数学分析 第二章21-2数列极限的准则、运算法则
数学分析讲解---数列极限ppt课件

无穷小,无穷大和无界的关系
定理 若xn
0,
则
lim
n
xn
lim
n
1 xn
0.
无穷大 无界,反之不成立
例8 当n
时,xn
n2
cos
n 是(
).
(A) 无穷小.
(B) 无穷大.
(C) 有界的,但不是无穷小. (D) 无界的,但不是无穷大.
15
Stolz定理
设{yn}严格增加,且
lim
n
yn
.
若
12
定理5 若
lim
n
xn
A,
lim
n
yn
B, 则有
lim (
n
xn
yn )
A
B
lim
n
xn
lim
n
yn ;
lim (
n
xn
yn )
A
B
lim
n
xn
lim n
yn ;
(lim n
xnm
Am ,
m N)
(lnim(cxn
)
cA
c
lim
n
xn
)
lim
xn
A
lim
n
xn
n yn
B
lim
n
yn
(B 0);
1 3
Ex. 求极限 lim1 2 L n
n
nn
2 3
五、数列收敛准则
1单调有界定理 设数列{xn}单调增加. 则当{xn}有上界时, {xn}收敛,当{xn} 上无界时, {xn}为正无穷大,且均成立
lim
n
数学分析第2章

于是当n N时, | a 1 || b 1 | ,从而当0 a 1时, lim n a 1.
n
1 n
综上所述,结论成立 .
数学分析
注意:
对 0(不论多小),N N ,这里N与有关,每给定一个 ,
就存在一个N与之对立,故可改为 N N ( )或N ,使当n N时, | an a | . 这里N可以写出很多大,可以 是正整数,也可以是 0,也可是正 实数. n N也可改为年n N .
n 2 N 1
|a| a | 1 a 1 0 2 |a| 0. 2
当a 0时,令n0 2 N, | (1) n a | 1 | a | 1
数学分析
三 数列极限定义的几何意义
x2
a x N 1
2
a
a
x N 2 x3
x
当n N时, 所有的点xn都落在(a , a )内, 只有有限个(至多只有N个) 落在其外 .
S
数学分析
2、截杖问题:
“一尺之棰,日截其半,万世不竭”
1 第一天截下的杖长为X 1 ; 2 1 1 第二天截下的杖长总和 为 X2 2 ; 2 2
1 1 1 第n天截下的杖长总和为X n 2 n ; 2 2 2 1 Xn 1 n 1 2
数学分析
n (1) n 1 3、 设xn , n 1 4 3 6 5 则 x1 2, x2 , x3 , x4 , x5 , x6 , 2 3 4 5 6 n (1) n 1 , xn , n 当n无限增大时,xn无限接近1,即 | xn 1 | 无限接近0.
n
陈纪修主编的《数学分析》(第2版)辅导书-第2章 数列极限【圣才出品】

不能随便舍去。
(2)数列极限
设{xn}是一给定数列,a 是一个实常数。如果对于任意给定的 ε>0,可以找到正整数
N,使得当 n>N 时,成立
|xn-a| < ε,
则称数列{xn}收敛于 a(或 a 是数列{xn}的极限),记为
有时也记为
如果不存在实数 a,使{xn}收敛于 a,则称数列{xn}发散。 注:在上述的收敛定义中,ε 既是任意的,又是给定的: ①只有当 ε 确定时,才能找到相应的正整数 N。这时 ε 是给定的; ②改变数列前面的有限项,不影响数列的收敛性。这时 ε 是任意的; (3)无穷小量 在收敛的数列中,称极限为 0 的数列为无穷小量。无穷小量是一个变量,而不是一个
(1)定义
,则{xnyn}与 都是无穷大量。
如∞±∞,(+∞)-(+∞),(+∞)+(-∞),0·∞,
等极限,其结果可以是无穷
小量,或非零极限,或无穷大量,也可以没有极限。我们称这种类型的极限为待定型。
5 / 44
圣才电子书
十万种考研考证电子书、题库视频学习平
台
(2)如果数列{xn}满足 xnxn+1,n=1,2,3,…,则称{xn}为单调增加数列;若进一
1 / 44
圣才电子书
十万种考研考证电子书、题库视频学习平
台
max S 是这有限个数中的最大数,min S 是这有限个数中的最小数;
②当 S 是无限集时,最大数及最小数不一定存在。
3.上确界与下确界
(1)上界、下界与有界集
设 S 是一个非空数集,如果 M∈R,使得 x ∈S ,都有 x≤M,则称 M 是 S 的一个
但它并不收敛。
数学分析讲义 - CH02(数列极限)

第二章 数列极限 §1 数列极限概念一、数列极限的定义()函数:,f N n f +→R n 称为数列。
()f n 通常记作12,,,,n a a a或简单地记作,其中称为该数列的通项。
}{n a n a 例如:11{}:1,,,,2n a n ,通项1n a n=。
如何描述一个数列“随着的无限增大,无限地接近某一常数”。
下面给出数列极限的精确定义。
n n a 定义1 设为数列,a 为定数.若对任给的正数}{n a ε,总存在正整数,使得当时,有N n N >n a a ε-<则称数列收敛于,定数称为数列的极限,并记作}{n a a a }{n a a a n n =∞→lim ,或)(∞→→n a a n读作“当n 趋于无穷大时,{}n a 的极限等于或趋于”. a n a a 若数列没有极限,则称不收敛,或称为发散数列. }{n a }{n a }{n a 【注】该定义通常称为数列极限的“N ε-定义”。
例1 设(常数),证明n a c =lim n n a c →∞=.证 对0ε∀>,因为0n a c c c ε-=-=<恒成立,因此,只要取,当n 时,便有1N =N >n a c ε-<这就证得li .m n c c →∞=例2 1lim0n n→∞=(0)α>. 证 对0ε∀>,要110n nε-=< 只要1n ε>只要取11N ε⎡⎤=+⎢⎥⎣⎦,则当时,便有N n >110n nε-=< 这就证得1lim0n n→∞=。
例3 lim 11n nn →∞=+.证 因为11111n n n n-=<++ 对0ε∀>,取11N ε⎡⎤=+⎢⎥⎣⎦,则当时,便有N n >11111n n n nε-=<<++ 这就证得lim 11n nn →∞=+。
关于数列极限的“N ε-定义”,作以下几点说明: 【1】定义中不一定取正整数,可换成某个正实数。
第二章 数列极限

1. 实数及其性质
回顾中学数学里关于有理数和无理数的定义.
有理数:
⎧⎪能用互质分数 ⎨
p q
(
p,
q
为整数,q
≠
0)
表示的数;
⎪⎩有限十进小数或无限十进循环小数表示的数
例 1 设 p 为正整数,若 p 不是完全平方数,则 p 是无理数.
证明:反证法。若
p 是有理数,则
p 可表示成:
p
=
n ,从而整数 p 可表示成: p = m
记作ξ = inf S . 上确界与下确界统称为确界。
{ } 例 1 讨论数集 S = x x为区间(0,1)中的有(无)理数 的确界。
分析:通过数轴看有无上、下界,进一步讨论上、下确界。
提示:利用有理数集在实数集中的稠密性。 sup S = 1, inf S = 0.
例 2(1)
S = [0,1],sup S = 1,inf S = 0. (2)
分析:首先,由 S = A ∪ B 及A、B的性质知,S也是非空有界集。其次,证明(1)、(2)。
〖课外作业〗
2-2 数列极限
4
〖教学目的和要求〗初步掌握数列极限这一重要概念的内涵与外延;学会用定义证明极限的基本方法;加深 对数学的抽象性特点的认识;体验数学概念形成的抽象化思维方法;体验数学“符号化”的意义。
(其中 xn 为 x 的 n 位不足近似, yn 为 y 的 n 位过剩近似).
例 2 设 x, y 为实数, x < y ,证明存在有理数 r ,满足 x < r < y .
( ) 证明
由x<
y 知:存在非负整数 n,使得 xn
<
yn .令 r
(整理)《数学分析》第二章 极限与连续.

第二章 极限与连续一、本章知识脉络框图二、本章重点及难点(一)重点:极限的定义与性质、数列极限和一元函数极限的计算、两个重要极限的运用、归结原则、柯西准则以及有界闭集上连续函数的性质.(二)难点运用柯西准则和归结原则进行证明、理解多元函数重极限与累次极限的概念、有界闭集上连续函数的性质以及一致连续性.三、本章的基本知识要点本章符号说明::∀ 每一个或任给的;:∃ 至少有一个或存在;⇔:充分必要条件. (一)数列极限1. 数列极限定义lim 0,0,n n a a N ε→∞=⇔∀>∃>当n N >时,有.n a a ε-<注:定义中的N 可不取整数,n a a ε-<可以是.n a a ε-≤定理:增加、改变或去掉数列的有限项, 不影响数列的收敛性和极限. 重排不改变数列敛散性.数列极限的等价定义:(1) 0,0,N ε∀>∃> 当n N >时有,n a a k ε-< 其中k 为某个正数. (2) 0,0,c N ε∀<<∃> 当n N >时有,n a a k ε-<其中c 与k 为某个正数. 2. 收敛数列的性质(1) 唯一性定理:每个收敛的数列只有一个极限. (2) 有界性定理:收敛的数列必定有界.(3) 保号性定理:若lim n n a a →∞=,则对任意(),r a r a <>或 ,N n N ∃∀>, 有n a r > (或n a r <).(4) 保不等式性定理:若lim ,lim n n n n a b →∞→∞都存在,且,n n N n N a b ∃∀>≤有,则lim lim .n n n n a b →∞→∞≤(5) 迫敛性定理:设lim lim .n n n n a b a →∞→∞== 数列{}n c 满足:,N n N ∃∀>有 n n n a c b ≤≤,则数列{}n c 收敛,且lim .n n c a →∞=(6) 四则运算法则:lim ,lim ,i)lim();ii)lim ;iii)lim,0,0.n n n n n n n n n n n n n na ab b a b a b a b a b a ab b b b →∞→∞→∞→∞→∞==±=±⋅=⋅=≠≠设则其中(7) 与子列的关系:数列{}n a 收敛⇔数列{}n a 的任何非平凡子列都收敛. 3. 数列极限存在的条件 递增数列:121n n a a a a +≤≤≤≤; 递减数列:121n n a a a a +≥≥≥≥.(1) 单调有界定理:在实数系中,有界的单调数列必有极限.(2) 柯西收敛准则:0,,,,||.n m N n m N a a εε∀>∃∃∀>-<(二)函数极限1. 函数极限和非正常极限概念 函数极限定义(通过对比加以理解):(1) lim ()0,0,,().x f x A k x k f x A εε→+∞=⇔∀>∃>>-<当时恒有(2) lim ()0,0,,().x f x A k x k f x A εε→-∞=⇔∀>∃><--<当时恒有(3) lim ()0,0,,().x f x A k x k f x A εε→∞=⇔∀>∃>>-<当时恒有(4) 00lim ()0,0,0,().x x f x A x x f x A εδδε→=⇔∀>∃><-<-<当时恒有(5) 00lim ()0,0,0,().x x f x A x x f x A εδδε-→=⇔∀>∃>-<-<-<当时恒有 (6) 00lim ()0,0,0,().x x f x A x x f x A εδδε+→=⇔∀>∃><-<-<当时恒有 上述左极限0lim ()x x f x -→和右极限0lim ()x x f x +→也可以写成0(0)f x -和0(0)f x +. 定理:000lim ()(0)(0).x x f x A f x f x A →=⇔-=+=非正常极限定义(只列出2个,其余可以类似写出):(1) 0lim ()x x f x →=-∞00,0,0||,().M x x f x M δδ⇔∀>∃><-<<-当时恒有(2) lim ()x f x →∞=+∞0,0,||,().M k x k f x M ⇔∀>∃>>>当时恒有2. 函数极限的基本性质下面只以0lim ()x x f x →为代表来说明,其余类型极限的性质可以类似写出.(1) 唯一性定理:若0lim ()x x f x →存在,则极限唯一.(2) 局部有界性定理:若0lim ()x x f x →存在,则()f x 在0x 的某个空心邻域00()U x 内有界.(3) 局部保号性定理:若0lim (),x x f x A →=则r A ∀<(或r A >),0,δ∃>当00(,)x U x δ∈时,有()f x r >(或()f x r <).(4)保不等性定理:设0lim ()x x f x →与0lim ()x x g x →都存在,且在某邻域00(;)U x δ内有()(),f xg x ≤则0lim ()lim ().x x x x f x g x →→≤(5) 迫敛性定理:设00lim ()lim (), x x x x f x g x A →→==且在某邻域00(;)U x δ内有()() ()f x h x g x ≤≤ 则0lim ().x x h x A →=(6) 四则运算法则:lim (),lim (),(1)lim(()());(2)lim ()();()(3)lim,0.()x x x x x x x x x x f x A g x B f x g x A B f x g x A B f x AB g x B→→→→→==±=±⋅=⋅=≠设则其中3.函数极限存在的条件(1) 归结原则(也称为海涅定理):设()f x 在00(;)U x δ内有定义. 0lim ()x x f x →存在⇔任意含于邻域00(;)U x δ且以0x 为极限的数列{},n x 极限lim ()n n f x →∞存在且相等.(2) 柯西准则:设函数()f x 在邻域00(;')U x δ内有定义. 0lim ()x x f x →存在⇔0,ε∀>∃正数('),δδ<00',''(;),x x U x δ∀∈有|(')('')|.f x f x ε-<4. 两个重要极限(1) 0sin lim1.x xx→=(2) 1lim(1).xx e x→∞+=由归结原则得1lim(1).nn e n→∞+=5. 无穷小量与无穷大量 (1) 无穷小量定义:i) 设函数()f x 在某邻域00(;)U x δ内有定义. 若0lim ()0x x f x →=, 则称()f x 为当0x x →时的无穷小量.ii) 设函数()g x 在某邻域00(;)U x δ内有界,则称()g x 为当0x x →时的有界量.由无穷小量的定义可知,两个(相同类型的)无穷小量之和、差、积仍为无穷小量;无穷小量与有界量的乘积为无穷小量.(2) 定理:0lim ()()(),x x f x A f x A x α→=⇔=+其中()x α是当0x x →时的无穷小.(3) 无穷小量阶的比较无穷小量是以0为极限的函数,而不同的无穷小量收敛于0的速度有快有慢. 若无穷小量f 与g 满足()()lim0x x f x g x →=,则称当0x x →时f 为g 的高阶无穷小量,g 为f 的低阶无穷小量,记作()()()f x g x ο=(0x x →).特别,f 为当0x x →时的无穷小量,记作()()1f x ο=(0x x →).若存在正数K 和L ,使得在某邻域()00U x 上有()()f x K Lg x ≤≤,则称无穷小量f 与g 为当0x x →时的同阶无穷小量.特别当()lim0()x x f x c g x →=≠时,f 与g 必为同阶无穷小量. 若无穷小量f 与g 满足()()f x Lg x ≤,()00x U x ∈,则记作()()()0( ).f x O g x x x =→ 特别,若f 在某()00Ux 内有界,则记为()()1f x O =(0x x →).甚至当()()()0( )f x o g x x x =→ 时,也有()()()f x O g x =(0x x →).若无穷小量f 与g 满足()lim1()x x f x g x →=,则称f 与g 为当0x x → 时的等价无穷小量,记作()()~f x g x (0x x →).应指出,并不是任何两个无穷小量都可以进行这种阶的比较.例如,当0x → 时,1sinx x和2x 都是无穷小量,但它们的比 21sinx x x =11sin x x 或 21sin x x x =1sin x x当0x → 时都不是有界量,所以这两个无穷小量不能进行阶的比较. 下述定理表明了等价无穷小量在求极限问题中的作用. 定理: 设函数f ,g ,h 在邻域()00Ux 内有定义,且有()()~f x g x (0x x →).ⅰ) 若()()0lim x x f x h x A →=,则()()0lim ;x x g x h x A →= ⅱ) 若()()limx x h x B f x →=,则 ()()0lim .x x h x B g x →=(4) 无穷大量定义:对于自变量x 的某种趋向(或n →∞时),所有以∞、+∞或-∞为非正常极限的函数(包括数列),都称无穷大量.定理:ⅰ)设f 在()00U x 内有定义且不等于0.若f 为当0x x →时的无穷小量,则1f为当0x x →时的无穷大量.ⅱ)若g 为当0x x →时的无穷大量,则1g为当0x x →时的无穷小量. 由上述定理,对无穷大量的讨论可归结为无穷小量的研究.(三)一元函数的连续性1. 函数在点0x 连续的定义: 设函数()f x 在0x 的某邻域内有定义. 若()()00lim ,x x f x f x →= 则称函数()f x 在0x 点连续.若记()()00,x x x y f x f x ∆=-∆=- ,则()()00lim x x f x f x →= 的等价叙述为lim 0x y ∆→∆=,于是函数()f x 在0x 点连续的定义又可以写成:定义: 设函数()f x 在0x 的某邻域内有定义. 若0lim 0x y ∆→∆=,则称()f x 在0x 点连续.改用εσ-语言叙述,则()f x 在0x 点连续可以定义为:定义: 设函数()f x 在0x 的某邻域内有定义. 若对0ε∀>,0δ∃>使得当0x x δ-<时,都有()()0f x f x ε-<, 则称()f x 在0x 点连续.2. 函数在点0x 左、右连续的定义相应于在0x 的左、右极限的概念,我们给出左右连续的定义如下:定义: 设函数()f x 在0x 的某左(右)邻域内有定义. 若()()00lim x x f x f x -→=(或()()00lim x x f x f x +→=), 则称()f x 在0x 左(或右)连续.定理: 函数()f x 在0x 点连续⇔()f x 在0x 点既左连续又右连续. 与上述定理等价的否定叙述:定理: 函数()f x 在0x 点不连续⇔()f x 在0x 点或不左连续或不右连续. 3. 函数的间断点(不连续点)及其分类 定义:设函数f 在某领域()00Ux 内有定义. 若f 在点0x 无定义,或在点0x 有定义但不连续,则称点0x 为函数f 的间断点或不连续点.由连续的定义知,函数()f x 在0x 点不连续必出现如下3种情形之一:i )()0lim x x f x A →=,而f 在点0x 无定义,或有定义但()()00lim x x f x A f x →=≠;ii ) 左、右极限都存在,但不相等; iii ) 左、右极限至少一个不存在.据此,函数()f x 的间断点可作如下分类: i ) 可去间断点若()0lim x x f x A →=(存在),而f 在点0x 无定义,或有定义但()()00lim x x f x A f x →=≠,则称0x 为可去间断点(或可去不连续点).ii )跳跃间断点若0)(x x f 在点的左、右极限都存在,但不相等(即0(0)f x +与0(0)f x - 均存在,但00(0)(0)f x f x +≠-),则称0x 为()f x 的跳跃间断点.注:可去间断点与跳跃间断点统称)(x f 的第一类间断点. iii ) 第二类间断点若0(0)f x +与0(0)f x -至少有一个不存在,则称0x 为)(x f 的第二类间断点. 定义: 若函数)(x f 在区间I 上每一点都连续,则称)(x f 为I 上的连续函数. 对于区间端点上的连续性,则按左、右连续来确定.定义: 如果)(x f 在区间[],a b 上仅有有限个第一类不连续点,则称函数)(x f 在区间[],a b 上按段连续.4. 连续函数的性质局部有界性定理: 若函数)(x f 在0x 点连续,则)(x f 在0x 点的某邻域内有界. 局部保号性定理: 若函数)(x f 在0x 点连续,且()0f x α>(或()0f x β<),则对'αα∀<(或'ββ>),∃某邻域()0,U x 当()0x U x ∈时,有()'f x α>(或()'f x β<).四则运算性质: 若函数()(),f x g x 在区间I 上有定义,且都在0x I ∈连续,则()()()()()(),,f x g x f x g x f x g x ±(()00g x ≠)在0x 点连续.复合函数连续性定理: 若函数()f x 在0x 点连续,()g u 在0u 点连续,()00u f x =,则复合函数()()g f x 在0x 点连续.定义:设()f x 为定义在数集D 上的函数. 若∃0x D ∈,使得对∀x D ∈都有()()0f x f x ≥(或()()0f x f x ≤),则称在D 上有最大值(或最小值),称0x 为f 在D 上的最大值点(或最小值点),并称()0f x 为f 在D 上的最大值(或最小值).闭区间上连续函数的基本性质:最大最小值定理: 若函数()f x 在闭区间[],a b 上连续,则()f x 在闭区间[],a b 上有最大值与最小值.有界性推论:若函数()f x 在闭区间[],a b 上连续,则()f x 在闭区间[],a b 上有界. 介值性定理: 若函数()f x 在闭区间[],a b 上连续,且()()f a f b ≠,μ为介于()f a 与()f b 之间的任何实数(()()f a f b μ<<或()()f b f a μ<<),则在开区间(),a b 内至少存在一点0x ,使得()0.f x μ=根的存在定理: 若函数()f x 在闭区间[],a b 上连续,且()f a 与()f b 异号,则至少存在一点()0,x a b ∈ 使得()00,f x =即()0f x =在(),a b 内至少有一个实根.反函数的连续性定理: 若连续函数()f x 在闭区间[],a b 上严格递增(递减),则其反函数()1f y -在相应的定义域()(),f a f b ⎡⎤⎣⎦(或()(),f b f a ⎡⎤⎣⎦)上递增(递减)且连续.5. 一致连续性一致连续性定义:设函数()f x 在区间I 上有定义. 若0,ε∀>()0δδε∃=>, 当12,x x I ∈且12x x δ-<时,有()()12,f x f x ε-< 则称()f x 在区间I 上一致连续.注意:这里的δ只与0ε>有关,与(1,2)i x i =的位置无关.区间I 上的连续函数()f x ⇔1,x I ∀∈0,ε∀>()1'',0,x δδε∃=> 当2x I ∈且12'x x δ-<时,有()()12.f x f x ε-< 这就是说,连续函数里的'δ与预先取定的点1x 的位置有关,区间I 上的无穷多个点,对应无穷多个'δ,这无穷多个'δ的下确界可能为零,也可能大于零. 如果这无穷多个'δ的下确界为零,则不存在对I 上所有点都适合的公共()0δδε=>,这时()f x 在I 上连续,但不一致连续;如果这无穷多个'δ的下确界大于零,则必存在对I 上每一点都适用的公共()0δδε=>,如我们可取inf{'},δδ=则对I 上任意两点12,x x I ∈,当12x x δ-<时,便有()()12.f x f x ε-< 这种情况,()f x 在I 上连续就成为一致连续.一致连续性定理:若函数()f x 在闭区间[],a b 上连续,则()f x 在[],a b 上一致连续. 定理:一切基本初等函数都是定义域上的连续函数.因为任何一个初等函数都是由基本初等函数经过有限次四则运算与复合运算所得到,故任何初等函数都是定义域上的连续函数.(四)多元函数的极限与连续1.点列与二元函数的极限 (1) 点列极限与二重极限设{}n x 是X 轴上的一个点列,{}n y 是Y 轴上的一个点列,则以n x ,n y 为坐标的所有点(){},nnx y 组成平面上的一个点列记作{}nP .又设0P 是平面上的一点,坐标是()00,x y .若0,ε∀>∃正整数N ,当n N >时,有()0,n P P ρε=<,就称{}n P 收敛于0P ,记作0lim .n n P P →∞= 点列收敛的柯西准则:平面点列{}n P 收敛⇔0,0,N ε∀>∃>当N n >时,对一切正整数k ,都有(),.n n k P P ρε+<定义: 设f 为定义在2D R ⊂上的二元函数,0P 为的D 的一个聚点,A 是一个确定的实数. 若0,ε∀>∃0,δ> 使得当()D P UP oδ;0∈时,都有(),ε<-A P f 则称f在D 上当0P P →时以A 为极限,记作()0lim .P P P Df P A →∈=在对D P ∈不致产生误解时,也可简单地写作()0lim .P P f P A →= 当0,P P 分别用坐标()()00,,,y x y x 表示时,()0lim P P f P A →=也常写作()0(,)(,)lim ,.x y x y f x y A →=定理:()0lim P P P Df P A →∈=⇔对D 的每一个子集E ,只要点0P 是E 的聚点,就有()0lim P P P Ef P A →∈=.推论:i) 设1E D ⊂,0P 是1E 的聚点. 若极限()01lim P P P E f P →∈不存在,则极限()0lim P P P Df P →∈也不存在.ii) 设12,E E D ⊂, 0P 是1E 和2E 的聚点. 若存在极限()011lim P P P E f P A →∈=,()022lim P P P E f P A →∈=, 但12A A ≠, 则极限()0lim P P P Df P →∈不存在.iii) 极限()0lim P P P Df P →∈存在⇔对D 内任一点列{}n P , 0n PP →但0n P P ≠,数列(){}nf P 收敛.定义: 设D 为二元函数f 的定义域,),(000y x P 是D 的一个聚点. 若对0,M ∀>总存在0P 的一个δ邻域()00;U P δ,使得当()()0,;P x y U P D δ∈时,都有()f P M >,则称f 在D 上当0P P →时,存在非正常极限+∞,记作()()()00,,lim,.x y x y f x y →=+∞ 类似定义()()()00,,lim,x y x y f x y →=-∞和()()()00,,lim,.x y x y f x y →=∞(2) 累次极限 在前面研究的极限),(lim),(),(00y x f y x y x →中,两个自变量y x ,同时以任何方式趋于00,,x y这种极限也称为二重极限. 这一段考察x 与y 依一定的先后顺序相继趋于0x 与0y 时f 的极限,这种极限称为累次极限.定义:设,,x y E E R ⊂ 0x 是x E 的聚点,0y 是y E 的聚点,二元函数f 在集合x y D E E =⨯上有定义. 若对每一个0,y y E y y ≠∈,存在极限),,(lim 0y x f xE x x x ∈→由于此极限一般与y 有关,因此记作()),,(lim 0y x f y xE x x x ∈→=ϕ而且进一步存在极限(),lim 0y L yE y y y ϕ∈→=则称此极限为二元函数f 先对()0x x →后对()0y y →的累次极限,并记作 ),(lim lim 00y x f L xy E x x x E y y y ∈→∈→=或简记作).,(lim lim 00y x f L x x y y →→=类似地可以定义先对y 后对x 的累次极限 ).,(lim lim 00y x f K x x y y →→=注:i) 两个累次极限存在时,可能不相等. 例如:设yx y x y x y x f +++-=22),(,它关于原点的两个累次极限分别为.1)1(lim lim limlim 0202200-=-=-=+++-→→→→y yyy y x y x y x y y x y 与.1)1(lim lim limlim 0202200=+=-=+++-→→→→x xxx y x y x y x x x y x ii) 两个累次极限中的一个存在时,另一个可能不存在.例如函数1(,)sin f x y x y=在点(0,0)的情形.iii) 二重极限存在时,两个累次极限可能不存在(见例题).iV) 两个累次极限存在(甚至相等),二重极限可能不存在(见例题).综上, 二重极限、两个累次极限三者的存在性彼此没有关系. 但有以下确定关系: 定理:若二重极限()()()00,,lim,x y x y f x y →和累次极限()00lim lim ,x x y y f x y →→ (或另一次序)都存在, 则二者必相等.推论:i) 二重极限和两个累次极限三者都存在时,三者相等. ii) 两个累次极限存在但不相等时,二重极限不存在. 3. 二元函数的连续性 (1) 连续性概念定义: 设f 为定义在点集2R D ⊂上的二元函数. 0P D ∈(它或者是D 的聚点,或者是D 的孤立点). 若0,0,εδ∀>∃>只要(),;D P U P δ0∈就有()()ε<-0P f P f ,则称f 关于集合D 在点0P 连续. 在不至于误解的情况下,也称f 在点0P 连续.设()000,y x P 、()00,,,y y y x x x D y x P -=∆-=∆∈则称()()()0000,,,y x f y x f y x f z -=∆=∆()()0000,,y x f y y x x f -∆+∆+=为函数f 在点0P 的全增量. 和一元函数一样,可用增量形式来描述连续性,即当0lim),()0,0(),(=∆∈→∆∆z Dy x y x 时,f 在点0P 连续.如果在全增量中取0=∆x 或0=∆y ,则相应的函数增量称为偏增量,记作 ()00,y x f x ∆()()0000,,y x f y x x f -∆+=, ()00,y x f y ∆()().,,0000y x f y y x f -∆+=一般说来,函数的全增量并不等于相应的两个偏增量之和.若一个偏增量的极限为零,例如()000lim ,0,x x f x y ∆→∆=它表示在f 的两个自变量中,当固定0y y =时,()0,y x f 作为x 的一元函数0x 在连续. 同理,若().0,lim 000=∆→∆y x f y y 则表示一元函数()y x f ,0在0y 连续.容易证明,当f 在其定义域的内点()00,y x 连续时,()0,y x f 在0x 和()y x f ,0在0y 都连续. 但是反过来,二元函数对单个自变量都连续并不能保证该函数的连续性.(2) 连续函数的性质局部保号性定理:若二元函数f 在点()000,y x P 连续,并且存在实数A (或B )使得0()f P A >(或0()f P B <),则存在0P 的邻域0(;)U P δ,当0(;)P U P δ∈时有()f P A >(或()f P B <).局部有界性定理:若二元函数f 在点()000,y x P 连续,则f 在0P 的某个邻域0(;)U P δ上有界.四则运算性质: 两个连续函数的和、差、积、商(若分母不为0)都是连续函数. 复合函数的连续性定理:设函数()y x u ,ϕ=和()y x v ,φ=在xy 平面上点()000,y x P 的某邻域内有定义,并在点0P 连续;函数()v u f ,在uv 平面上点()000,v u Q 的某邻域内有定义,并在点0Q 连续,其中()000,y x u ϕ=,()000,y x v φ=.则复合函数()[]),(),,(,y x y x f y x g φϕ=在点0P 也连续.(3) 二元初等函数及其连续性与一元函数类似,二元连续函数经过四则运算和复合运算后仍为二元连续函数. 由x 和y 的基本初等函数经过有限次的四则运算和复合所构成的可用一个式子表示的二元函数称为二元初等函数.一切二元初等函数在其定义区域内是连续的. 这里定义区域是指包含在定义域内的区域. 利用这个结论,当要求某个二元初等函数在其定义区域内一点的极限时,只要算出函数在该点的函数值即可.4. 有界闭区域上连续函数的性质(1) 有界性与最值性定理: 若函数f 在有界闭域2R D ⊂上连续,则f 在D 上有界,且能取得最大值与最小值.(2) 一致连续性: 若函数f 在有界闭域2R D ⊂上连续,则f 在D 上一致连续, 即0,0,εδ∀>∃>使得,,P Q D ∀∈只要(),,P Q ρδ<就有()()ε<-Q f P f .(3) 介值性与零点定理:设函数f 在区域2R D ⊂连续,若21,P P 为D 中任意两点,且()()21P f P f <,则对任何满足不等式()()21P f P f <<μ的实数μ,存在点D P ∈0,使得()μ=0P f .四、基本例题解题点击【例1】按N ε-定义证明!lim0.nn n n →∞=【提示】在用N ε-定义证明极限时,先写出定义,运用放缩法,找到合适的N 即可. 【证明】0,ε∀> 1,N ε∃=当n N >时,有!110.n n n n Nε-≤<= 因此 !lim 0.nn n n →∞= ■【例2】求极限111lim().1223(1)n n n →∞++⋅⋅+【提示】111.(1)1n n n n =-++【解】111lim()1223(1)n n n →∞++⋅⋅+11111lim[(1)()()]2231n n n →∞=-+-++-+ 1lim(1) 1.1n n →∞=-=+ ■【例3】求极限n →∞+【提示】用极限的迫敛性定理.【解21,nn<++<=+且lim1,lim11,n nn →∞→∞===由极限的迫敛性定理,得 1.n →∞+= ■【例4】应用柯西收敛准则,证明数列{}n a 收敛,其中2sin1sin 2sin .222n nna =+++【提示】利用柯西收敛准则和三角函数有界性. 【证明】0ε∀>,21log ,N ε∃=,n m N ∀>> 有()()12sin 1sin 2sin 222n m m m nm m na a ++++-=+++12111111121222212n m m m n m -+++-≤+++=⋅- 11111.122212m mN ε+<⋅=<=-故由柯西收敛准则知数列{}n a 收敛. ■【例5】计算.n nπ【提示】定义函数(),f x nπ= 再用极限四则运算、归结原则和等价无穷小量求解.【解】记函数(),f x xπ=则有sin limlim )0.x x x xxπππ→+∞==故由归结原则得 l i s i n 0.n nπ=■【例6】设()10111011m m m mn n n na x a x a x a f xb x b x b x b ----++++=++++,000,0,a b m n ≠≠≤,求()lim x f x →+∞.【提示】极限的四则运算法则和12lim lim lim 0.n x x x xx x ---→+∞→+∞→+∞====【解】因()10111011lim lim m n m n nm n n x x n na x a x a x f xb b x b x b x -------→+∞→+∞-+++=++++, 12lim lim lim 0,n x x x x x x ---→+∞→+∞→+∞====当m n ≤时,12lim lim lim 0;m n m n n x x x xx x -----→+∞→+∞→+∞====当m n =时,lim 1m nx x-→+∞=; 当m n <时,lim 0.m nx x-→+∞=故由极限的四则运算法则,有()00,;lim 0,.x a m n b f x m n →+∞⎧=⎪=⎨⎪<⎩■【例7】设()()00,lim x x f x f x A →>=.证明limx x →= 其中2n ≥为整数.【提示】当0A =时,直接利用函数极限定义证明.当0A >分子有理化,然后利用放缩法证明.【证明】因为()0f x >,故()0lim 0x x f x A →=≥.若0A =,由()0lim x x f x A →=,则0,0,εδ∀>∃>当00x x δ<-<时,有()().f x A f xε-=<=<即0lim 0x x →==.若0A >,由()0lim x x f x A →=,则0,0,εδ∀>∃>当00x x δ<-<时,有().f x A ε-<从而有2n nA-=++()1.f x A ε<-<故lim x x →=■【例8】求极限0x → 【提示】利用重要极限0sin lim1x xx→=及函数极限的运算法则.【解】 当11x -<<2.2x ==故22002lim lim 1cos 2sin 2x x x x x →→=-⎛⎫⎪⎝⎭222220sin 22lim[]11sin 22x x xx x →⎛⎫ ⎪⎝⎭=⋅=⨯=⎛⎫ ⎪⎝⎭ ■【例9】证明:若f在点0x 连续,则f 与2f 也在0x 连续. 又问:若f 或2f 在I 上连续,那么f 在I 上是否必连续?【提示】要证2f 连续,证2ff f =⋅即可,要证f连续,证f =f 或2f 连续不一定有f连续.【证明】由()f x 在0x x =连续,得()()00lim x x f x f x →=,从而()()()()0220lim lim lim ,x x x x x xfx f x f x f x →→→=⋅=再由例7的结论知 ()()00lim lim,x x x x f x f x →→===故f 与2f 也在0x x =连续.构造函数1(0)(),1(0)x f x x ≥⎧=⎨-<⎩ 则,x R ∀∈有2()1,()1,f x f x == 即2(),()f x f x 在R 上连续,但()f x 在0x =不连续,故()f x 在R 上不连续. 因此,由f 或2f 在I 上连续不能断定f在I 上连续. ■【例10】 设f 在[],a b 上连续,[]12,,,n x x x a b ∈.证明:存在[],a b ξ∈,使得()()()()121n ff x f x f x n ξ=++⎡⎤⎣⎦.【提示】f 在[],a b 上连续,则存在最大值和最小值,利用连续函数介值性定理. 【证明】设()()()(){}12max ,,,,i n f x f x f x f x =()()()(){}12min ,,.j n f x f x f x f x = 不失一般性,设.i j x x <(1)若()(),i j f x f x =则()()()12n f x f x f x ===,此时有()()()()121,k n f x f x f x f x n=+++⎡⎤⎣⎦ 1,2,,.k n =取k x ξ=即可. (2)若()()i j f x f x ≠,则()()()()()121.j n i f x f x f x f x f x n<+++<⎡⎤⎣⎦由连续函数介值性定理知,[](,),,i j x x a b ξ∃∈⊂使得 ()()()()121.n ff x f x f x n ξ=+++⎡⎤⎣⎦由此本题得证. ■五、扩展例题解题点击【例1】 设1,m a a 为m 个正数. 证明:{}12max ,,.m n a a a =【提示】运用迫敛性定理和1(0).n m =>【证明】设{}12max ,,,m a a a A = 则有A ≤≤因lim ,lim ,n n A A A →∞→∞==故由极限的迫敛性定理,得{}12max ,,.m n a a a =【延伸】:设<<1,2,...)i a M n =0(. 试证明:{}sup .n n na =【提示】:与前面方法类似(运用 1.n =) ■【例2】设数列{}n a 满足:存在正数M ,对一切n 有21321.n n n A a a a a a a M -=-+-++-≤证明:数列{}n a 与{}n A 都收敛.【提示】利用单调有界原理,柯西收敛准则及绝对值不等式证明.【证明】由,n A M ≤且11n n n n A A a a +--=-≥0,知{}n A 为单调有界数列. 由单调有界原理知{}n A 收敛.因{}n A 收敛,故由柯西收敛准则知,0,0,N ε∀>∃>当n m N ≥>时有.n m A A ε-< 而 ()()()1121n m n n n n m m a a a a a a a a ---+-=-+-++-1121n n n n m m a a a a a a ---+≤-+-++-.n m A A ε=-<由柯西收敛准则知{}n a 收敛,故{}n a 与{}n A 都收敛. ■【例3】设 1.a > 证明:lim 0.an n n a→∞=【提示】令a b =+1,利用二项式定理把分母na 展开,利用放缩法和基本例题中的例6. 【证明】令[]a 表示a 的整数部分,b a =-1,显然>b 0. 故[][]()110.1a a a nn n n n n a a b ++<≤=+ 当[]2n a >+时,()[][]221.na a nbc b +++>因此,[]()[][][]1122<.1a a na a nn n c bb ++++<+0因[][][]122lim 0,a a a n nn c b+++→∞= 故由迫敛性定理知,当1a >时,lim 0.an n n a→∞= ■【例4】计算1lim .xx x +→ (上海大学2001年考研试题) 【提示】先用数列1n ⎧⎫⎨⎬⎩⎭代替x ,猜测出极限的值,然后考虑用迫敛性定理. 【解】在区间()0,1内,10,xx x << 而0lim 0,x x +→= 故由迫敛性定理知,1lim 0.xx x +→= ■【例5】已知323lim 0.1x x x ax bx c x →+∞⎛⎫++---= ⎪+⎝⎭求,a b 与c 的值.【提示】此题中2ax bx c ++实际上就是331x x x +++的整式部分.【解】因323lim 0,1x x x ax bx c x →+∞⎛⎫++---= ⎪+⎝⎭故 ()()()()()3233223lim 113lim 0213lim 031x x x x x ax bx c x x x c ax b x x x x x b c a x x x x →+∞→+∞→+∞⎧⎛⎫++⎪--= ⎪+⎪⎝⎭⎪⎛⎫++⎪---= ⎪⎨ ⎪+⎝⎭⎪⎪⎛⎫++⎪---= ⎪ ⎪⎪+⎝⎭⎩由(3)与极限四则运算法则,得:()323lim 1.1x x x a x x →+∞++==+把1a =代入(2),得:()()3333lim lim 1.11x x x x x x b ax x x x x x →+∞→+∞⎛⎫⎛⎫++++=-=-=- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭同理,把1,1a b ==-代入(1),得c =2. ■【例6】设lim n n a A →∞=(或∞+或∞-),则()121limn n a a a A n→∞+++=(或∞+或∞-).问:反之是否成立?【提示】利用极限定义和绝对值不等式证明.【证明】由极限定义知,1>0,,N N ε+∀∃∈当1n N >时,有,n a A ε-<故当1n N >时,有1212nn a a a a a a nAA nn++++++--=112N a A a A a An-+-++-≤1112N N n a A a A a An++-+-++-+1121.N a A a A a An N nnε-+-++--≤+⋅ 记112N a A a A a A b -+-++-=,因lim0,n bn→∞= 故2N N +∃∈, 当2n N >时有.bnε< 取{}12max ,N N N =, 当n N >时,1212.na a a n Nb A nn nεεεε+++--≤+⋅<+= 因此 ()121lim.n n a a a A n→∞+++=∞+或∞-的情形可类似进行证明.反之,若()121lim n n a a a A n→∞+++=,则不能得出lim n n a A →∞=. 例如,取(1),n n a =-则()121lim0,n n a a a n →∞+++= 而limn n a →∞不存在; 取2121,n a n -≡- 20,n a = 则()121lim ,n n a a a n →∞+++=+∞ 而lim n n a →∞不存在;∞-的情形类似. ■【例7】设函数f 定义在(),a +∞上,f 在每一个有限区间内有界,并满足()()lim 1,x f x f x A →+∞+-= 则()lim.x f x A x→+∞= 【提示】运用极限的定义,由题设条件推出结论成立.【证明】由题设()()lim 1,x f x f x A →+∞+-= 则00,,x a ε∀>∃> 使得当0x x ≥时,有()()()1.1f x f x A ε+--<∀0,x x > 记[]00,,m x x k x x m =-=-- 则1,k ≤<0 于是0,x x m k =++因而有()()()()000f x f x f x k f x k x k m A A A x x m x x -++⎛⎫+-=-+- ⎪⎝⎭ ()()()()0002f x f x k f x k x k m A A x m x x -++⎛⎫+≤-++ ⎪⎝⎭. 由(1)式可得()()0f x f x k m A x m -+⎛⎫- ⎪⎝⎭()()()00111mi f xk i f x k i mA m=≤++-++--∑()()()001111.3m i f x k i f x k i A m m mεε==++-++--<⋅⋅=∑ 又由于()f x 在()0,1a x +上有界,则()0lim 0x f x k x →+∞+=及0lim 0x x kA x→+∞+=,于是1,x a ∃> 使得当1x x >时,有()()00;.4f x k x kA x xεε++<< 取{}01max ,,X x x = 于是当x X >时,由(2)、(3)与(4)便有()3.f x A xεεεε-≤++= 故 ()lim .x f x A x→+∞= ■【例8】设f 为区间I 上的单调函数,证明:若0x I ∈为f 的间断点,则0x 必是f 的第一类间断点.【提示】利用确界与极限关系,证明f 在0x 的左右极限均存在.【证明】若f 为区间I 上的单调增函数,取()00U ,x I ⊂ 且满足()0012U ,,,x x x x I ∀∈∃∈使得12,x x x <<则f 在()00U x 上为有界函数. 由()()()000U 0inf ,x x f x f x +∈+=()()()000U 0sup ,x x f x f x -∈-= 知道f 在0x 左、右极限均存在. 因此,0x 若为f 的间断点,则0x 必为f 的第一类间断点. 若f 为区间I 上的单调减函数,则令()(),g x f x =-则()g x 为I 上的单调增函数,从而()()()(){}()()000000U U 00inf sup ,x x x x f x g x f x f x ++∈∈+=-+=--= ()()()(){}()()000000U U 00supinf.x x x x f x g x f x f x --∈∈-=--=--=因此,结论也成立. ■【例9】设函数f 为区间I 上满足利谱希茨条件(Lipschitz ),即存在常数0,L >使得对于I 上的任意两点'x 与''x 都有()()''''''.f x f x L x x -≤- 证明:f 在I 上一致连续.【证明】0,ε∀> 取0,δε=> 则''',,x x I ∀∈ 且''',x x δ-< 有()()''''''.f x f x L x x L ε-≤-<故f 在I 上一致连续. ■【例10】设{}n a 是有界数列,且12,n n n a a b ++= 若lim n n b →∞存在,则lim n n a →∞也存在(北京大学2009年考研试题).【证明】因{}n a 有界,故,M ∃ 使得,n ∀ 有.n a M ≤因lim n n b →∞存在(令其值为b ),故0,,N ε∀>∃ 当n N >时,有,n b b ε-< 即.n b b b εε<<+-因12,n n n a a b ++= 故有12.n n b a a b εε+<+<+-下面用反证法证明11.33n b a b εε<<-2+2 反设1,3n a b ε≥+2 由12n n a a b ε++<+得 1123n b a b εε+⎛⎫+<+ ⎪⎝⎭+2,即113.3n a b ε+<-因()2112,,n n n a a b b b εε++++=∈+- 故有2123,3n b a b εε+⎛⎫-+> ⎪⎝⎭-即215.3n a b ε+>+依此类推,于是得()22121.3k n k a b ε+>+-因此,当k 充分大时,有2.n k a M +>(例如当21log 12M b k ε⎛+⎫+⎪⎝⎭>时) 这与{}n a 为有界数列矛盾. 于是1.3n a b ε<+2 同理可证1.3n a b ε>-2 因此,0,,N ε∀>∃当n N >时有1.3n a b ε-<2 故{}n a 收敛. ■六、本章训练题提示点评 【训练题1】证明函数()1cosxf x e x=在()01,内非一致连续.(云南大学2004年考研试题) 【提示】利用非一致连续的定义证明. 【证明】0121110,0,,,222x x k k εδπππ∃=>∀>∃==+当正整数k 充分大时有12||x x δ-<(例如当12k δπ>时),故有 12101211coscos 1.xx x e e e x x ε-=≥= 因此,命题成立. ■【训练题2】已知()112,xx x xna a a f x n ⎛⎫+++=⎪⎝⎭其中123,,,n a a a a 为n 个正数.求(1)()0lim x f x →;(2)()lim x f x →+∞与 ()lim .x f x →-∞(2004年云南大学考研试题)【解】(1)因12112200ln ln ln lim lim x x x x xxn n nx x a a a n a a a a a a nx n→→+++-+++=(洛比达法则)()12ln .n a a a n=故()12121200lim lim 1x x x n x x x n a a a nnn xx x x a a a n n x x a a a n f x n +++-+++-→→⎡⎤⎛⎫+++-⎢⎥=+ ⎪⎢⎥⎝⎭⎢⎥⎣⎦()1212120ln limlim x x xx x xn n n x a a a a a a na a a n nxnxnx eee→+++-+++-→====(2)由(1)知x =0是()f x 的可去间断点. 由初等函数在其定义域内的连续性知,()()()()lim ln lim ln lim ,lim ,x x f x f x x x f x e f x e →+∞→-∞→+∞→-∞==而 ()121lim ln lim ln,x xxnx x a a a f x x n →+∞→+∞+++=⋅()121lim ln lim ln .x xx nx x a a a f x x n→-∞→-∞+++=⋅1 若{}max 1,i ia =则当0x >时,12.x xx n a a a n <+++≤1故()lim ln 0,x f x →+∞= 即()lim 1.x f x →+∞=2 若{}min 1,i ia = 则当0x <时,12.x x xn a a a n <+++≤1故()lim ln 0,x f x →-∞= 即()lim 1.x f x →-∞=3 若{}max 1,i i a ≠则12lnx xxna a a n+++为x →+∞时的无穷大量.故由洛比达法则得,12112212ln ln ln 1lim ln lim x xxx x xnn nx x x x x na a a a a a a a a x na a a →+∞→+∞++++++⋅=+++{}()ln max .i ia =因此,(){}lim max .i x if x a →+∞=4 若{}min 1,i i a ≠则12lnx xxna a a n+++为x →-∞时的无穷大量.故由洛比达法则得,12112212ln ln ln 1lim ln lim x xxx x xnn nx x x x x na a a a a a a a a x na a a →-∞→-∞++++++⋅=+++ {}()ln min .i ia =因此,(){}lim min .i x if x a →-∞=综合,2,3,41知,(){}(){}lim max ,lim min .i i x x iif x a f x a →+∞→-∞== ■【训练题3】设()2122lim 1n n n x ax bxf x x -→∞++=+是连续函数,求a ,b 的值.(福建师范大学2006年考研试题)【提示】利用极限的四则运算法则和连续函数的定义.【解】当1x >时,()23222111lim;1n n n n a bx x f x x x x--→∞-++==+当1x <时,()2122lim 1n n n x ax bxf x x -→∞++=+2;ax bx =+ 当1x =-时,()()111;2f a b -=-+- 当1x =时,()()111.2f a b =++ 因()f x 在1x =处连续,故()()()111,f f f -+==即 ()111;2a b a b +==++ 因()f x 在1x =-处连续,故()()()111,f f f -+-=-=-即()111.2a b a b -=-=-+- 解方程组可得 0a =, 1.b = ■【训练题4】求α和,β 使得当x →+∞时,量.x βα(上海大学2002年考研试题).【解】0limlim x t x βα+→+∞→+=122lim .t tβα+→-=在右领域()()0;1U δδ+<内,()211,2t t ο=++()211.2t t ο=-+当11,2αβ==-时,lim 1.x →+∞= 即当x →+∞12.x - ■【训练题5】设()f x 在(),a b 上连续,且f 是一对一(即()12,,x x a b ∀∈且12x x ≠时,有()()12f x f x ≠),证明:()f x 在(),a b 上严格单调. 【证明】反证法. 反设()f x 在(),a b 上非严格单调,即()123,,,x x x a b ∃∈且123,x x x <<有()()()()1232,.f x f x f x f x << 或()()()()1232,.f x f x f x f x >>(因f 是一对一,故不能取等号) 若()()()()1232,f x f x f x f x <<成立, 取()()(){}213max ,,2f x f x f x M +=显然()2M f x <且()()13,.M f x M f x >>在[]12,x x 上()f x 连续,由介值性定理知,()412,,x x x ∃∈ 使得()4,f x M =同理()523,,x x x ∃∈ 使得()5.f x M =于是()()45,f x f x = 这与f 在(),a b 上一对一矛盾.因此,当123x x x <<时,()()12f x f x <与()()32f x f x <不能同时成立. 同理可证,当123x x x >>时,()()12f x f x >与()()32f x f x >不能同时成立. 综上所述知,()f x 在(),a b 上严格单调. ■【训练题6】求202cos 2lim.tan sin x x x e x x x→+--(华南理工大学2004年考研试题) 【解】因()()2tan sin tan 1cos 0,2x x x x x x x -=-⋅→ 而()()22232cos 21212.2xx x e x x x x ο⎛⎫+-=++--+ ⎪⎝⎭(由泰勒公式)于是233002cos 2lim lim 2.tan sin 2x x x x e xx x xx →→+-==- ■【训练题7】设11x >>, 11nn na x x x ++=+, 1,2,n =, 试证{}n x 收敛,并求lim n n x →∞, (华南理工大学2004考研试题).【解】 因11x >>, 故2121101a xx x x --=<+, 即21x x <.因121111111a x ax x x +-==+<+=++故21x <<因 222211111a x a x x x +-==+>=++故3x >同理4x <, ,因此得21k x ->, 211,2,)k x k <<=.因213112()012a x x x a x --=<++, 故31x x <.因224222()012a x x x a x --=>++, 故42x x >.因22212121212212()112k k k k k k k a x a x x x x x a x -+---+--=-=+++且21k x ->故有21210k k x x +--<, 即2121k k x x +-<. 同理得222k k x x +>. 因此, 子列{}21k x -单调减小有下界, 故21limk k x -→∞存在, 设极限为1m . 子列{}2k x 单调增加有上界, 故2lim k k x →∞存在, 设极限为2m .对2212121212()12k k k k a x x x a x -+----=++左右两边取极限, 得21m a =. 由极限保号性知1m =. 同理得2m =. 由数学分析第一册(华东师大)第26页例题7知,lim n n x →∞=. ■【训练题8】证明极限111lim 1ln 23n n n →∞⎛⎫++++- ⎪⎝⎭存在. (哈尔滨工业大学2009考研试题). 【证明】 记1111ln 23n a n n =++++-. 则11ln11n n na a n n +-=+++. 因23ln(1)23x x x x -=----, ()[1,1)x ∈-,故2311111ln 112131n n n n n ⎛⎫⎛⎫=--⋅-⋅-⎪ ⎪++++⎝⎭⎝⎭.因此得10n n a a +-<, 即{}n a 为单调递减数列.由于23ln(1)23x x x x +=-+- ()(1,1]x ∀∈-,故ln(1)x x +<()(1,1]x ∀∈-. 因此得()111ln 11ln 1ln 1ln 1ln 23n a n n ⎛⎫⎛⎫⎛⎫>++++++++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()ln 2(ln3ln 2)(ln 4ln3)ln 1ln ln n n n =+-+-+++--1ln0n n+=>. 于是{}n a 有下界.综上所述, 知{}n a 为单调递减数列且有下界, 故{}n a 收敛. ■【训练题9】令22(,)xyf x y x y=+,讨论二重极限(,)(0,0)lim (,)x y f x y →与累次极限00limlim (,)y x f x y →→、00limlim (,)x y f x y →→是否存在.【解】当动点(,)x y 沿着直线y mx =而趋于定点(0,0)时, 由于此时2(,)(,)1mf x y f x mx m ==+, 因而有2(,)(0,0)0lim(,)lim (,)1x y x y mxmf x y f x mx m →→===+.这说明动点沿不同斜率m 的直线趋于原点时, 对应的极限值也不同, 因此所讨论的重极限不存在.已经知道(,)(0,0)x y →时f 的重极限不存在. 但当0y ≠时有22lim0x xyx y →=+从而有 2200lim lim0y x xyx y →→=+. 同理可得 2200lim lim0x y xyx y →→=+. ■【训练题10】设11(,)sinsin f x y x y y x=+. 讨论重极限(,)(0,0)lim (,)x y f x y →和累次极限。
数学《数列极限》讲义

第二章数列极限1. 教学框架与内容教学目标①掌握数列极限概念,学会证明数列极限的基本方法.②掌握数列极限的主要性质,学会利用数列极限的性质求数列的极限.③掌握单调有界定理;理解柯西收敛准则.教学内容①数列极限的分析定义,数列发散、单调、有界和无穷小数列等有关概念与几何意义;利用放缩法证明数列收敛或发散.②数列极限性质(唯一性,有界性,保号性,保不等式性,迫敛性,四则运算法则)的证明与应用,数列的子列及有关子列收敛的定理.③单调有界定理的证明及应用;柯西收敛准则,用柯西收敛准则判别数列的敛散性.2. 重点和难点①数列极限的Nε-语言,数列极限证明中N的存在性.②数列极限性质的分析证明, 数列极限性质的应用.③数列单调有界定理的证明和应用,利用柯西收敛准则判别数列的敛散性.3. 研究性学习选题● 数列极限证明的技巧将书后习题分类,首先自己总结数列极限证明的技巧,然后进行小组交流和讨论.● 如何利用单调有界原理求迭代数列的极限课后自己总结单调有界原理求极限的方法与步骤,选用经典习题小组讨论,进行讲解并评分.4. 综合性选题,尝试写小论文:★不等式技巧在数列极限证明中的应用.★数列极限存在的常用结论.5. 评价方法◎课后作业,计20分.◎研究性学习选题计30分.◎小论文计20分.◎小测验计30分§1数列极限概念一、数列若函数f 的定义域为全体正整数集合Z +(或N ),则称:f N R → 或()f n n N ∈为数列. 通常记为()n a f n =.或 12,,,,n a a a ⋅⋅⋅⋅⋅⋅ .数列表示法:通项、递推公式、1{}n n a ∞=或0{}n n a ∞=.特殊数列:常数数列、单调数列、有界数列、等比数列、等差数列. 二、数列极限------反映变量在某个变化过程中的变化趋势 [作图]1{}n、(1){}n n -、 {}n 、{(1)}n -、 {(1)}n n - 变化趋势: 1) 有一定的变化趋势; 无限接近于某数a ----收敛;震荡、无限增大、无限减小----定向发散;2) 无一定变化趋势----不定向发散.数列{}n a 收敛于a ,||0n a a -→(n a 与a 的距离越来越接近). 1、定义下面我们首先给出数列收敛及其极限的精确定义.定义1 ()N ε- 设{}n a 为数列, a 为一定数, 若对任给的正数0ε>,总存在 正整数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ,而a 称为{}n a 的极限. 记作 lim n n a a →∞= 或 n a a →(n →∞).若数列{}n a 没有极限,则称{}n a 不收敛或发散, 也称{}n a 为发散数列.例1验证下列极限:1) 1lim 0n n →∞=;2) 1lim 02n n →∞=;3) lim 0n n q →∞=, ||1q <;4) 223lim 33n n n →∞=-.注1 ε的任意性.ε的作用在于刻画数列{}n a 与定数a 之间的接近程度.ε越小表示接近度越好,而正数ε—可任意小说明n a 与a 可以无限接近,ε虽具有任意性, 但一经给出,就可看作暂时固定的数,并由此确定N ,从而N 与ε有关系. 同时,ε主要用于刻画n a 与a 的逼近程度,因而n a a ε-<中的ε可用22εε,2,εk ε(0k >常数)等代替,同时n a a ε-<可改写成n a a ε-≤.注 2 N 的相应性. 前面说过N 与ε有关,可记作()N ε但并不意味着N 由ε唯一确定. 这里我们主要强调N 的存在性(一般来说,ε愈小,相应的N 越大),同时n N ≥时(对大于N 的任一n )有n a a ε-<.如对11,1000n a n ε==,相应的1001, 1002N =都可.例2 1) 0n →∞=;2) 1(1)n a =>;3) 1n =;4) 2lim 04n n n →∞=.思考 考虑1n =, 3lim 04n n n →∞=?2、几何意义 当n N >时,n a a ε-<d⇔所有下标大于N 的项n a 都落在a 的 邻域(,)U a ε内,而在(,)U a ε之外,数列{}n a 至多只有有限项(至多N 项). 定义1’任给0ε>,若在(,)U a ε之外{}n a 至多只有有限项,则称{}n a 收敛于a . 例3 改变或去掉数列的有限项,不改变数列的敛散性.例4 设n a a →,则n k a a +→. 这里k 为某固定的正整数.例5 设lim lim n n n n x y a →∞→∞==, 作数列{}n z 1122,,,,,,,n n x y x y x y ⋅⋅⋅⋅⋅⋅验证: lim n n z a →∞=. 思考 用N ε-定义如何证明?3、收敛的否定n a a →0, , ||dn N n N a a εε⇔∀>∃∀>-<:;0, (,)U a εε⇔∀>之外至多有{}n a 的有限项.n a →a 00000,, ||n N n N a a εε⇔∃>∀∃>-≥:; ⇔存在某00ε>,使数列{}n a 有无穷多项落在邻域0(,)U a ε之外.{}n a 收敛, 0, , ||n a R N n N a a εε⇔∃∈∀>∃∀>-<:. {}n a 发散0000, 0, , ||n a R N n N a a εε⇔∀∈∃>∀∃>-≥:.例6 验证 1) lim 01n nn →∞≠+;2) 2{}, {}n n (-1)为发散数列.4、N ε-定义的一些等价形式(变形)1D :20,, , (n N n N a a k εεε∀>∃≥-<:或. (k 为常数)2D :0(),, n c N n N a a εεε∀><∃>-<:. 3D :0,, n N n N a a εε∀>∃>-<有理数:. 4D :1,, n m N N n N a a m∀∈∃>-<:. 5、无穷小数列定义 若lim 0n n a →∞=,则称{}n a 为无穷小数列.定理 n a a →{}n a a ⇔-为无穷小数列.注 3 ||00n n a a →⇔→.例7 证明: 若lim n n a a →∞=,则lim ||||n n a a →∞=. 但反之未必成立,即||||n a a →⇒n a a →.习 题1. 用N -ε定义验证1) lim 12n nn →∞=+; 2) 2233lim 212n n n n →∞-=+;3) !lim 0n n n n →∞=; 4) limsin 0n nπ→∞=;5) lim cos1n nπ→∞=; 6) lim02nn n→∞=;2. 指出下列数列哪些是无穷小数列.; ; 11n ⎧⎫+⎨⎬⎩⎭; 32n n ⎧⎫⎨⎬⎩⎭; {}n n q α(,||1)R q α∈<.3. 证明:若a a n n =∞→lim ,则对任一正整数k , 有a a k n n =+∞→lim .4. 试用定义1'证明:1) 数列}1{n不以1为极限; 2) 数列}{)1(n n -发散.§2 收敛数列的性质一、收敛数列的性质1、唯一性 若数列{}n a 收敛,则它只有一个极限.2、有界性 若数列{}n a 收敛,则{}n a 为有界数列. 即0, , n M n N a M ∃>∀∈≤使得. (画图分析) 推论 无界数列必发散.注 1 有界数列未必是收敛的(定理2.3的逆未必成立).3、保号性 若lim 0 (0)n n a a →∞=><或,则对任何(0,)r a ∈(,0))a ∈(或r , 存在N ,使得n N >时,0 0n n a r a r >><<(或).推论 若lim 0n n a a →∞=>,则存在N ,n N >时,0n a > (保符号).若lim 0n n a a →∞=≠,则存在N ,n N >时,||||02n a a >>. 注 2 由lim 0n n a →∞≥不能推出 , , 0n N n N a ∃>≥.4、保不等式性 设{}n a 和{}n b 为收敛数列,若存在,,N n N >使得时n n a b ≤,则lim lim n n n n a b →∞→∞≤. [直接证明或反证法]定理 设lim , lim , n n n n a a b b a b →∞→∞==>, 则存在N ,n N >时,n n a b >.注 3 在定理2.5中,不等式若为n n a b <, 则不能推出a b <.例1 设0, 1,2,n a n ≥=⋅⋅⋅. 若n a a →.5、迫敛性 若数列{}n a 、{}n b 和{}n c 满足n n n a c b ≤≤,n N ∀∈,, n n a a b a →→, 则n c a →.注 4 用得较多的是0, 0 0n n n n c b b c ≤≤→⇒→.例2 1) 1lim sin 0n n n →∞=2) lim 3n →∞= .... 一般形式?思考 上述定理中若{},{}n n a b 均发散, 能否推出{}n c 发散? 6、四则运算定理 若, n n a a b b →→,则1) n n a b a b +→+, 2) n n a b a b ⋅→⋅,3) 若还有0,0n b b ≠≠,则n n a ab b→.思考 若{},{}n n a b 均发散或其中之一发散, 上述结论又如何?例3 求 11101110lim , , 0, 0m m m m m k k k n k k a n a n a n a m k a b b n b n b n b ---→∞-++⋅⋅⋅++≤≠≠++⋅⋅⋅++.例4 求 lim 1nn n a a →∞+ (1a ≠-).例5 求 1) (31)(5)lim (12)(25)n n n n n →∞++-+;2) 268n ;3) n .例6 求1) 21)sin(21)n n →∞+;2) 1lim nn i →∞=;3)1)21n n →∞⋅⋅⋅++.二、子列的收敛性定义(子列) 设{}n a 为一数列,{}k n N ⊂为无限子集,且12k n n n <<⋅⋅⋅<<⋅⋅⋅, 则数列 12,,,,k n n n a a a ⋅⋅⋅⋅⋅⋅, 称为数列{}n a 的一个子列,记作{}k n a .注 5 {}k n a 选自{}n a 中且保持{}n a 中的顺序不变, 注意k n a 为{}k n a 中的第k 项, 是{}n a 的第k n 项,故k n k ≥. 注意子列的子列仍为子列. 例 7 数列{(1)}n -,奇子列21{}k a +与偶子列2{}k a .注 6 平凡子列是指数列{}n a 本身或者去掉有限项得到的数列,易见平凡子列与 数列{}n a 本身的性质(态)完全一样.定理 数列{}n a 收敛⇔{}n a 的任一子列(非平凡子列)均收敛.⇔{}n a 的任一子列(非平凡子列)均收敛于同一个数.注 7 我们通常用上述定理来证明数列{}n a 不收敛,只需找到某个发散子列或某两个子列收敛但极限不同. 如{(1)}n -. 三、利用上述性质讨论极限*例8 证明: 数列2(1){}31n n nn +-⋅+发散.例9 1) 22231lim(12...)n n n→∞+++; 2) n ;3) n 11lim ()n nn n n a b a b a b++→∞+≠-+.例10 1) 1321lim 242n n n →∞-⋅⋅⋅⋅⋅⋅; 2) lim[(1)]n n n αα→∞+- 01α<<;3) 22lim(1)(1)(1)nn ααα→∞++⋅⋅⋅+ 1α<.例11 设1,...,m a a 为m个正数,则1max{,,}m n a a =⋅⋅⋅.例12 设lim nn na b →∞存在,则若0n b →,必有0n a →.例13 若1||||n n a q a +≤,01q <<,则lim 0n n a →∞=.例14 若0n a >,1lim1nn n a L a →∞+=>,则lim 0n n a →∞=, 并利用其求2lim 4n n n →∞, 3lim n n n q →∞以及213lim 22n →∞+ 212n n -+⋅⋅⋅+. 一般常用结论: 若1lim ||1n n na l a +→∞=<, 则lim 0n n a →∞=.习题1. 求下列数列的极限1) limn→∞(n2) limn→∞3) limn→∞(1n4) limn→∞11(2)3(2)3n nn n++-+-+5) limn→∞212232n nnn++++6) limn→∞12()22n nn+++-+7)limn→∞8) limn→∞11(1)nkk k=+∑2. 设{}n a为无穷小数列, {}n b为有界数列, 证明: {}n na b⋅为无穷小数列.3. 求下列极限1)122lim(2sin cos)nnn n→+∞+2)1lim(arctan)nnn→+∞3) 11lim(1)n n n→∞- 4) 22)nn →∞⋅5) 1!2!!lim!n n n →∞+++ 6) 1321lim 242n n n→∞-⋅⋅⋅4. 说明下列数列发散1) (1)1nn n ⎧⎫-⎨⎬+⎩⎭ 2) {}(1)n n- 3) sin 4n π⎧⎫⎨⎬⎩⎭5. 证明: 若0>n a , 且1lim 1>=+∞→l a a n nn , 则.0lim =∞→n n a6.设a a n n =∞→lim , 证明:1) a nna n n =∞→][lim;2) 若0,0>>n a a , 则1lim =∞→n n n a .§3 数列极限存在条件考察数列极限问题,首先应考察其极限是否存在 (极限存在性问题), 若极限存在,则应考虑如何求极限值(极限的计算问题). 一、单调有界原理 (充分条件)定理 (单调有界定理) 有界的单调数列必有极限.[上(下)有界的单调递增(递减)数列必有极限且极限为其上(下)确界] 例1 设111123n a nααα=+++⋅⋅⋅+, (2)α≥, 证明: {}n a 收敛.例2 设12,n a a a ==⋅⋅⋅=n 重根号), 证明:{}n a 单调有界, 并求其极限.注 1 在具递推关系式的数列{}n a 中,如1()n n a f a +=,若要求其极限,则我们可首先假定极限存在设为a ,则有()a f a =.由此方程解出a (此值一般即为极限), 其次一方面可考察n a a -(考虑用N ε-定义);另一方面,可考察是否有n a a ≤ (或n a a ≥)? 若n a a ≤,则一般证n a 递增(如n a a ≥,则证n a 递减),此时应考察1n n a a +-的符号(或1n na a +与“1”的大小关系).例3 设1, 0a x >,11()2n n nax x x +=+,n N ∈, 求证: {}n x 收敛,并求其极限.例4 证明: 极限1lim (1)n n n→+∞+存在,并利用其来求下列极限1) 1lim (1)n k n n +→+∞+ 2) 31lim (1)2n n n →+∞+3) 1lim (1)n n n -→+∞- 4) 1lim (1)n n n →-∞+5) 3lim ()2n n n n →+∞++ 6) 31lim (1)2n n n→+∞-.二、Cauchy 准则定义 (Cauchy 列) 如果数列{}n a 满足:0,,,:m n N m n N a a εε∀>∃>-<,则称 数列{}n a 为Cauchy 列或基本列.注 2 {}n a 为Cauchy 列0,,,:dn p n N n N p N a a εε+⇔∀>∃∀>∀∈-<. 定理 (Cauchy 准则) {}n a 收敛⇔{}n a 为Cauchy 列.注 3 Cauchy 准则方便之处在于无需知道具体极限值的情况下,就可以直接 判断{}n a 是否收敛.例6 利用Cauchy 准则证明:{}n a 收敛, 其中22211112n a n =++⋅⋅⋅+.例7 利用Cauchy 准则叙述{}n a 发散的条件, 并证明1112n a n =++⋅⋅⋅+发散.例8 利用Cauchy 准则证明limsin n n →∞不存在.三、邻域的语言*a R ∈,a 的邻域,(,)U a a εε=-+; ∞的邻域,(,)M -∞-⋃(,)M +∞,0M ∀>+∞的邻域, (,)M +∞,0M ∀> -∞的邻域,(,)M -∞-,0M ∀>lim n n a a →∞=0,,:n N n N a a εε⇔∀>∃>-<.⇔对a 的任一邻域U ,∃+∞的邻域V ,:n n N V a U ∀∈⋂∈.lim n n a →∞=+∞0,,:n M N N n N a M ⇔∀>∃∈>>.⇔对+∞的任一邻域U ,∃+∞的邻域V ,:n n N V a U ∀∈⋂∈.lim n n a →∞=-∞⇔……记*{,}R R =⋃-∞+∞,*a R ∈.*lim n n a a R →∞=∈⇔对a 的任一邻域U ,存在+∞的邻域V ,:n n N V a U ∀∈⋂∈.习 题1. 证明}{n a 收敛,并求其极限,,其中11n a a +==1,2,n =.2. 设c a =1)0(>c , 11,2...n a n +==, 证明数列}{n a 极限存在并求其值.3. 求下列极限1) 1lim(1)nn n→∞-; 2) 21lim(1)n n n →∞+; 3) 241lim ()2n n n n +→+∞++.4. 证明: 若单调数列}{n a 含有一个收敛子列, 则}{n a 收敛.5. 证明: 若}{n a 为递增(递减)有界数列, 则{}{}).(inf sup lim n n n n a a a =∞→又问逆命题成立否?7. 应用Cauchy 准则证明{}n x 收敛,其中 1) 2sin1sin 2sin 222n n nx =++⋅⋅⋅+2) 0.90.090.0009n x =++⋅⋅⋅+⋅⋅⋅(n 个0)8. 利用Cauchy 准则叙述数列}{n a 发散的充要条件,并用它证明下列}{n a 发散:1) n a nn )1(-=; 2) 2sinπn a n =.习题课一、知识复习1、n a a →d⇔0,,:n N n N a a εε∀>∃>-< ⇔{}n a 的任一子列均收敛于a ⇔{}n a 的奇偶子列均收敛于a . n a a →⇔2、 {}n a 收敛 ⇔{}n a 的任一子列均收敛⇔{}n a 的任一子列均收敛并且收敛于同一个数.⇔0,,,:n m N m n N a a εε∀>∃>-<. {}n a 发散⇔3、单调有界数列必收敛 1lim(1)n n e n →∞+=.4、n a a →的几何意义.5、收敛数列的性质及其证明. 二、典型方法 1、求极限的方法 1) 利用定义a) 观察确定极限值,利用定义验证.b) 对递推数列,可先假定极限存在,利用递推关系,求得极限,再用定义验证.2) 利用10nα→ (0)α>,0n a → (1)a <, 1(0)a →>,1及四则运算法则.3) 利用已知极限,如1lim(1)n n e n →∞+=.4) 利用单调有界原理(如何求极限).5) 利用适当的变换或变形(拆项、插项、裂项).2、证明极限存在方法 1) 用定义(先求极限值). 2) 利用单调有界原理. 3) 利用Cauchy 准则.3、证明极限不存在的方法 1) 定义.2) 找一个发散子列或两个收敛子列但极限不等. 3) 利用Cauchy 准则.4、一些常用结论1) lim 0n n a →∞=,{}n b 有界,则lim 0n n n a b →∞=.2) limnn na b →∞存在,且lim 0n n b →∞=,则lim 0n n a →∞=. 3) 设1lim ||1n n na l a +→∞=<,则lim 0n n a →∞=.4) 若数列满足{}n a 满足1n n a a q a a +-≤-, 01q <<,则lim n n a a →∞=.5) 若{}n x 满足11n n n n x x q x x +--≤- 01q <<,则{}n x 收敛. 6) 1,...,m a a 为m个正数,则1lim max{,,}m n a a =⋅⋅⋅.思考: 设{}n a为有界正数列,则?n =. 7) 设n n x a y ≤≤,0n n x y -→,则,n n x a y a →→.8) 设{}n x ↑,{}n y ↓, 0n n x y -→, 则{},{}n n x y 均收敛,且极限相同. 9) 0,n n a a b b →>→,则n b b n a a →.10) , n n a a b b →→,则max{,}max{,}n n a b a b →, min{,}min{,}n n a b a b →. 11) 设lim n n a a →∞=,则i) 12limnn a a a a n→∞++⋅⋅⋅+=,ii) 若0n a >,则n a =.并考察下列极限(教材43页第四题)(1)1112n n ++⋅⋅⋅+(2) 0)a >(3)……12) (Stolz 定理) 设{},{}n n x y 满足i) 1n n y y +>, ii) lim n n y →∞=+∞,iii)11lim n n n n n x x l y y +→∞+-=-,(l 为有限数), 则lim n n nxl y →∞=.并利用Stolz 定理求下列极限 i) 设n x a →,求1222limnn x x nx n →∞++⋅⋅⋅+.ii) 112lim p p pp n n n +→∞++⋅⋅⋅+ (0)p >.iii)113(21)lim p p pp n n n+→∞++⋅⋅⋅+- (0)p >.利用单调有界原理或Cauchy 准则考察下列命题.13) 设10x >,13(1)3n n n x x x ++=+,证明: lim n n x →∞存在并求极限.14) 证明: 若}{n a 为递增数列,}{n b 为递减数列,且0)(lim =-∞→n n n b a , 则n n a ∞→lim 与n n b ∞→lim 都存在且相等.15) 设011>>b a , 记 211--+=n n n b a a , 11112----+=n n n n n b a b a b .,3,2 =n 证明: 数列}{n a 与}{n b 的极限都存在且等于11b a .16) 给定正数1a 与)(111b a b >,作出等差中项2112b a a +=与等比中项112b a b =, 一般地令 21n n n b a a +=+, n n n b a b =+1, ,2,1=n . 证明: n n a ∞→lim 与n n b ∞→lim 皆存在且相等.17) 设0,0>>σa ,1111(), (), 1,2,.22n n n n a a a a n a a σσ+=+=+=证明: 数列}{n a 收敛, 且其极限为σ.18) 设数列}{n a 满足: 存在正数M , 对一切n 有 .12312M a a a a a a A n n n ≤-++-+-=-证明: 数列}{n a 与}{n A 都收敛.19) 若单调数列有一子列收敛,则该数列收敛.20) 若S 为有界集,则存在数列{}n x S ⊂,使得sup n x S →.21) 若S 为有界集,如果sup S S ∉,那么存在严格递增数列{}n x S ⊂,使得sup n x S →.22) 设S 为无界集,则存在{}n x S ⊂,使得n x →∞23) 若S 为无上界集, 则存在严格增的{},n n x S x ⊂→+∞.24) 证明: 任一数列必有单调子列.25) 证明: 任一有界数列必有收敛子列.。
21数列的极限讲解

ⅰ)
ab,
取
0
b
2
a
,由极限的唯一性证明知,
存在着 N ,当 n > N 时,有
xn
ab 2
yn ;
即: N, n N : xn yn ;
ⅱ)用反证法, 若
lim
n
xn
lim
n
yn
,
即
a b , 由ⅰ)得
N, n N : xn yn , 这与题给条件矛盾。
zn
b.
只要在保序性定理中,分别取
再分别与
作比较即得验证。
机动 目录 上页 下页 返回 结束
推论 2 (保号性)
设
ⅰ)若 ⅱ)若
N, n N : zn 与 c 同号;
lim
n
zn
0
( 0) .
显然,只须在推论 1 中,分别令 a , b 等于 0 即可。
机动 目录 上页 下页 返回 结束
机动 目录 上页 下页 返回 结束
说明:
在ⅰ)中用的是严格的不等号;在ⅱ)中用的是非严格的 不等号, 即使把ⅱ)条件改为严格的不等号,其结论也未必是
严格的不等号,如:
显然:
推论 1 设
收敛,a , b 均为常数,且
ⅰ)若
N, n N : a zn b ;
ⅱ)若
a
lim
n
取 则有
M max x1 , x2 , , xN ,1 a
xn M ( n 1 , 2 , ) .
机动 目录 上页 下页 返回 结束
再证唯一性: 用反证法: 假设
及
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/3/22
1
极限存在准则
1.定理3(夹逼准则)
若数列( xn )n1, ( yn )n1,(zn ) 满足下列条件:
(1) yn xn zn (n N),
(2)
lim
n
yn
lim
n
zn
a,
则数列
(
xn
)n1的极限存在,
且
lim
n
xna.Leabharlann 2021/3/222
证 yn a, zn a,(n )
xn
yn
a b.
3.lim xn a , (b 0).
y n n
b
2021/3/22
11
证1 xn a, yn b,(n )
0, N1 0, N2 0, 使得
当 n N1时恒有 xn a ,
当 n N2时恒有 yn b ,
取 N max{ N1, N2 }, 当 n N时, 恒有 上两式同时成立,
M | b | (M | b |)
即lim n
xn
yn
ab
lim
n
xn
lim n
yn
特别地,两个无穷小量的积仍是无穷小量.
更一般,一个有界量与一个无穷小量的积仍
是无穷小量.
2021/3/22
15
证3 xn a, yn b,(n )
0, N1 0, N2 0, 使得
当 n N1时恒有 xn a , 当 n N2时恒有 yn b ,
| (xn yn ) (a b) | | xn a | | yn b | 2
即lim( n
xn
yn )
a
b
lim
n
xn
lim
n
yn
特别地,两个无穷小量的和仍是无穷小量.
2021/3/22
12
注意 无穷多个无穷小的代数和未必是无穷小.
例
求
lim(
n
1 n2
2 n2
n n2
).
解 n 时,是无穷小之和.先变形再求极限.
lim n
xn
a.
2021/3/22
3
推论(夹逼准则)
若数列( xn )n1, ( yn )n1,(zn ) 满足下列条件:
(1) a xn zn ,( yn xn a) ,(n N),
(2)
lim
n
zn
a,
则
数列
(
xn
)n1的极
限存在,
且
lim
n
xn
a.
2021/3/22
4
例1 求 lim( 1 1 1 ).
0, N1 0, N2 0, 使得 当 n N1时恒有 yn a ,
当
n
N
时恒有
2
zn
a
,
取 N max{ N1, N2 }, 上两式同时成立, 即 a yn a , a zn a ,
当 n N时, 恒有 a yn xn zn a ,
即 xn a 成立,
n2 n
2021/3/22
5
例2
求数列{ n 1 n}的极限.
解:
( n 1 n)( n 1 n) n1 n
n1 n
1
1
.
n1 n n
取xn 0,
zn
1 ,
n
yn
n1
n
则有 xn yn zn
2021/3/22
6
lim 1 0, lim 1 0
n n
n n
即
lim
n
28
小结
数列与数列极限
1.数列
2.数列极限的定义
数列极限的性质 1、有界性 2、唯一性 4.极限的夹逼性 数列极限的四则运算
3. 保序性
2021/3/22
29
(n 1)! n 1 n 2
n1
显然 xn1 xn ,
x 是单调递增的; n
xn
1
1
1 2!
1 n!
1
1
1 2
1 2n1
3
1 2n1
3,
xn是有界的;
lim n
xn
存在.
记为 lim(1 1)n e
n
n
(e 2.71828)
2021/3/22
26
例1考察下列数列的极限
1.yn a a a a , a 0
b2 2
取 N max{ K, N1, N2},
2021/3/22
当 n N时, 恒有
17
于是,|
xn yn
a b
|
|b||a|
b2 / 2
2(| b | | a |)
b2
即lim n
xn yn
a b
lim
n
xn
/
lim
n
yn
2021/3/22
18
例8.考察lim a0nk a1nk1 n b0nl b1nl1
n n2 n
2021/3/22
8
例4 1. 求 lim n 1n 2n 3n . n
解 n 3n n 1n 2n 3n n 3 3n ,
3 n 1n 2n 3n 3 n 3,
又 lim 3 3 , lim 3 n 3 3 ,
n
n
由夹逼定理得
lim n 1n 2n 3n 3 .
nn
1 1 1 (1 1) 1 (1 1)(1 2)(1 n 1).
2! n
n! n n
n
2021/3/22
25
类似地,
xn1
1
1
1 (1 2!
1 n
) 1
1 (1 1 )(1 2 )(1 n 1)
n! n 1 n 2
n1
1 (1 1 )(1 2 )(1 n ).
ak bl
, a0
0, b0
0
例9.求 lim[ 1 cos n n2 1 ]
n n
2n2 1
例10. lim n ( n 1 n ) n
2021/3/22
19
2.单调有界准则
如果数列 xn满足条件
x1 x2 xn xn1 , 单调增加 单调数列 x1 x2 xn xn1 , 单调减少
n
2021/3/22
9
1 n
2. lim n
n2
0
3.设a1, a2, , ak是k个正数,证明
lim
n
n
a1n
a2n
akn max(a1, a2,
, ak )
2021/3/22
10
数列极限的运算性质:
若 lim n
xn
a, lim n
yn
b, 则
1.lnim{xn yn} a b.
2. lim n
lim(
n
1 n2
2 n2
n n2
)
lim 1
n
2
n2
n
1
n(n 1)
lim 2
n
n2
lim 1 (1 n 2
1) n
1. 2
2021/3/22
13
证2 xn a, yn b,(n )
0, N1 0, N2 0, 使得
当 n N1时恒有 xn a , 当 n N2时恒有 yn b ,
2.设yn (x) sin sin sin sin x ,其中x R,
n
证明{yn}的极限存在,并求此极限。
2021/3/22
27
例.求下列数列的极限
(1)设x1
1,
x2
1,
xn
n k 3
1 ,求 lim k(k 1) n
xn
(2)设an
2n
2, xn
n
k 1
ak
,
求
lim
n
xn
2021/3/22
2021/3/22
22
设
lim
n
xn
A
,
xn1 3 xn ,
x2 n1
3
xn ,
lim
n
x
2 n1
lim(3
n
xn ),
A2 3 A,
解得 A 1 13 , A 1 13
2
2
1 13
lim n
xn
2
.
(舍去)
2021/3/22
23
例2
设数列
{
xn }为:x1
c 2
,
xn1
c 2
取 N max{ N1, N2 }, 当 n N时, 恒有
上两式同时成立,
lim
n
xn
a,M
0,
使 | xn | M
2021/3/22
14
当 n N时, 恒有
| xn yn ab || xn yn xnb xnb ab | | xn yn xnb | | xnb ab | | xn || yn b | | b || xn a |
n n2 1 n2 2
n2 n
解 n 1 1 n ,
n2 n n2 1
n2 n n2 1
又 lim n
n lim n2 n n
1 1 1 1,
n
lim n lim 1 1, 由夹逼定理得
n n2 1
n
1
1 n2
lim( 1 1 1 ) 1.
n n2 1 n2 2
取 N' max{ N1, N2}, 当 n N '时, 恒有
上两式同时成立,
2021/3/22