1,∴m2n2+2 mn2+n2=0,∴n2﹣2 n=﹣1,∴n2﹣2 n+9=8.【解析】【分析】(1)由于反比例函数y= 的图象经过点A(﹣,1),运用待定系数法即可求出此反比例函数的解析式;(2)首先由点A的坐标,可求出OA的长度,∠AOC的大小,然后根据旋转的性质得出∠AOB=30°,OB=OA,再求出点B的坐标,进而判断点B是否在此反比例函数的图象上;(3)把点P(m, m+6)代入反比例函数的解析式,得到关于m的一元二次方程;根据题意,可得Q点的坐标为(m,n),再由△OQM的面积是,根据三角形的面积公式及m<0,得出mn的值,最后将所求的代数式变形,把mn的值代入,即可求出n2﹣2 n+9的值.3.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2= (c≠0)的图象相交于点B(3,2)、C(﹣1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.【答案】(1)解:把B(3,2)代入得:k=6∴反比例函数解析式为:把C(﹣1,n)代入,得:n=﹣6∴C(﹣1,﹣6)把B(3,2)、C(﹣1,﹣6)分别代入y1=ax+b,得:,解得:所以一次函数解析式为y1=2x﹣4(2)解:由图可知,当写出y1>y2时x的取值范围是﹣1<x<0或者x>3.(3)解:y轴上存在点P,使△PAB为直角三角形如图,过B作BP1⊥y轴于P1,∠B P1 A=0,△P1AB为直角三角形此时,P1(0,2)过B作BP2⊥AB交y轴于P2∠P2BA=90,△P2AB为直角三角形在Rt△P1AB中,在Rt△P1 AB和Rt△P2 AB∴∴P2(0,)综上所述,P1(0,2)、P2(0,).【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分三种情况,利用勾股定理或锐角三角函数的定义建立方程求解即可得出结论.4.已知:O是坐标原点,P(m,n)(m>0)是函数y= (k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为s,且s=1+ .(1)当n=1时,求点A的坐标;(2)若OP=AP,求k的值;(3)设n是小于20的整数,且k≠ ,求OP2的最小值.【答案】(1)解:过点P作PQ⊥x轴于Q,则PQ=n,OQ=m,当n=1时,s= ,∴a= = .(2)解:解法一:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n= .∴1+ = •an.即n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.解法二:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n.设△OPQ的面积为s1则:s1= ∴•mn= (1+ ),即:n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.(3)解:解法一:∵PA⊥OP,PQ⊥OA,∴△OPQ∽△OAP.设:△OPQ的面积为s1,则 =即: = 化简得:化简得:2n4+2k2﹣kn4﹣4k=0(k﹣2)(2k﹣n4)=0,∴k=2或k= (舍去),∴当n是小于20的整数时,k=2.∵OP2=n2+m2=n2+ 又m>0,k=2,∴n是大于0且小于20的整数.当n=1时,OP2=5,当n=2时,OP2=5,当n=3时,OP2=32+ =9+ = ,当n是大于3且小于20的整数时,即当n=4、5、6…19时,OP2的值分别是:42+ 、52+ 、62+ …192+ ,∵192+ >182+ >32+ >5,∴OP2的最小值是5.【解析】【分析】(1)利用△OPA面积定义构建关于a的方程,求出A的坐标;(2)由已知OP=AP,PA⊥OP,可得△OPA是等腰直角三角形,由其面积构建关于n的方程,转化为k的方程,求出k;(3)利用相似三角形的面积比等于相似比的平方构建关于k的方程,最值问题的基本解决方法就是函数思想,利用勾股定理用m、n的代数式表达OP2,,在n的范围内求出OP2的最值.5.如图,在平面直角坐标系中,直线与双曲线相交于点A(,6)和点B(-3,),直线AB与轴交于点C.(1)求直线AB的表达式;(2)求的值.【答案】(1)解:∵点A(,6)和点B(-3,)在双曲线,∴m=1,n=-2,∴点A(1,6),点B(-3,-2),将点A、B代入直线,得,解得,∴直线AB的表达式为:(2)解:分别过点A、B作AM⊥y轴,BN⊥y轴,垂足分别为点M、N,则∠AMO=∠BNO=90°,AM=1,BN=3,∴AM//BN,∴△ACM∽△BCN,∴【解析】【分析】根据反比例函数的解析式可得m和n的值,利用待定系数法求一次函数的表达式;作辅助线,构建平行线,根据平行线分线段成比例定理可得结论.6.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.7.如图,在矩形OABC中,OA=6,OC=4,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?【答案】(1)解:∵在矩形OABC中,OA=6,OC=4,∴B(6,4),∵F为AB的中点,∴F(6,2),又∵点F在反比例函数(k>0)的图象上,∴k=12,∴该函数的解析式为y= (x>0)(2)解:由题意知E,F两点坐标分别为E(,4),F(6,),∴,==== ,∴当k=12时,S有最大值.S最大=3【解析】【分析】)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,利用二次函数求出最值即可.8.在平面直角坐标系中,我们定义点P(a,b)的“变换点”为Q.且规定:当a≥b时,Q 为(b,﹣a);当a<b时,Q为(a,﹣b).(1)点(2,1)的变换点坐标为________;(2)若点A(a,﹣2)的变换点在函数y= 的图象上,求a的值;(3)已知直线l与坐标轴交于(6,0),(0,3)两点.将直线l上所有点的变换点组成一个新的图形记作M.判断抛物线y=x2+c与图形M的交点个数,以及相应的c的取值范围,请直接写出结论.【答案】(1)(1,﹣2)(2)解:当a≥﹣2时,则A(a,﹣2)的变换点坐标为(﹣2,﹣a),代入y= 可得﹣a= ,解得a= ;当a<﹣2时,则A(a,﹣2)的变换点坐标为(a,2),代入y= 可得2= ,解得a= ,不符合题意;综上可知a的值为;(3)解:设直线l的解析式为y=kx+b (k≠0 ),将点(6,0)、(0,3)代入y=kx+b得:,解得,∴直线l的解析式为y=﹣ x+3.当x=y时,x=﹣ x+3,解得x=2.点C的坐标为(2,﹣2),点C的变换点的坐标为C′( 2,﹣2 ),点(6,0)的变换点的坐标为(0,﹣6),点(0,3)的变换点的坐标为(0,﹣3),当x≥2时,所有变换点组成的图形是以C′( 2,﹣2)为端点,过(0,﹣6 )的一条射线;即:y=2x﹣6,其中x≥2,当x<2时,所有变换点组成的图形是以C′(2,﹣2)为端点,过(0,﹣3)的一条射线,即y= x﹣3,其中,x<2.所以新的图形M是以C′(2,﹣2)为端点的两条射线组成的图形.如图所示:由和得:x2﹣x+c+3=0①和x2﹣2x+c+6=0②讨论一元二次方程根的判别式及抛物线与点C′的位置关系可得:①当方程①无实数根时,即:当c>﹣时,抛物线y=x2+c与图形M没有交点;②当方程①有两个相等实数根时,即:当c=﹣时,抛物线y=x2+c与图形M有一个交点;③当方程②无实数根,且方程①有两个不相等的实数根时,即:当﹣5<c<﹣时,抛物线y=x2+c与图形M有两个交点;④当方程②有两个相等实数根或y=x2+c恰好经过经过点C′时,即:当c=﹣5或c=﹣6时,抛物线y=x2+c与图形M有三个交点;⑤当方程②方程①均有两个不相等的实数根时,且两根均小于2,即:当﹣6<c<﹣5时,抛物线y=x2+c与图形M有四个交点;⑥当c<﹣6时,抛物线y=x2+c与图形M有两个交点.【解析】【解答】解:(1)∵2≥﹣1,∴点(2,1)的变换点坐标为(1,﹣2),故答案为:(1,﹣2);【分析】(1)由变换点的定义可求得答案;(2)由变换点的定义可求得A的变换点,代入函数解析式可求得a的值;(3)先求得直线y=x与直线l的交点坐标,然后分为当x≥2和x<2两种情况,求得M的关系式,然后在画出M的大致图象,然后将抛物线y=x2+c与M的函数关系式组成方程组,然后依据一元二次方程根的判别式进行判断即可.9.如图,已知二次函数的图象与y轴交于点A(0,4),与x 轴交于点B,C,点C坐标为(8,0),连接AB,AC.(1)请直接写出二次函数的解析式.(2)判断△ABC的形状,并说明理由.(3)若点N在x轴上运动,当以点A,N,C为顶点的三角形是等腰三角形时,请写出此时点N的坐标.【答案】(1)解:∵二次函数的图象与y轴交于点A(0,4),与x轴交于点B.C,点C坐标(8,0),∴解得∴抛物线表达式:(2)解:△ABC是直角三角形.令y=0,则解得x1=8,x2=-2,∴点B的坐标为(-2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∴BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形(3)解:∵A(0,4),C(8,0),AC= =4 ,①以A为圆心,以AC长为半径作圆,交轴于N,此时N的坐标为(-8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为( ,0)或( ,0)③作AC的垂直平分线,交g轴于N,此时N的坐标为(3,0),综上,若点N在轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(-8,0)、( ,0)、(3,0)、 ,0)【解析】【分析】(1)根据待定系数法即可求得;(2)根据拋物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC=10然后根据勾股定理的逆定理即可证得△ABC是直角三角形(3)分别以A.C两点为圆心,AC长为半径画弧,与m轴交于三个点,由AC的垂直平分线与c轴交于一个点,即可求得点N的坐标10.已知,抛物线的图象经过点,.(1)求这个抛物线的解析式;(2)如图1,是抛物线对称轴上一点,连接,,试求出当的值最小时点的坐标;(3)如图2,是线段上的一点,过点作轴,与抛物线交于点,若直线把分成面积之比为的两部分,请求出点的坐标.【答案】(1)解:将,的坐标分别代入.得解这个方程组,得,所以,抛物线的解析式为(2)解:如图1,由于点、关于轴对称,所以连接,直线与轴的交点即为所求的点,由,令,得,解得,,点的坐标为,又,易得直线的解析式为:.当时,,点坐标(3)解:设点的坐标为,所以所在的直线方程为.那么,与直线的交点坐标为,与抛物线的交点坐标为.由题意,得① ,即,解这个方程,得或(舍去).② ,即,解这个方程,得或(舍去),综上所述,点的坐标为,或,.【解析】【分析】(1)将点、的坐标代入可得出、的值,继而得出这个抛物线的解析式;(2)由于点、关于轴对称,所以连接,直线与轴的交点即为所求的点,利用待定系数法确定直线的解析式,然后求得该直线与轴的交点坐标即可;(3)如图2,交于,设,根据一次函数和二次函数图象上点的坐标特征,设点的坐标为,,.然后分类讨论:分别利用或,列关于的方程,然后分别解关于的方程,从而得到点坐标11.如图,二次函数y=x2+bx+c的图像与x轴交于A,B两点,B点坐标为(4,0),与y轴交于点C(0,4).点D为抛物线上一点(1)求抛物线的解析式及A点坐标;(2)若△BCD是以BC为直角边的直角三角形时,求点D的坐标;(3)若△BCD是锐角三角形,请直接写出点D的横坐标m的取值范围________.【答案】(1)解:将B(4,0),C(0,4)代入y=x2+bx+c得,,解得,所以抛物线的解析式为,令y=0,得,解得,,∴A点的坐标为(1,0)(2)解:设D点横坐标为,则纵坐标为,①当∠BCD=90°时,如下图所示,连接BC,过C点作CD⊥BC与抛物线交于点D,过D作DE⊥y轴与点E,由B、C坐标可知,OB=OC=4,∴△OBC为等腰直角三角形,∴∠OCB=∠OBC=45°,又∵∠BCD=90°,∴∠ECD+∠OCB=90°∴∠ECD=45°,∴△CDE为等腰直角三角形,∴DE=CE=a∴OE=OC+CE=a+4由D、E纵坐标相等,可得,解得,,当时,D点坐标为(0,4),与C重合,不符合题意,舍去.当时,D点坐标为(6,10);②当∠CBD=90°时,如下图所示,连接BC,过B点作BD⊥BC与抛物线交于点D,过B作FG⊥x轴,再过C作CF⊥FG于F,过D作DG⊥FG于G,∵∠COB=∠OBF=∠BFC=90°,∴四边形OBFC为矩形,又∵OC=OB,∴四边形OBFC为正方形,∴∠CBF=45°∵∠CBD=90°,∴∠CBF+∠DBG=90°,∴∠DBG=45°,∴△DBG为等腰直角三角形,∴DG=BG∵D点横坐标为a,∴DG=4-a,而BG=∴解得,,当时,D点坐标为(4,0),与B重合,不符合题意,舍去.当时,D点坐标为(2,-2);综上所述,D点坐标为(6,10)或(2,-2).(3)3+ <m <6或 3- <m <2【解析】【解答】解:(3)当BC为斜边构成Rt△BCD时,如下图所示,以BC中点O'为圆心,以BC为直径画圆,与抛物线交于D和D',∵BC为圆O'的直径,∴∠BDC=∠BD'C=90°,∵,∴D到O'的距离为圆O'的半径,∵D点横坐标为m,纵坐标为,O'点坐标为(2,2),∴即化简得:由图像易得m=0或4为方程的解,则方程左边必有因式,∴采用因式分解法进行降次解方程或或,解得,,,当时,D点坐标为(0,4),与C点重合,舍去;当时,D点坐标为(4,0),与B点重合,舍去;当时,D点横坐标;当时,D点横坐标为;结合(2)中△BCD形成直角三角形的情况,可得△BCD为锐角三角形时,D点横坐标m的取值范围为3+ <m <6或 3- <m <2.【分析】(1)利用待定系数法求抛物线的解析式,再令y=0,求A的坐标;(2)设D点横坐标为a,代入函数解析式可得纵坐标,分别讨论∠BCD=90°和∠CBD=90°的情况,作出图形进行求解;(3)当BC为斜边构成Rt△BCD时,以BC中点O'为圆心,以BC为直径画圆,与抛物线交于D和D',此时△BCD和△BCD'就是以BC为斜边的直角三角形,利用两点间距离公式列出方程求解,然后结合(2)找到m的取值范围.12.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG 与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.【答案】(1)证明:由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)证明:①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC解:②由△CBH∽△OBC可知:∵AB=8,∴BC2=HB•OC=4HB,∴HB= ,∴OH=OB-HB=∵CB=CH,∴OH+HC=当∠BOC=90°,此时BC=∵∠BOC<90°,∴0<BC<令BC=x∴OH+HC= = =当x=2时,∴OH+HC可取得最大值,最大值为5【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:,所以HB= ,由于BC=HC,所以OH+HC=利用二次函数的性质即可求出OH+HC的最大值.13.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)(1)求抛物线的解析式(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点①当点N在何处时,△CAN的周长最小?②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.【答案】(1)解:函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3(2)解:①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小.设过点A、C'的一次函数表达式为y=kx+b,则:,解得:,故直线AC'的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);②如图2,过点C作CG⊥ED于点G.设NG=n,则NE=3﹣n.∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n时,ME,则m的最小值为:;如下图所示,当点N与点D重合时,m取得最大值.过C作CG⊥ED于G.∵y=x2﹣2x﹣3= y=(x-1)2﹣4,∴D(1,-4),∴CG=OE=1.∵EG=OC=3∴GD=4-3=1,∴CG=DG=1,∴∠CDG=45°.∵∠CDM=90°,∴∠EDM=45°,∴△EDM是等腰直角三角形,∴EM=ED=4,∴OM=OE+EM=1+4=5,∴m=5.故:m≤5.【解析】【分析】(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小,即可求解;②如图2,ME=﹣n2+3n,求出ME最大值,则可求出m的最小值;当点N与点D处时,m取得最大值,求解即可.14.在平面直角坐标系xOy中,抛物线y=-x2+mx+n与x轴交于点A,B(A在B的左侧).(1)抛物线的对称轴为直线x=-3,AB=4.求抛物线的表达式;(2)平移(1)中的抛物线,使平移后的抛物线经过点O,且与x正半轴交于点C,记平移后的抛物线顶点为P,若△OCP是等腰直角三角形,求点P的坐标;(3)当m=4时,抛物线上有两点M(x1, y1)和N(x2, y2),若x1<2,x2>2,x1+x2>4,试判断y1与y2的大小,并说明理由.【答案】(1)解:抛物线 y=-x2+mx+n的对称轴为直线x=-3,AB=4.∴点 A(-5,0),点B(-1,0).∴抛物线的表达式为y=-(x+5)( x+1)∴y=-x2-6x-5.(2)解:如图1,依题意,设平移后的抛物线表达式为:y=-x2+bx.∴抛物线的对称轴为直线x=,抛物线与x正半轴交于点C(b,0).∴b>0.记平移后的抛物线顶点为P,∴点P的坐标(,),∵△OCP是等腰直角三角形,∴ =∴b=2.∴点P的坐标(1,1).(3)解:如图2,当m=4时,抛物线表达式为:y=-x2+4x+n.∴抛物线的对称轴为直线 x=2.∵点M(x1, y1)和N(x2, y2)在抛物线上,且x1<2,x2>2,∴点M在直线x=2的左侧,点N在直线x=2的右侧.∵x1+x2>4,∴2-x1<x2-2,∴点M到直线x=2的距离比点N到直线x=2的距离近,∴y1>y2.【解析】【分析】(1)先根据抛物线和x轴的交点及线段的长,求出抛物线的解析式;(2)根据平移后抛物线的特点设出抛物线的解析式,再利用等腰直角三角形的性质求出抛物线解析式;(3)根据抛物线的解析式判断出点M,N的大概位置,再关键点M,N的横坐标的范围即可得出结论.15.如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.【答案】(1)解:把点A(2,6)代入y= ,得m=12,则y= .把点B(n,1)代入y= ,得n=12,则点B的坐标为(12,1).由直线y=kx+b过点A(2,6),点B(12,1)得,解得,则所求一次函数的表达式为y=﹣x+7(2)解:如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,7).∴PE=|m﹣7|.∵S△AEB=S△BEP﹣S△AEP=10,∴×|m﹣7|×(12﹣2)=10.∴|m﹣7|=2.∴m1=5,m2=9.∴点E的坐标为(0,5)或(0,9).【解析】【分析】(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,得出点B的坐标,再把A、B的坐标代入直线y=kx+b,求出k、b的值,从而得出一次函数的解析式;(2)设点E 的坐标为(0,m),连接AE,BE,先求出点P的坐标(0,7),得出PE=|m﹣7|,根据S△AEB=S△BEP﹣S△AEP=10,求出m的值,从而得出点E的坐标.。

中考数学总复习《反比例函数》专项测试卷-带参考答案

中考数学总复习《反比例函数》专项测试卷-带参考答案

中考数学总复习《反比例函数》专项测试卷-带参考答案一、单选题(共12题;共24分)1.如图,在平面直角坐标系中,菱形ABCD的顶点B、D在反比例函数y═ k x(k>0)的图象上,对角线AC与BD相交于坐标原点O,若点A(﹣1,2),菱形的边长为5,则k的值是()A.4B.8C.12D.162.已知反比例函数y=k−2x的图象在第二、四象限内,则k的值不可能是()A.3B.1C.0D.−123.已知反比例函数y=k x的图象经过点(1,2),则函数y=-kx可为()A.y=-2x B.y=12x C.y=-12x D.y=2x4.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=−5x(x>0)和y=3x(x>0)的图象交于A,B两点.若点C是y轴上任意一点,点D是AP的中点,连接DC,BC,则△DBC的面积为()A.94B.4C.5D.11 45.如图,直线y=n交y轴于点A,交双曲线y=kx(x>0)于点B,将直线y=n向下平移2个单位长度后与y轴交于点C,交双曲线y=kx(x>0)于点D,若ABCD=13,则n的值()A.4B.3C.2D.56.如图,反比例函数y= yx(x<o)的图象经过点P,则k的值为()A.-6B.-5C.6D.57.函数y=ax(a≠0)与y=ax2-1(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.8.反比例函数y=2x的图象位于平面直角坐标系的()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限9.如图,平面直角坐标系中,矩形OABC的边与函数y= 8x(x>0)图象交于E,F两点,且F是BC的中点,则四边形ACFE的面积等于()A.4B.6C.8D.不能确定10.已知二次函数y=ax2+bx+c的图象如图所示,则在同一直角坐标系中,一次函数y=ax+b和反比例函数y= cx的图象大致是()A.B.C.D.11.某反比例函数的图象过点(1,-3),则此反比例函数解析式为()A.y=3x B.y=-3x C.y=13x D.y=-13x12.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=6x的图象上,则y1、y2、y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y2<y1<y3D.y3<y2<y1二、填空题(共6题;共6分)13.如图,在反比例函数y1=4x和y2=k x的图象上取A,B两点,若AB//x轴,ΔAOB的面积为5,则k=.14.如图,点A是反比例函数y=k x的图象上的一点,过点A作AB△x轴,垂足为B,点C为y轴上的一点,连接AC、BC.若△ABC的面积为3,则k的值=.15.如图,过原点的直线交反比例函数y=ax图象于P,Q两点,过点P分别作x轴,y轴的垂线,交反比例函数y=b x(x>0)的图象于A,B两点.若b−a=7,则图中阴影部分的面积为.16.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=k x的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE的面积是△OAB的面积2倍时,则k的值为.17.已知如图,矩形OCBD如图所示,OD=2,OC=3,反比例函数的图象经过点B,点A为第一象限双曲线上的动点(点A的横坐标大于2),过点A作AF△BD于点F,AE△x轴于点E,连接OB,AD,若△OBD△△DAE,则点A的坐标是.18.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点P(2,3),且与函数y=2x(x>0)的图象交于点Q(m,n).若一次函数y随x的增大而增大,则m的取值范围是.三、综合题(共6题;共60分)19.制作一种产品,需先将材料加热达到60△后,再进行操作.设该材料温度为(△),从加热开始计算的时间为(分钟).据了解,该材料加热时,则温度与时间成一次函数关系;停止加热进行操作时,则温度与时间成反比例关系(如图8所示).已知该材料在操作加工前的温度为15△,加热5分钟后温度达到60△.(1)分别求出将材料加热和停止加热进行操作时,则与的函数关系式;(2)根据工艺要求,当材料的温度低于15△时,则须停止操作,那么从开始加热到停止操作,共经历了多少时间?20.如图所示,直线y=12x与反比例函数y=kx(k≠0,x>0)的图象交于点Q(4,a),点P(m,n)是反比例函数图象上一点,且n=2m.(1)求反比例函数和直线PQ的解析式;(2)若点M在x轴上,使得△PMQ的面积为3,求点M的坐标.21.已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连结BO,若S△AOB=4.(1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与y轴的交点为C,求△OCB的面积.22.如图,一次函数y=﹣x+5的图象与反比例函数y= k x(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式;(2)在第一象限内,当一次函数y=﹣x+5的值大于反比例函数y=k x (k≠0)的值时,则写出自变量x 的取值范围.23.如图所示,等边三角形ABC 放置在平面直角坐标系中,已知A (0,0)、B (6,0),反比例函数的图象经过点C .(1)求点C 的坐标及反比例函数的解析式.(2)将等边△ABC 向上平移n 个单位,使点B 恰好落在双曲线上,求n 的值.24.如图,在平面直角系中,点A 在x 轴正半轴上,点B 在y 轴正半轴上,△ABO =30°,AB =2,以AB 为边在第一象限内作等边△ABC ,反比例函数的图象恰好经过边BC 的中点D ,边AC 与反比例函数的图象交于点E .(1)求反比例函数的解析式; (2)求点E 的横坐标.参考答案1.【答案】B 2.【答案】A 3.【答案】A 4.【答案】D 5.【答案】B 6.【答案】A 7.【答案】D 8.【答案】A 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】D 13.【答案】14 14.【答案】-6 15.【答案】14 16.【答案】117.【答案】( √5 +1, 3√5−32)18.【答案】23<m <2 19.【答案】(1)解:材料加热时,则设由题意,有 ,解得 .材料加热时,则 与的函数关系式为:停止加热时,则设 ,由题意,有 ,解得停止加热进行操作时 与的函数关系式为:(2)解:把代入,得20+5=25(分钟)答:从开始加热到停止操作,共经历了25分钟20.【答案】(1)解:∵直线 y =12x 与反比例函数 y =kx(k ≠0,x >0) 的图象交于点 Q(4,a) ∴a =12×4=2, .则 Q(4,2)∴2=k 4∴k =8, ∴ 反比例函数的解析式为 y =8x(x >0)∵ 点 P(m,n) 是反比例函数图象上一点 ∴mn =8 ,且 n =2m,m >0 ∴m =2,n =4, ∴P(2,4) ; 设直线 PQ 的解析式为 y =kx +b,∴{2=4k +b4=2k +b解得 {k =−1b =6∴直线 PQ 的解析式为 y =−x +6 (2)解:∵直线 PQ 交x 轴于点A ∴令 y =0,−x +6=0 ,得 x =6 ,如图∴A(6,0) ,设 M(a,0)∵S △PQM =S △PAM −S △QAM 且 △PMQ 的面积为3∴3=12|6−a|×4−12|6−a|×2∴a =3 或 a =9∴点M 的坐标为 (3,0) 或 (9,0) .21.【答案】(1)解:由A (-2,0),得OA=2;∵点B (2,n )在第一象限内,S △AOB =4∴12OA•n=4; ∴n=4;∴点B 的坐标是(2,4);设该反比例函数的解析式为y= ax (a≠0),将点B 的坐标代入,得4= a2 ,∴a=8;∴反比例函数的解析式为:y= 8x;设直线AB 的解析式为y=kx+b (k≠0),将点A ,B 的坐标分别代入,得{−2k +b =02k +b =4 ,解得{k =1b =2;∴直线AB 的解析式为y=x+2(2)解:在y=x+2中,令x=0,得y=2.∴点C 的坐标是(0,2) ∴OC=2;∴S △OCB = 12 OC×2= 12×2×2=222.【答案】(1)解:∵一次函数y=﹣x+5的图象过点A (1,n )∴n=﹣1+5 ∴n=4∴点A 坐标为(1,4)∵反比例函数y=k x (k≠0)过点A (1,4)∴k=4∴反比例函数的解析式为y=4x;(2)解:联立{y =−x +5y =4x解得{x =1y =4或{x =4y =1即点B 的坐标(4,1)若一次函数y=﹣x+5的值大于反比例函数y=kx (k≠0)的值则1<x <4.23.【答案】(1)解:过C 点作CD△x 轴,垂足为D,设反比例函数的解析式为y= k x∵△ABC 是等边三角形 ∴AC=AB=6,△CAB=60°∴AD=3,CD=sin60°×AC= √32×6=3 √3∴点C 坐标为(3,3 √3 ) ∵反比例函数的图象经过点C ∴k=9 √3∴反比例函数的解析式y= 9√3x;第 11 页 共 11 (2)解:若等边△ABC 向上平移n 个单位,使点B 恰好落在双曲线上 则此时B 点的横坐标为6即纵坐标y= 9√36 = 3√32 ,也是向上平移n= 3√32. 24.【答案】(1)解:∵△ABO =30°,AB =2∴OA =1连接AD .∵△ABC 是等边三角形,点D 是BC 的中点∴AD△BC又△OBD =△BOA =90°∴四边形OBDA 是矩形∴D(1,√3)∴反比例函数解析式是 y =√3x. (2)解:由(1)可知,A (1,0), C(2,√3)设一次函数解析式为y =kx+b ,将A ,C 代入得 {k +b =02k +b =√3 ,解得 {k =√3b =−√3∴y =√3x −√3 .联立 {y =√3x −√3y =√3x,消去y ,得 √3x −√3=√3x 变形得x 2﹣x ﹣1=0解得 x 1=1+√52∵x E >1∴x E =1+√52.。

(完整版)九年级数学反比例函数单元测试题及答案

(完整版)九年级数学反比例函数单元测试题及答案

反比例函数综合检测题一、选择题(每小题3分,共30分)n 51、反比例函数y = -------- 图象经过点(2, 3),则n的值是().xA、一2B、一1C、0D、1k2、若反比例函数y = —(k工0)的图象经过点(一1, 2),则这个函数的图象一定经过点().x1 1A、(2, - 1)B、(一一,2)C、(- 2,—1)D、(一,2)2 23、(08双柏县)已知甲、乙两地相距s (km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h)与行驶速度v (km/h)的函数关系图象大致是()y与z之间的关系是(A、成正比例B、成反比例C、不成正比例也不成反比例D、无法确定k5、一次函数y = kx —k, y随x的增大而减小,那么反比例函数y= 满足().xC、图象分布在第一、三象限D、图象分布在第二、四象限6、如图,点P是x轴正半轴上一个动点,过点P作x轴的垂1 - 一线PQ交双曲线y = 于点Q,连结OQ,点P沿x轴正方向运动时,xRt A QOP的面积().A、逐渐增大B、逐渐减小C、保持不变D、无法确定7、在一个可以改变容积的密闭容器内,装有一定质量m的某种气体,当改变容积V时,气体的密度p也随之改变. P与V在一定范围内满足p = m,它的图象如图所示,则该V气体的质量m为().A、1.4kgB、5kgC、6.4kgD、7kg&若A (—3, y1), B (—2, y2), C (—1, y3)三点都在函h1■5 /1y =——的图象上,贝V y1, y2, y3的大小关x玄阜(系疋().4、若y与x成正比例,x与z成反比例,则).B 、y 1V y 2V y 3C 、y 1= y 2= y 3 y =「■卬的图象上有A (X 1, y 1) x ).A 、y 1 > y 2> y 39、已知反比例函数 的取值范围是(D 、y 1V y 3V y 2B (X 2, y 2)两点,当 X 1V X 2V 0 时,yK y 2,贝U m11A 、m v 0B 、m >0C 、m vD 、m > —2 210、如图,一次函数与反比例函数的图象相交于 A 、B 两 点,则图中使反比例函数的值小于一次函数的值的 x 的取值范围是( )• A 、x v-1B 、x >2C 、— 1 v x v 0 或 x >2D 、x v — 1 或 0v x v 2二、填空题(每小题3分,共30分) 11、某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数 x 之间的函数关系式为 __________ . _________k12、 已知反比例函数 y的图象分布在第二、四象限,则在一次函数y kx b 中,y 随x 的增大而x(填“增大”或“减小”或“不变”).13、 若反比例函数 y = ——3和一次函数y = 3x + b 的图象有两个交点,且有一个交点的纵坐标为6,贝V bx2 —14、反比例函数y =( m + 2) x m 10的图象分布在第二、四象限内,贝V m 的值为115、 有一面积为 S 的梯形,其上底是下底长的-,若下底长为3是 _______________ .a16、 如图,点 M 是反比例函数y =(a 丰0)的图象上一点,x过M 点作x 轴、y 轴的平行线,若 S 阴影=5,则此反比例函数解析式为 _____________ .2 — +17、使函数y =( 2m 2— 7m — 9) x m 9m 19是反比例函数,且图象在每个象限内 y 随x 的增大而减小,则可列方程(不等式组)为 ____________________419. 如图,直线y = kx(k > 0)与双曲线y 交于A (X 1, y 1),x B (X 2, y 2)两点,贝U 2x 1y 2 — 7x 2y 1= ____________ .20、如图,长方形 AOCB 的两边OC 、OA 分别位于x 轴、20y 轴上,点B 的坐标为B (― ——,5), D 是AB 边上的一点,3将厶ADO 沿直线OD 翻折,使A 点恰好落在对角线 OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析 式是 .三、解答题(共60分)x ,高为y ,则y 与x 的函数关系k18、过双曲线y =(k 丰0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为21、(8分)如图,P是反比例函数图象上的一点,且点P到x轴的距离为3,到y轴的距离为2,求这个反比例函数的解析式.B\ ALC O X22、(9分)请你举出一个生活中能用反比例函数关系描述的实例,写出其函数表达式,并画出函数图象. 举例:函数表达式:23、(10 分)如图,已知A(x i, y i),B(X2, y2)OB.k(1)试说明y i v OA v y i + 一 ;y i(2)过B作BC丄x轴于C,当m = 4时,k是双曲线y= 在第一象限内的分支上的两点,连结xOA、824、(10分)如图,已知反比例函数y=——与一次函数Xy= kx + b的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是一2.求:(1)一次函数的解析式;(2 )△ AOB的面积.k25、(11分)如图,一次函数y= ax+ b的图象与反比例函数y= 的图象交于M、x(1 )求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.N两点.三、解答题621、 y =——.x222、 举例:要编织一块面积为 2米2的矩形地毯,地毯的长 x (米)与宽y (米)之间的函数关系式为 y =k26、( 12分)如图, 已知反比例函数 y = 的图象与一次函x数y = ax + b 的图象交于 M (2, m )和N (— 1, - 4)两点. (1)求这两个函数的解析式; (2 )求厶MON 的面积;(3) 请判断点P (4, 1)是否在这个反比例函数的图象上, 并说明理由.参考答案:一、选择题1、D ;2、 A ;3、C ; 6、C 二、填空题7、D ;& B ;1000、减小;1 1、y =— ;12 13、5 ;x2m 9m 191; 18、|k|;19、2m 7m 9>04、B ;5、D ; 9、D ;10、D .14、一 3 ; 3s 15、y =;2x16、y =—-;x17、1220、y =—x2017年3月测试题x x(x > 0).2017年3月测试题kk 23、( 1)过点A 作AD 丄x 轴于D ,则OD = x i , AD = y i ,因为点A (x i , y i )在双曲线y =—上,故x i =,xy ik 又在 Rt△ OAD 中,AD v OA v AD + OD ,所以 y i v OA v y i +;y i24、(i )由已知易得 A (-2, 4), B (4,— 2),代入 y = kx + b 中,求得 y =— x + 2;(2 )当 y = 0 时,x = 2,贝U y =— x + 2 与 x 轴的交点 M ( 2, 0),即 |OM| = 2,于是 S A AOB = S A AOM + & BOM k425、(i )将N (— i ,— 4)代入y =,得k = 4 ••••反比例函数的解析式为y =•将M ( 2, m )代入yx x=-,得 m = 2.将 M (2, 2), N (— i ,— 4)代入 y = ax + b ,得 '解得 '•••一次函数xa b 4. b 2.的解析式为y = 2x — 2.(2)由图象可知,当 x v — i 或0v x v 2时,反比例函数的值大于一次函数的值.1 (2) 如图,对于 y = 2x — 2, y = 0 时,x = i , • A (i , 0), OA = i ,• S A MON = S A MOA + S A NOA = OA • MC21 i i+ — OA • ND = — X i X 2+ X i X 4= 3.22 24(3) 将点P ( 4, i )的坐标代入y =,知两边相等,• P 点在反比例函数图象上.(2)A BOC 的面积为2.=1|OM| • |y A |+ 1|OM| •沖 丄 X 2X 4+ 丄 X 2X 2=6.2 2 26、解(i )由已知,得一k44=, k = 4,「. y = .又•••图象过i xM (2, m )点, m = — = 2,2y = ax+ b 图象经过M 、N 两点,2a b a b2,解之得42• y = 2x — 2.。

中考数学总复习《反比例函数综合》专项测试卷(附答案)

中考数学总复习《反比例函数综合》专项测试卷(附答案)

中考数学总复习《反比例函数综合》专项测试卷(附答案)(考试时间:90分钟;试卷满分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共10小题,每小题3分,共30分)。

1.若点A(1,3)是反比例函数y=(k≠0)图象上一点,则常数k的值为()A.3B.﹣3C.D.2.下列各点中,在反比例函数y=图象上的是()A.(3,1)B.(﹣3,1)C.(3,)D.(,3)3.如果点A(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数图象上的三个点,则下列结论正确的是()A.y1>y3>y2B.y3>y2>y1C.y2>y1>y3D.y3>y1>y24.如图,反比例函数与正比例函数y=ax(a≠0)相交于点和点B,则点B的坐标为()A.B.C.D.5.某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y与该校参加竞赛人数x的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图象上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是()A.甲B.乙C.丙D.丁6.已知反比例函数,下列说法不正确的是()A.图象经过点(﹣3,2)B.图象分别位于第二、四象限内C.在每个象限内y的值随x的值增大而增大D.x≥﹣1时,y≥67.反比例函数y=中,当x>0时,y随x的增大而增大,则m的取值范围是()A.m>B.m<2C.m<D.m>28.如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A、B两点,其中A点的横坐标为3,当y1<y2时,x的取值范围是()A.x<﹣3或x>3B.x<﹣3或0<x<3C.﹣3<x<0或0<x<3D.﹣3<x<0或x>39.在同一平面直角坐标系中,函数y=ax+b与(其中a,b是常数,ab≠0)的大致图象是()A.B.C.D.10.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2﹣k1的值是()A.1B.2C.4D.8二、填空题(本题共6题,每小题2分,共12分)。

中考数学总复习《反比例函数》专项测试卷-附参考答案

中考数学总复习《反比例函数》专项测试卷-附参考答案

中考数学总复习《反比例函数》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图,直线l和双曲线y=k x(k>0)交于A,B两点,P是线段AB上的点(不与A,B重合),过点A,B,P分别向x轴作垂线,垂足分别是C,D,E,连接OA,OB,OP,设△AOC面积是S1,△BOD面积是S2,△POE面积是S3,则().A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S32.已知正比例函数y=xk中,y的值随x的值的增大而增大,那么它和反比例函数y=kx在同一平面直角坐标系内的大致图像可能是()A.B.C.D.3.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣5x的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y14.已知点A(-1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可能是() A.B.C.D.5.反比例函数y= a+4x的图象如图所示,P、Q为该图象上关于原点对称的两点,分别过点P、Q作y轴的垂线,垂足分别为A、B.若四边形AQBP的面积大于12,则关于x的方程(a﹣1)x2﹣x+ 14 =0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.不能确定6.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=k 2+2k+1x的图象上。

若点A的坐标为(-2,-2),则k的值为()A.1B.-3C.4D.1或-37.如图,已知P(m,0),Q(0,n)(m>0,n>0),反比例函数y=mx的图象与线段PQ交于C,D两点,若S△POC=S△COD=S△DOQ,则n=()A.92B.4C.3D.328.已知正比例函数y=2x与反比例函数y=2x的图象相交于A,B两点,若A点的坐标为(1,2),则B点的坐标为()A.(1,﹣2)B.(﹣1,2)C.(﹣1,﹣2)D.(2,1)9.如图,点A是反比例函数y=6x的图象上一点,过点A作AB⊥x轴,垂足为点B,线段AB交反比例函数y=2x的图象于点C,则△OAC的面积是()A.2B.3C.4D.510.A(x1,y1),B(x2,y2)是反比例函数y=6x的图象上的两点,若2<x1<x2,则下列结论正确的是()A.3<y1<y2B.3<y2<y1C.y1<y2<3D.y2<y1<311.在同一直角坐标系中,反比例函数图象与二次函数图象的交点的个数至少有() A.0B.1C.2D.312.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是().A.两条直角边成正比例B.两条直角边成反比例C.一条直角边与斜边成正比例D.一条直角边与斜边成反比例二、填空题(共6题;共7分)13.如图,点B是反比例函数y=k x在在第一象限内的图象上的点,若矩形OABC的面积为2,则k=.14.如图,在平面直角坐标系中,点A(−2,3),点B与点A关于直线x=1对称,过点B作反比例函数y=mx(x>0)的图像.(1)m=;(2)若对于直线y=kx−5k+4,总有y随x的增大而增大,设直线y=kx−5k+4与双曲线y=mx(x>0)交点的横坐标为t,则t的取值范围是.15.如图,在平面直角坐标系中,等腰直角三角形ABC的直角顶点在x轴上,顶点B在y轴上,顶点C在函数y=8x(x>0)的图象上,且BC△x轴.将△ABC沿y轴正方向平移,使点A的对应点A′落在此函数的图象上,则平移的距离为.16.已知一个矩形的面积为2,两条边的长度分别为x、y,则y与x的函数关系式为.17.设函数y=x−3与y=2x的图象的两个交点的横坐标为a、b,则1a+1b=.18.如图,已知动点A在函数y=4x(x>0)的图象上,AB△x轴于点B,AC△y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x,y轴分别于点P,Q.当QE:DP=4:9时,则图中阴影部分的面积等于.三、综合题(共6题;共63分)19.如图,已知点A(1,√3)在反比例函数y= k x(x>0)的图象上,连接OA,将线段OA绕点O沿顺时针方向旋转30°,得到线段OB.(1)求反比例函数的解析式;(2)填空:①点B的坐标是;②判断点B是否在反比例函数的图象上?答;③设直线AB的解析式为y=ax+b,则不等式ax+b﹣k x<0的解集是.20.已知反比例函数y= k x与一次函数y=x+2的图象交于点A(﹣3,m)(1)求反比例函数的解析式;(2)如果点M的横、纵坐标都是不大于3的正整数,求点M在反比例函数图象上的概率.21.病人按规定的剂量服用某种药物,测得服药后2小时,则每毫升血液中的含药量达到最大值为4毫克,已知服药后,2小时前每毫升血液中的含药量y(毫克)与时间x(小时)成正比例,2小时后y与x成反比例(如图所示).根据以上信息解答下列问题.(1)求当0≤x≤2时,则y与x的函数关系式;(2)求当x>2时,则y与x的函数关系式;(3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?22.如图,一次函数y=kx+b(k≠0)与反比例函数y=mx(m≠0)的图象在第一象限内交于A(1,6),B(3,n)两点.请解答下列问题:(1)求这两个函数的表达式;(2)根据图象直接写出kx+b﹣mx>0的x的取值范围.23.如图,一次函数y=ax+b的图象与x轴交于点A(4,0),与y轴交于点B,与反比例函数y=kx(x>0)的图象交于点C、D.若tan∠BAO=2,BC=3AC.(1)求一次函数和反比例函数的表达式;(2)求△OCD的面积.24.在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).(1)请你用画树状图或列表的方法,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣2x的图象上的概率.参考答案1.【答案】D 2.【答案】B 3.【答案】C 4.【答案】D 5.【答案】A 6.【答案】D 7.【答案】A 8.【答案】C 9.【答案】A 10.【答案】D 11.【答案】B 12.【答案】B 13.【答案】2 14.【答案】(1)12(2)3<t <515.【答案】4 16.【答案】y=2x17.【答案】-1.5 18.【答案】13319.【答案】(1)解:∵点A (1, √3 )在反比例函数y= k x(x >0)的图象上∴√3 = k 1,解得k= √3∴反比例函数的解析式为y= √3x(x >0)(2)(1, √3 );点B 在反比例函数的图象上;0<x <1或x > √320.【答案】(1)解:∵反比例函数y= k x与一次函数y=x+2的图象交于点A (﹣3,m )∴﹣3+2=m=﹣1∴点A 的坐标为(﹣3,﹣1) ∴k=﹣3×(﹣1)=3∴反比例函数的解析式为y= 3x(2)解:∵点M 的横、纵坐标都是不大于3的正整数∴点M 的坐标可能为:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3)∵在反比例函数的图象上的有(1,3)和(3,1)两个点 ∴点M 在反比例函数图象上的概率为 2921.【答案】(1)解:根据图象,正比例函数图象经过点(2,4)设函数解析式为y=kx 则2k=4 解得k=2所以函数关系为y=2x (0≤x≤2)(2)解:根据图象,反比例函数图象经过点(2,4) 设函数解析式为y= k x则 k 2 =4解得k=8所以,函数关系为y= 8x (x >2)(3)解:当y=2时,则2x=2,解得x=18x=2,解得x=4 4﹣1=3小时∴服药一次,治疗疾病的有效时间是3小时22.【答案】(1)解:∵反比例函数y =mx (k≠0)的图象与一次函数y =kx+b 的图象在第一象限交于A(1,6),B(3,n)两点∴将A(1,6)代入反比例函数表达式中 m=1×6=6∴反比例函数表达式为:y=6x把B(3,n)代入得 n=2 ∴B(3,2)将A 、B 代入y =kx+b 中得{k +b =63k +b =2∴{k =−2b =8∴反比例函数和一次函数的表达式分别为y =6x,y =﹣2x+8(2)解:由图象可得:当kx+b ﹣mx >0时,则1<x <3或x <0. 23.【答案】(1)解:在Rt △AOB 中∵A(4,0)∴OA =4,OB =8∴B(0,8)∵A ,B 两点在直线y =ax +b 上∴{b =84a +b =0 ∴{a =−2b =8∴直线AB 的解析式为y =−2x +8 过点C 作CE ⊥OA 于点E∵BC =3AC ∴AB =4AC ∴CE//OB ∴CE OB =AC AB =14∴CE =2 ∴C(3,2)∴k =3×2=6∴反比例函数的解析式为y =6x(2)解:由{y =−2x +8y =6x,解得{x =1y =6或{x =2y =3 ∴D(1,6)过点D 作DF ⊥y 轴于点F∴S △OCD =S △AOB −S △BOD −S △COA =12⋅OA ⋅OB −12⋅OB ⋅DF −12⋅OA ⋅CE=12×4×8−12×8×1−12×4×2=824.【答案】(1)解:树状图如下图:则点M所有可能的坐标为:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0)(2)解:∵点M(x,y)在函数y=﹣2x的图象上的有:(1,﹣2),(2,﹣1)∴点M(x,y)在函数y=﹣2x的图象上的概率为:29。

中考数学总复习《反比例函数与一次函数综合》专项训练题(带答案)

中考数学总复习《反比例函数与一次函数综合》专项训练题(带答案)

中考数学总复习《反比例函数与一次函数综合》专项训练题(带答案)学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角坐标系中,直线33y x =-与反比例函数k y x=的图象在第一象限交于点()2,A n ,在第三象限交于点B ,过点B 作BC x ⊥轴于C ,连接AC .(1)求反比例函数解析式;(2)求ABC 的面积;2.如图,一次函数y ax b =+与反比例函数k y x =()0k ≠的图象交于()23A -,,()1B m ,两点.(1)试求m 的值和一次函数的解析式;(2)求AOB 的面积.3.如图,在平面直角坐标系中,一次函数1y k x b =+的图象与反比例函数2k y x=的图象交于()2,1A -、()1,B n -两点,与x 轴交于点C .(1)求2k ,n 的值;(2)请直接写出不等式21k k x b x+<的解集; (3)连接OA 、OB ,求AOB 的面积.4.一次函数2y x b =+的图象与反比例函数()60y x x=>的图象交于点()16A ,,与x 轴交于点B .(1)求一次函数的表达式;(2)过点A 作AC x ⊥轴于点C ,求ABC 的面积.5.如图,在平面直角坐标系中,直线y x =与双曲线k y x =相交于()2,A m ,B 两点BC x ⊥轴,垂足为C .(1)求双曲线k y x=的解析式,并直接写出点B 的坐标. (2)求ABC 的面积.6.如图,一次函数y ax b =+的图象与反比例函数k y x=的图象交于第一象限C D ,两点,与坐标轴交于A 、 B 两点,连接(OC OD O ,是坐标原点).(1)求反比例函数的表达式及m 的值;(2)根据函数图象,直接写出不等式k ax b x +≥的解集为 .7.如图,已知一次函数y ax b =+与反比例函数(0)m y x x=<的图象交于(2,4)A -,(4,2)B -两点,且与x 轴和y 轴分别交于点C 、点D .(1)求反比例函数与一次函数的解析式;(2)根据图象直接写出不等式m ax b x<+的解集; (3)点P 在y 轴上,且13AOP AOB S S =△△,请求出点P 的坐标.8.如图,反比例函数m y x=的图象与一次函数y kx b =+的图象交于A 、B 两点,点A 的坐标为()23,,点B 的坐标为()1n ,.(1)求反比例函数与一次函数表达式;(2)结合图象,直接写出不等式m kx b x<+的解集.9.如图,一次函数2y kx =+的图象与x 轴交于点(4,0)A -,与反比例函数m y x =的图象交于点B ,C (-6,c ).(1)求反比例函数的表达式及点B 的坐标;(2)当m kx b x+≥时,直接写出x 的取值范围; (3)在双曲线m y x=上是否存在点P ,使ABP 是以点A 为直角顶点的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.10.如图,一次函数y kx b =+的图象与反比例函数()0m y x x=>的图象交于点()2P n ,,与x 轴交于点()40A -,,与y 轴交于点C ,PB x ⊥轴于点B ,且AC BC =.(1)求一次函数、反比例函数的解析式;(2)在平面内找一点D ,使以B ,C ,P ,D 为顶点的四边形是平行四边形,求出点D 的坐标.11.如图,反比例函数1k y x =图象与一次函数2112y x =--的图象交于点()4,A a -与点B .(1)求a 的值与反比例函数关系式;(2)连接OA ,OB ,求AOB S ;(3)若12y y >,请结合图象直接写出x 的取值范围.12.如图,一次函数()110y k x b k =+≠与反比例函数()220k y k x=≠的图象交于点()12A -,,(1),B m -.(1)求这两个函数的表达式;(2)在x 轴上是否存在点(0)(0),P n n >,使ABP 为等腰三角形?若存在,求n 的值,若不存在,说明理由.13.如图,在平面直角坐标系中,点()2,2A -,()6,6B -为Rt ABC △的顶点90BAC ∠=︒,点C 在x 轴上.将ABC 沿x 轴水平向右平移a 个单位得到A B C ''',A ,B 两点的对应点A ',B '恰好落在反比例函数()0k y x x=>的图象上.(1)求a 和k 的值;(2)作直线l 平行于A C ''且与A B '',B C ''分别交于M ,N ,若B MN '△与四边形MA C N ''的面积比为4:21,求直线l 的函数表达式;(3)在(2)问的条件下,是否存在x 轴上的点P 和直线l 上的点Q ,使得以P A Q ',,,B '四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P ,Q 的坐标;若不存在,请说明理由.14.如图,已知直线1y x m =-++与反比例函数()0,0m y x m x =>>的图象分别交于点A 和点B ,与x 轴交于点C ,与y 轴交于点D .(1)如图1,当点A 坐标为()1,3时 ①求直线AB 的解析式:①若点P 是反比例函数在第一象限直线AB 上方一点,当ABP 面积为2时,求点P 的坐标;(2)将直线CD 向上平移2个单位得到直线EF ,将双曲线位于CD 下方部分沿直线CD 翻折,若翻折后的图象(图中虚线部分)与直线EF 有且只有一个公共点,求m 的值.15.已知在直角坐标平面内,直线l 经过点()0,4A -,且与x 轴正半轴交于点B ,25cos 5BAO ∠=,反比例函数()0k y x x =>的图像与直线l 交于点()3,C m .(1)求k 的值;(2)点P 在上述反比例函数的图像上,联结BP 、PC ①过点P 作PD x 轴,交直线l 于点D ,若PD 平分BPC ∠,求PD 的长; ①作直线PC 交y 轴于点E ,联结BE ,若3PBE PBC S S =△△,请直接写出点P 的坐标.参考答案:1.(1)6y x=; (2)92.(1)16,42m y x =-=+ (2)83.(1)22k =-,n=2(2)2x >或10x -<<(3)324.(1)一次函数的表达式为24y x =+;(2)ABC 的面积为9.5.(1)4y x =;()2,2B -- (2)46.(1)4y x=;1m = (2)14x ≤≤7.(1)8y x=- 6y x =+ (2)42x -<<-(3)(0,2)P 或(0,2)-8.(1)6y x = 142y x =-+; (2)26x <<或0x <.9.(1)反比例函数得表达式为:6y x=()2,3B (2)60x -≤<或2x ≥(3)存在 1(1,6)P -- 2(3,2)P --10.(1)114y x =+ 8y x = (2)()01-,、()03,和()81,11.(1)1a = 4y x=- (2)3(3)40x -<<或2x >12.(1)2y x=- 1y x =-+; (2)114n =-+或217n =+13.(1)8a = 12k =(2)45y x (3)存在,点P 、Q 的坐标分别为4360855⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,或1405⎛⎫- ⎪⎝⎭,、625⎛⎫ ⎪⎝⎭,或36,85⎛⎫ ⎪⎝⎭ 1645⎛⎫ ⎪⎝⎭,14.(1)①4y x =-+;①()3636P +-,或()3636-+, (2)322m =+15.(1)6k =.(2)①125PD =;①94,23P ⎛⎫ ⎪⎝⎭或98,43P ⎛⎫ ⎪⎝⎭.。

中考数学综合题专题复习【反比例函数】专题解析附答案

中考数学综合题专题复习【反比例函数】专题解析附答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.2.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)解:设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2= ,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当,∴y1<y2∴第30分钟注意力更集中.(2)解:令y1=36,∴36=2x+20,∴x1=8令y2=36,∴,∴∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.【解析】【分析】(1)根据一次函数和反比例函数的应用,用待定系数法求出线段AB所在的直线的解析式,和C、D所在双曲线的解析式;把x1=5时和进行比较得到y1<y2,得出第30分钟注意力更集中;(2)当y1=36时,得到x1=8,当y2=36,得到,由27.8﹣8=19.8>19,所以经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.3.抛物线y= +x+m的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB= ,求点M的坐标.【答案】(1)解:y= x2+x+m= (x+2)2+(m﹣1)∴顶点坐标为(﹣2,m﹣1)∵顶点在直线y=x+3上,∴﹣2+3=m﹣1,得m=2;(2)解:过点F作FC⊥NB于点C,∵点N在抛物线上,∴点N的纵坐标为: a2+a+2,即点N(a, a2+a+2)在Rt△FCN中,FC=a+2,NC=NB﹣CB= a2+a,∴NF2=NC2+FC2=( a2+a)2+(a+2)2,=( a2+a)2+(a2+4a)+4,而NB2=( a2+a+2)2,=( a2+a)2+(a2+4a)+4∴NF2=NB2,NF=NB(3)解:连接AF、BF,由NF=NB,得∠NFB=∠NBF,由(2)的思路知,MF=MA,∴∠MAF=∠MFA,∵MA⊥x轴,NB⊥x轴,∴MA∥NB,∴∠AMF+∠BNF=180°∵△MAF和△NFB的内角总和为360°,∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,∵∠MAB+∠NBA=180°,∴∠FBA+∠FAB=90°,又∵∠FAB+∠MAF=90°,∴∠FBA=∠MAF=∠MFA,又∵∠FPA=∠BPF,∴△PFA∽△PBF,∴ = ,PF2=PA×PB= ,过点F作FG⊥x轴于点G,在Rt△PFG中,PG= = ,∴PO=PG+GO= ,∴P(﹣,0)设直线PF:y=kx+b,把点F(﹣2,2)、点P(﹣,0)代入y=kx+b,解得k= ,b= ,∴直线PF:y= x+ ,解方程 x2+x+2= x+ ,得x=﹣3或x=2(不合题意,舍去),当x=﹣3时,y= ,∴M(﹣3,).【解析】【分析】(1)利用配方法将二次函数化成顶点式,写出顶点坐标,由顶点再直线y=x+3上,建立方程求出m的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、反比例函数真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系内,双曲线:y= (x>0)分别与直线OA:y=x和直线AB:y=﹣x+10,交于C,D两点,并且OC=3BD.(1)求出双曲线的解析式;(2)连结CD,求四边形OCDB的面积.【答案】(1)解:过点A、C、D作x轴的垂线,垂足分别是M、E、F,∴∠AMO=∠CEO=∠DFB=90°,∵直线OA:y=x和直线AB:y=﹣x+10,∴∠AOB=∠ABO=45°,∴△CEO∽△DEB∴= =3,设D(10﹣m,m),其中m>0,∴C(3m,3m),∵点C、D在双曲线上,∴9m2=m(10﹣m),解得:m=1或m=0(舍去)∴C(3,3),∴k=9,∴双曲线y= (x>0)(2)解:由(1)可知D(9,1),C(3,3),B(10,0),∴OE=3,EF=6,DF=1,BF=1,∴S四边形OCDB=S△OCE+S梯形CDFE+S△DFB= ×3×3+ ×(1+3)×6+ ×1×1=17,∴四边形OCDB的面积是17【解析】【分析】(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,由直线y=x和y=﹣x+10可知∠AOB=∠ABO=45°,证明△CEO∽△DEB,从而可知 = =3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△OCE、△DFB△、梯形CDFE的面积即可求出答案.2.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.3.如图1,已知一次函数y=ax+2与x轴、y轴分别交于点A,B,反比例函数y= 经过点M.(1)若M是线段AB上的一个动点(不与点A、B重合).当a=﹣3时,设点M的横坐标为m,求k与m之间的函数关系式.(2)当一次函数y=ax+2的图象与反比例函数y= 的图象有唯一公共点M,且OM= ,求a的值.(3)当a=﹣2时,将Rt△AOB在第一象限内沿直线y=x平移个单位长度得到Rt△A′O′B′,如图2,M是Rt△A′O′B′斜边上的一个动点,求k的取值范围.【答案】(1)解:当a=﹣3时,y=﹣3x+2,当y=0时,﹣3x+2=0,x= ,∵点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合),∴0<m<,,DANG则,﹣3x+2= ,当x=m时,﹣3m+2= ,∴k=﹣3m2+2m(0<m<)(2)解:由题意得:,ax+2= ,ax2+2x﹣k=0,∵直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,∴△=4+4ak=0,ak=﹣1,∴k=﹣,则,解得:,∵OM= ,∴12+(﹣)2=()2,a=±(3)解:当a=﹣2时,y=﹣2x+2,∴点A的坐标为(1,0),点B的坐标为(0,2),∵将Rt△AOB在第一象限内沿直线y=x平移个单位得到Rt△A′O′B′,∴A′(2,1),B′(1,3),点M是Rt△A′O′B′斜边上一动点,当点M′与A′重合时,k=2,当点M′与B′重合时,k=3,∴k的取值范围是2≤k≤3【解析】【分析】(1)当a=﹣3时,直线解析式为y=﹣3x+2,求出A点的横坐标,由于点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合)从而得到m的取值范围,由﹣3x+2= ,由X=m得k=﹣3m2+2m(0<m<);(2)由ax+2= 得ax2+2x﹣k=0,直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,△=4+4ak=0,ak=﹣1,由勾股定理即可;(3)当a=﹣2时,y=﹣2x+2,从而求出A、B两点的坐标,由平移的知识知A′,B′点的坐标,从而得到k的取值范围。

4.如图1,经过原点的抛物线y=ax2+bx+c与x轴的另一个交点为点C;与双曲线y= 相交于点A,B;直线AB与分别与x轴、y轴交于点D,E.已知点A的坐标为(﹣1,4),点B在第四象限内且到x轴、y轴的距离相等.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)如图2,将抛物线平移至顶点在原点上时,直线AB随之平移,试判断:在y轴的负半轴上是否存在点P,使△PAB的内切圆的圆心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)解:把点A的坐标代入双曲线的解析式得:k=﹣1×4=﹣4.所以双曲线的解析式为y=﹣.设点B的坐标为(m,﹣m).∵点B在双曲线上,∴﹣m2=﹣4,解得m=2或m=﹣2.∵点B在第四象限,∴m=2.∴B(2,﹣2).将点A、B、C的坐标代入得:,解得:.∴抛物线的解析式为y=x2﹣3x.(2)解:如图1,连接AC、BC.令y=0,则x2﹣3x=0,∴x=0或x=3,∴C(3,0),∵A(﹣1,4),B(2,﹣2),∴直线AB的解析式为y=﹣2x+2,∵点D是直线AB与x轴的交点,∴D(1,0),∴S△ABC=S△ADC+S△BDC= ×2×4+ ×2×2=6;(3)解:存在,理由:如图2,由原抛物线的解析式为y=x2﹣3x=(x﹣)2﹣,∴原抛物线的顶点坐标为(,﹣),∴抛物线向左平移个单位,再向上平移个单位,而平移前A(﹣1,4),B(2,﹣2),∴平移后点A(﹣,),B(,),∴点A关于y轴的对称点A'(,),连接A'B并延长交y轴于点P,连接AP,由对称性知,∠APE=∠BPE,∴△APB的内切圆的圆心在y轴上,∵B(,),A'(,),∴直线A'B的解析式为y=3x﹣,∴P(0,﹣).【解析】【分析】(1)首先将点A的坐标代入反比例函数的解析式求得k的值,然后再求得B的值,最后根据点A的坐标求出双曲线的解析式,进而得出点B的坐标,最后,将点A、B、O三点的坐标代入抛物线的解析式,求得a、b、c的值即可;(2)由点A和点B的坐标可求得直线AB的解析式,然后将y=0可求得点D的横坐标,最后用三角形的面积和求解即可;(3)先确定出平移后点A,B的坐标,进而求出点A关于y轴的对称点的坐标,求出直线BA'的解析式即可得出点P的坐标.5.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,反比例函数y= (k≠0)在第一象限内的图象经过点D(m,2)和AB边上的点E(3,).(1)求反比例函数的表达式和m的值;(2)将矩形OABC的进行折叠,使点O于点D重合,折痕分别与x轴、y轴正半轴交于点F,G,求折痕FG所在直线的函数关系式.【答案】(1)解:∵反比例函数y= (k≠0)在第一象限内的图象经过点E(3,),∴k=3× =2,∴反比例函数的表达式为y= .又∵点D(m,2)在反比例函数y= 的图象上,∴2m=2,解得:m=1(2)解:设OG=x,则CG=OC﹣OG=2﹣x,∵点D(1,2),∴CD=1.在Rt△CDG中,∠DCG=90°,CG=2﹣x,CD=1,DG=OG=x,∴CD2+CG2=DG2,即1+(2﹣x)2=x2,解得:x= ,∴点G(0,).过点F作FH⊥CB于点H,如图所示.由折叠的特性可知:∠GDF=∠GOF=90°,OG=DG,OF=DF.∵∠CGD+∠CDG=90°,∠CDG+∠HDF=90°,∴∠CGD=∠HDF,∵∠DCG=∠FHD=90°,∴△GCD∽△DHF,∴=2,∴DF=2GD= ,∴点F的坐标为(,0).设折痕FG所在直线的函数关系式为y=ax+b,∴有,解得:.∴折痕FG所在直线的函数关系式为y=﹣x+【解析】【分析】(1)由点E的坐标利用反比例函数图象上点的坐标特征即可求出k值,再由点B在反比例函数图象上,代入即可求出m值;(2)设OG=x,利用勾股定理即可得出关于x的一元二次方程,解方程即可求出x值,从而得出点G的坐标.再过点F作FH⊥CB于点H,由此可得出△GCD∽△DHF,根据相似三角形的性质即可求出线段DF的长度,从而得出点F的坐标,结合点G、F的坐标利用待定系数法即可求出结论.6.如图,在平面直角坐标系中,平行四边形的边,顶点坐标为,点坐标为 .(1)点的坐标是________,点的坐标是________(用表示);(2)若双曲线过平行四边形的顶点和,求该双曲线的表达式;(3)若平行四边形与双曲线总有公共点,求的取值范围.【答案】(1);(2)解:∵双曲线过点和点,∴,解得,∴点的坐标为,点的坐标为,把点的坐标代入,解得,∴双曲线表达式为(3)解:∵平行四边形与双曲线总有公共点,∴当点在双曲线,得到,当点在双曲线,得到,∴的取值范围 .【解析】【分析】(1)由四边形ABCD为平行四边形,得到A与B纵坐标相同,C与D纵坐标相同,横坐标相差2,得出B、C坐标即可;(2)根据B与D在反比例图象上,得到C与D横纵坐标乘积相等,求出b的值确定出B坐标,进而求出k的值,确定出双曲线解析式;(3)抓住两个关键点,将A坐标代入双曲线解析式求出b的值;将C坐标代入双曲线解析式求出b的值,即可确定出平行四边形与双曲线总有公共点时b的范围.7.如图,直线y=2x+6与反比例函数y= (k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时不等式2x+6﹣<0的解集;(3)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?最大值是多少?【答案】(1)解:∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴k=8,∴反比例函数的解析式为y= .(2)解:不等式2x+6﹣<0的解集为0<x<1.(3)解:由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴﹣>0∴S△BMN= |MN|×|y M|= ×(﹣)×n=﹣(n﹣3)2+ ,∴n=3时,△BMN的面积最大,最大值为.【解析】【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)由图象直接求得;(3)构建二次函数,利用二次函数的最值即可解决问题.8.如图,反比例函数的图象与一次函数y=kx+5(k为常数,且k≠0)的图象交于A (﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.【答案】(1)解:把A(﹣2,b)代入,得b=﹣ =4,所以A点坐标为(﹣2,4),把A(﹣2,4)代入y=kx+5,得﹣2k+5=4,解得k= ,所以一次函数解析式为y= x+5;(2)解:将直线AB向下平移m(m>0)个单位长度得直线解析式为y= x+5﹣m,根据题意方程组只有一组解,消去y得﹣ = x+5﹣m,整理得 x2﹣(m﹣5)x+8=0,△=(m﹣5)2﹣4× ×8=0,解得m=9或m=1,即m的值为1或9.【解析】【分析】(1)先利用反比例函数解析式求出b=4,得到A点坐标为(-2,4),然后把A点坐标代入y=kx+5中求出k,从而得到一次函数解析式;(2)由于将直线AB向下平移m(m>0)个单位长度得直线解析式为y=,又与反比例函数有且只有一个公共点,可组成方程组,且只有一组解,然后消去y得到关于x的一元二次方程,再根据判别式=0得到关于m的方程,最后解方程求出m的值.9.【阅读理解】我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2(当a=b时取等号),【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函数y有最小值为2(1)【直接应用】若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________(3)【探索应用】在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S①求S与x之间的函数关系式;②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.【答案】(1)1;2(2)4(3)解:①设P(x,),则C(x,0),D(0,),∴AC=x+3,BD= +2,∴S= AC•BD= (x+3)( +2)=6+x+ ;②∵x>0,∴x+ ≥2 =6,∴当x= 时,即x=3时,x+ 有最小值6,∴此时S=6+x+ 有最小值12,∵x=3,∴P(3,2),C(3,0),D(0,2),∴A、C关于x轴对称,D、B关于y轴对称,即四边形ABCD的对角线互相垂直平分,∴四边形ABCD为菱形.【解析】【解答】解:(1)∵x>0,∴y1+y2=x+ ≥2 =2,∴当x= 时,即x=1时,y1+y2有最小值2,故答案为:1;2;(2)∵x>﹣1,∴x+1>0,∴ = =(x+1)+ ≥2 =4,∴当x+1= 时,即x=1时,有最小值4,故答案为:4;【分析】(1)直接由结论可求得其取得最小值,及其对应的x的值;(2)可把x+1看成一个整体,再利用结论可求得答案;(3)①可设P(x,),则可表示出C、D的坐标,从而可表示出AC和BD,再利用面积公式可表示出四边形ABCD的面积,从而可得到S与x的函数关系式;②再利用结论可求得其最得最小值时对应的x的值,则可得到P、C、D的坐标,可判断A、C关于x轴对称,B、D关于y轴对称,可判断四边形ABCD为菱形.10.如图,在菱形ABCD中,, ,点E是边BC的中点,连接DE,AE.(1)求DE的长;(2)点F为边CD上的一点,连接AF,交DE于点G,连接EF,若 ,①求证:△△;②求DF的长.【答案】(1)解:连结BD(2)解:①②【解析】【分析】(1)连结BD ,根据菱形的性质及等边三角形的判定方法首先判定出△CDB是等边三角形,根据等边三角形的性质得出DE⊥BC,CE=2,然后利用勾股定理算出DE的长;(2)①首先判断出△AGD∽△EGF,根据相似三角形对应边成比例得出,又∠AGE=∠DGF,故△AGE∽△DGF;②根据相似三角形的性质及含30°直角三角形的边之间的关系及勾股定理得出EF的长,然后过点E作EH⊥DC于点H,在Rt△ECH中,利用勾股定理算出FH的长,从而根据线段的和差即可算出答案.11.(1)如图1所示,在中,,,点在斜边上,点在直角边上,若,求证: .(2)如图2所示,在矩形中,,,点在上,连接,过点作交 (或的延长线)于点 .①若,求的长;②若点恰好与点重合,请在备用图上画出图形,并求的长.【答案】(1)证明:∵在中,,,∴,∴,∵,∴,∴,∴ .(2)解:①∵四边形是矩形,∴,∴,∵,∴,∴,∴,∴,∵,∴,,∴,;②如图所示,设,由①得,∴,即,整理,得:,解得:,,所以的长为或 .【解析】【分析】(1)利用平角的定义和三角形的内角和证明即可证得结论;(2)①仿(1)题证明,再利用相似三角形的性质即可求得结果;②由①得,设,根据相似三角形的性质可得关于x的方程,解方程即可求得结果.12.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.13.如图,抛物线与轴交于、两点,与轴交于点,且.(1)求抛物线的解析式和顶点的坐标;(2)判断的形状,证明你的结论;(3)点是轴上的一个动点,当的周长最小时,求的值.【答案】(1)解:∵点在抛物线上,∴,解得,∴抛物线解析式为,∵,∴点坐标为;(2)解:为直角三角形,证明如下:在中,令可得,解得或,∴为,且为,∴,,,由勾股定理可求得,,又,∴,∴为直角三角形;(3)解:∵,∴点关于轴的对称点为,如图,连接,交轴于点,则即为满足条件的点,设直线解析式为,把、坐标代入可得,解得,∴直线解析式为,令,可得,∴.【解析】【分析】(1)把A点坐标代入可求得b的值,可求得抛物线的解析式,再求D 点坐标即可;(2)由解析式可求得A、B、C的坐标,可求得AB、BC、AC的长,由勾股定理的逆定理可判定△ABC为直角三角形;(3)先求得C点关于x轴的对称点E,连接DE,与轴交于点M,则M即为所求,可求得DE的解析式,令其y=0,可求得M点的坐标,可求得m.14.如图,反比例函数y= 的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y= 在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.(1)求k的值;(2)当b=﹣2时,求△OCD的面积;(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.【答案】(1)解:∵反比例函数y= 的图象经过点A(﹣1,4),∴k=﹣1×4=﹣4;(2)解:当b=﹣2时,直线解析式为y=﹣x﹣2,∵y=0时,﹣x﹣2=0,解得x=﹣2,∴C(﹣2,0),∵当x=0时,y=﹣x﹣2=﹣2,∴D(0,﹣2),∴S△OCD= ×2×2=2(3)解:存在.当y=0时,﹣x+b=0,解得x=b,则C(b,0),∵S△ODQ=S△OCD,∴点Q和点C到OD的距离相等,而Q点在第四象限,∴Q的横坐标为﹣b,当x=﹣b时,y=﹣x+b=2b,则Q(﹣b,2b),∵点Q在反比例函数y=﹣的图象上,∴﹣b•2b=﹣4,解得b=﹣或b= (舍去),∴b的值为﹣.【解析】【分析】(1)根据反比例函数的图象上点的坐标特征易得k=﹣4;(2)当b=﹣2时,直线解析式为y=﹣x﹣2,则利用坐标轴上点的坐标特征可求出C(﹣2,0),D(0,﹣2),然后根据三角形面积公式求解;(3)先表示出C(b,0),根据三角形面积公式,由于S△ODQ=S△OCD,所以点Q和点C到OD的距离相等,则Q的横坐标为(﹣b,0),利用直线解析式可得到Q(﹣b,2b),再根据反比例函数的图象上点的坐标特征得到﹣b•2b=﹣4,然后解方程即可得到满足条件的b的值.15.如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.【答案】(1)解:把点A(2,6)代入y= ,得m=12,则y= .把点B(n,1)代入y= ,得n=12,则点B的坐标为(12,1).由直线y=kx+b过点A(2,6),点B(12,1)得,解得,则所求一次函数的表达式为y=﹣x+7(2)解:如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,7).∴PE=|m﹣7|.∵S△AEB=S△BEP﹣S△AEP=10,∴×|m﹣7|×(12﹣2)=10.∴|m﹣7|=2.∴m1=5,m2=9.∴点E的坐标为(0,5)或(0,9).【解析】【分析】(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,得出点B的坐标,再把A、B的坐标代入直线y=kx+b,求出k、b的值,从而得出一次函数的解析式;(2)设点E 的坐标为(0,m),连接AE,BE,先求出点P的坐标(0,7),得出PE=|m﹣7|,根据S△AEB=S△BEP﹣S△AEP=10,求出m的值,从而得出点E的坐标.。

相关文档
最新文档