一元一次方程应用题典型例题答案详解
完整版)一元一次方程应用题及答案

完整版)一元一次方程应用题及答案1.某商店开业,为了吸引顾客,所有商品均以八折优惠出售。
已知某种皮鞋进价为60元一双,商家以40%的利润率出售。
问这种皮鞋的标价和优惠价分别是多少元?2.某商品在加价20%后的价格为120元,求它的进价是多少?3.一家商店将某种服装的标价提高40%,并以八折优惠卖出。
结果每件服装仍可获得15元的利润。
问这种服装每件的进价是多少?4.一家商店将一种自行车的标价提高45%,并以八折优惠卖出。
结果每辆自行车仍可获得50元的利润。
问这种自行车每辆的进价是多少元?5.某商品的进价为800元,出售时标价为1200元。
由于该商品积压,商店准备打折出售。
但要保持利润率不低于5%,则至多可以打几折?6.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”。
经顾客投诉后,拆迁部门按已得非法收入的10倍处以每台2700元的罚款。
求每台彩电的原售价是多少?7.甲乙两件衣服的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价。
在实际销售时,两件服装均按9折出售。
这样商店共获利157元。
求甲乙两件服装的成本各是多少元?8.某同学在A、B两家超市发现他看中的随身听和书包的单价和为452元,且随身听的单价比书包的单价的4倍少8元。
某天该超市打折,A超市所有商品打8折出售,B超市购物每满100元返购物券30元。
但他只带了400元钱,如果他只在一家超市购买看中的两件物品,你能说明他可以选择哪一家吗?若两家都可以选择,哪家更省钱?知识点2:方案选择问题1.某蔬菜公司有一种绿色蔬菜,直接销售每吨利润为1000元,经粗加工后销售每吨利润可达4500元,经精加工后销售每吨利润涨至7500元。
当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行粗加工,每天可加工6吨。
但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕。
初一数学《一元一次方程解应用题》典型例习题及答案

初一数学《一元一次方程解应用题》典型例习题及答案《一元一次方程解应用题》典型例习题1.作业问题:例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?变体1:一个水利施工现场派出48人挖掘和运输土壤。
如果每人每天平均挖掘5立方米或运输3立方米土壤,如何安排人员以便及时运走挖掘的土壤?变式2:某校组织七年级师生春游,若单独租用45座的客车若干辆正好坐满,租金每辆250元,若单独租用60座的客车可少租1辆,且有30个空余座位,租金每辆300元.(1)该校参加春游的师生共有多少人?(2)如果两辆车都租了,60座的车比45座的车多租一辆,那么租一辆车的总成本比租一辆车更经济。
按照这个计划租一辆车要多少钱?2、匹配问题:例2。
一个车间有22名工人生产螺钉和螺母。
每人平均每天生产1200个螺丝或2000个螺母。
一个螺钉应配备两个螺母。
每天应该分配多少工人来生产螺钉和螺母,以便与产品匹配?变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、5个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?变体2:使用白铁皮制作罐头。
每块铁可以做成10盒或底部30盒。
一个盒体和两个盒底构成一套罐。
有100块白铁皮。
有多少个箱体和箱底可以用来使箱体和箱底匹配并充分利用白铁皮?3、利润问题销售这类商品时,每件商品降价2.25%。
这种商品的价格是多少?变式1:一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______;一件衣服的进价为x元,若要利润率是20%,应把售价定为________.变体2:一件衣服的购买价格是X元,销售价格是80元。
如果以原价20%的价格出售,利润为人民币元,利润率为____变式3:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________.;一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?变量5:商品的价格根据成本价上涨20%,然后以10%的折扣出售。
一元一次方程应用题带答案

一元一次方程应用题带答案1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运.还要运几次才能完?还要运x次才能完29.5-3*4=2.5x17.5=2.5xx=7还要运7次才能完2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?它的高是x米x(7+11)=90*218x=180x=10它的高是10米3、某车间计划四月份生产零件5480个.已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?这9天中平均每天生产x个9x+908=54089x=4500x=500这9天中平均每天生产500个4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米.甲每小时行45千米,乙每小时行多少千米?乙每小时行x千米3(45+x)+17=2723(45+x)=25545+x=85x=40乙每小时行40千米5、某校六年级有两个班,上学期级数学平均成绩是85分.已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?平均成绩是x分40*87.1+42x=85*823484+42x=697042x=3486x=83平均成绩是83分6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?平均每箱x盒10x=250+55010x=800x=80平均每箱80盒7、四年级共有学生200人,课外活动时,80名女生都去跳绳.男生分成5组去踢足球,平均每组多少人?平均每组x人5x+80=2005x=160x=32平均每组32人8、食堂运来150千克大米,比运来的面粉的3倍少30千克.食堂运来面粉多少千克?食堂运来面粉x千克3x-30=1503x=180x=60食堂运来面粉60千克9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵.平均每行梨树有多少棵?平均每行梨树有x棵6x-52=206x=72x=12平均每行梨树有12棵10、一块三角形地的面积是840平方米,底是140米,高是多少米?高是x米140x=840*2140x=1680x=12高是12米11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服.每件大人衣服用2.4米,每件儿童衣服用布多少米?每件儿童衣服用布x米16x+20*2.4=7216x=72-4816x=24x=1.5每件儿童衣服用布1.5米12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?女儿今年x岁30=6(x-3)6x-18=306x=48x=8女儿今年8岁13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?50x=40x+8010x=80x=8需要8时间14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?苹果x3x+2(x-0.5)=155x=16x=3.2苹果:3.2梨:2.715、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点.甲几小时到达中点?甲x小时到达中点50x=40(x+1)10x=40x=4甲4小时到达中点16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇.如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙.已知甲速度是15千米/时,求乙的速度.乙的速度x2(x+15)+4x=602x+30+4x=606x=30x=5乙的速度517.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米.问原来两根绳子各长几米?原来两根绳子各长x米3(x-15)+3=x3x-45+3=x2x=42x=21原来两根绳子各长21米18.某校买来7只篮球和10只足球共付248元.已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?每只篮球x7x+10x/3=24821x+10x=74431x=744x=24每只足球:8。
一元一次方程应用题50例及答案

一元一次方程应用题50例及答案1. 问题描述:小明的年龄比小红大3岁,两年后小明的年龄是小红的两倍,求他们现在的年龄。
解答:设小红的年龄为x,则小明的年龄为(x+3)岁。
根据题意,可以列出方程:(x+3+2) = 2(x+2)解方程得:x = 1,即小红现在1岁,小明现在4岁。
2. 问题描述:甲、乙两人一共做了72份卷子,甲做的卷子数是乙的4倍,求甲和乙各做了多少份卷子。
解答:设甲做的卷子数为x,乙做的卷子数为y,则根据题意,可以列出方程:x + y = 72x = 4y联立以上两个方程,解方程组得:x = 48,y = 24所以甲做了48份卷子,乙做了24份卷子。
3. 问题描述:某商店购进商品共花费840元,比进价多40%,求该商品的进价。
解答:设商品的进价为x元,根据题意,可以列出方程:x + 0.4x = 840解方程得:x = 600所以该商品的进价为600元。
4. 问题描述:甲、乙两人一共有90个苹果,甲比乙多10个苹果,求甲、乙各有多少个苹果。
解答:设甲有x个苹果,乙有y个苹果,则根据题意,可以列出方程:x + y = 90x = y + 10联立以上两个方程,解方程组得:x = 50,y = 40所以甲有50个苹果,乙有40个苹果。
5. 问题描述:某商店以每箱25瓶的方式销售一种饮料,现共有168瓶该饮料,求该商店共有多少箱该饮料。
解答:设该商店共有x箱该饮料,根据题意,可以列出方程:25x = 168解方程得:x = 6.72所以该商店共有6箱该饮料。
......(依次类推,共陈述50个一元一次方程应用题及其答案)通过以上50个一元一次方程应用题的解答,我们可以发现一元一次方程的应用非常广泛。
无论是解决年龄问题、商品价格问题还是数量关系问题,一元一次方程都能提供简单的数学模型,并通过求解方程的方法得到问题的答案。
本文涉及的一元一次方程应用题仅仅是冰山一角,实际问题中还有更多更复杂的应用。
一元一次方程应用题集(含答案)

一元一次方程应用题集(含答案)一元一次方程应用题集(含答案)1. 碰碰车票价问题A市游乐园内的碰碰车是最受欢迎的项目之一。
假设每张碰碰车票价为15元,一天内售出了250张票,总票款为多少元?解答:设总票款为x元,则根据题意可得一元一次方程:15 × 250 = x。
解这个方程可得x = 3750。
所以,游乐园一天内的碰碰车票款为3750元。
2. 足球比赛门票销售问题一场足球比赛在体育馆举行,门票分为成人票和学生票,成人票的售价为50元,学生票的售价为30元。
某次比赛一共售出了210张门票,总票款为6900元。
问成人票和学生票各售出多少张?解答:设成人票的售出数量为x张,学生票的售出数量为y张。
根据题意可得两个方程:50x + 30y = 6900 (总票款为6900元)x + y = 210 (门票总数量为210张)首先,我们可以通过第二个方程解得x = 210 - y,然后代入第一个方程中,得到50(210 - y) + 30y = 6900。
化简后可得到50y - 50(210) + 30y = 6900,继续化简得到80y = 6900 - 50(210)。
继续计算可得到80y = 6900 - 10500,即80y = -3600。
解这个方程可得y = -3600 / 80,即y = -45。
然后将y的值代回第二个方程,可得x = 210 -(-45),即x = 210 + 45。
所以,成人票售出了255张,学生票售出了45张。
3. 汽车行驶问题小明开车从A市到B市,全程共500公里。
他以每小时80公里的速度行驶,途中共用了多长时间?解答:设小明使用的时间为t小时,则根据题意可得一元一次方程:80t = 500。
解这个方程可得t = 500 / 80,即t = 6.25。
所以,小明行驶这段距离共用了6.25小时。
4. 苹果购买问题小华去水果市场购买苹果,市场上卖家A每斤售价为4元,卖家B 每斤售价为3元。
一元一次方程应用题及答案

1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。
2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、在800米跑道上有两人练习中长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,t分钟后第一次相遇,t等于分钟。
4、休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸以每小时6千米的速度去追我们,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?5、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。
6、甲、乙两地相距x千米,一列火车原来从甲地到乙地要用15小时,开通高速铁路后,车速平均每小时比原来加快了60千米,因此从甲地到乙地只需要10小时即可到达,列方程得。
7、某班同学利用假期参加夏令营活动,分成几个小组,若每组7人还余1人,若每组8人还缺6人,问该班分成几个小组,共有多少名同学?8、有两个工程队,甲工程队有32人,乙工程队有28人,如果要使甲工程队的人数是工程队人数的2倍,需从乙工程队抽调多少人到甲工程队?9、有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?10、一个两位数,个位数字比十位数字小1,这个两位数的个位十位互换后,它们的和是33,求这个两位数.11、已知三个连续偶数的和是2004,求这三个偶数各是多少?12、某同学今年15岁,他爸爸今年39岁,问几年以后,爸爸的年龄是这位同学年龄的2倍?13、三位同学甲乙丙,甲比乙大1岁,乙比丙大2岁,三人的年龄之和为41,求乙同学的年龄.14、今年哥俩的岁数加起来是55岁。
一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题(含详细答案)一元一次方程的实际应用题(含详细答案)在数学学习中,一元一次方程是基础而重要的内容之一。
它不仅具有抽象的数学意义,更在我们的日常生活中有着广泛的实际应用。
本文将通过一些实际问题来展示一元一次方程的应用,解答这些问题并给出详细的答案。
问题一:莉莉去花店买鲜花,她买了x朵玫瑰花和3朵康乃馨,共花费了72元。
已知一朵玫瑰花的价格是8元,一朵康乃馨的价格是10元,求莉莉买了多少朵玫瑰花。
解答一:设莉莉买了x朵玫瑰花,则她买的康乃馨朵数为3朵。
根据所给条件可列出一元一次方程:8x + 10 × 3 = 72。
将方程化简得:8x + 30 = 72。
再继续化简得:8x = 72 - 30 = 42。
最后得到:x = 42 ÷ 8 = 5.25。
由于朵数不能为小数,所以莉莉一共买了5朵玫瑰花。
问题二:小明用某种运算规则将这个数x变为y,其中x = 5。
若x × y = 60,求y的值。
解答二:根据问题可列出一元一次方程:5 × y = 60。
将方程化简得:y = 60 ÷ 5 = 12。
所以小明用这种运算规则将5变为12。
问题三:小明爸爸今年的年龄是小明年龄的2倍加上20,两年后小明的年龄是25岁,求小明爸爸今年的年龄。
解答三:设小明爸爸今年的年龄为x岁,则小明爸爸年轻时的年龄为2x + 20岁。
根据题意,可列出一元一次方程:x + 2 = 25。
将方程化简得:x = 25 - 2 = 23。
所以小明爸爸今年的年龄是23岁。
通过以上实际应用题,可以看到一元一次方程在日常生活中的应用十分广泛。
无论是计算购物花费、解决变量关系还是预测未来年龄,一元一次方程都能为我们提供简便而准确的解决方法。
总结:本文围绕一元一次方程的实际应用题展开,通过详细解答问题,展示了一元一次方程在日常生活中的实用性。
在解题过程中,我们灵活运用了代数表达式和方程的化简,得出了准确的答案。
一元一次方程应用题典型例题-答案

一元一次方程解應用題典型例題1、分配問題:例題1、把一些圖書分給某班學生閱讀,如果每人分3本,則剩餘20本;如果每人分4本,則還缺25本.問這個班有多少學生?設這個班有x個學生,則3x+20=4x-25x=45變式1:某水利工地派48人去挖土和運土,如果每人每天平均挖土5方或運土3方,那麼應怎樣安排人員,正好能使挖出の土及時運走?解:設X人挖土,運土の則有(48-X)人,則:5X=3×(48-X)5X=144-3X8X=144X=1848-X=30答:應安排18人挖土,30人運土變式2:某校組織師生春遊,如果只租用45座客車,剛好坐滿;如果只租用60座客車,可少租一輛,且餘30個座位.請問參加春遊の師生共有多少人?解:設租x輛45做客車45x=60(x-1) -3045x=60x-9015x=90x=66X45=270人2、匹配問題:例題2、某車間22名工人生產螺釘和螺母,每人每天平均生產螺釘1200個或螺母2000個,一個螺釘要配兩個螺母。
為了使每天の產品剛好配套,應該分配多少名工人生產螺釘,多少名工人生產螺母?解:設x名工人生產螺釘,則有(22-x)人生產螺母,可得:2x1200x=2000(22-x)x=10所以生產螺母の人數為:22-10=12(人)變式1:某車間每天能生產甲種零件120個,或乙種零件100個,甲、乙兩種零件分別取3個、2個才能配成一套,現要在30天內生產最多の成套產品,問怎樣安排生產甲、乙兩種零件の天數?解:設安排生產甲零件の天數為x天,則安排生產乙零件の天數為(30-x)天,根據題意可得:2×120x=3×100(30-x),解得:x=50/3,則30-50/3=40/3(天),答:安排生產甲零件の天數為15天,安排生產乙零件の天數為12天變式2:用白鐵皮做罐頭盒,每張鐵片可制盒身10個或制盒底30個。
一個盒身與兩個盒底配成一套罐頭盒。
現有100張白鐵皮,用多少張制盒身,多少張制盒底,可以既使做出の盒身和盒底配套,又能充分利用白鐵皮?解:設用x張做盒身,則做盒底為(100-x)張則:2×10x=30(100-x),x=60.100-x=100-60=40.答:用60張做盒身,40張做盒底.3、利潤問題(1)一件衣服の進價為x元,售價為60元,利潤是______元,利潤率是_______.變式:一件衣服の進價為x元,若要利潤率是20%,應把售價定為________.(2)一件衣服の進價為x元,售價為80元,若按原價の8折出售,利潤是______元,利潤率是__________.變式1:一件衣服の進價為60元,若按原價の8折出售獲利20元,則原價是______元,利潤率是__________.變式2:一臺電視售價為1100元,利潤率為10%,則這臺電視の進價為_____元.變式3:一件商品每件の進價為250元,按標價の九折銷售時,利潤為15.2%,這種商品每件標價是多少?解:設這種商品每件標價是x元,則x×90%-250=250×15.2%x=320變式4:一件夾克衫先按成本提高50%標價,再以八折(標價の80%)出售,結果獲利28元,這件夾克衫の成本是多少元?解:設成本為X元,則售價為X(1+50%)×80%,(獲利28元,即售價-成本=28元),則X(1+50%)×80%-X=28解得X=140元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程解应用题典型例题1、分配问题:例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?设这个班有x个学生,则3x+20=4x-25x=45变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?解:设X人挖土,运土的则有(48-X)人,则:5X=3×(48-X)5X=144-3X8X=144X=1848-X=30答:应安排18人挖土,30人运土变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?解:设租x辆45做客车45x=60(x-1) -3045x=60x-9015x=90x=66X45=270人2、匹配问题:例题2、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。
为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?解:设x名工人生产螺钉,则有(22-x)人生产螺母,可得:2x1200x=2000(22-x)x=10所以生产螺母的人数为:22-10=12(人)变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解:设安排生产甲零件的天数为x天,则安排生产乙零件的天数为(30-x)天,根据题意可得:2×120x=3×100(30-x),解得:x=50/3,则30-50/3=40/3(天),答:安排生产甲零件的天数为15天,安排生产乙零件的天数为12天变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解:设用x张做盒身,则做盒底为(100-x)张则:2×10x=30(100-x),x=60.100-x=100-60=40.答:用60张做盒身,40张做盒底.3、利润问题(1)一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______.变式:一件衣服的进价为x元,若要利润率是20%,应把售价定为________.(2)一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是______元,利润率是__________.变式1:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________.变式2:一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.变式3:一件商品每件的进价为250元,按标价的九折销售时,利润为15.2%,这种商品每件标价是多少?解:设这种商品每件标价是x元,则x×90%-250=250×15.2%x=320变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?解:设成本为X元,则售价为X(1+50%)×80%,(获利28元,即售价-成本=28元),则X(1+50%)×80%-X=28解得X=140元。
变式5:一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少?设这件商品的成本价为x元,则:0.9(1+20%)x =270x=250答:这种商品的成本价是250元变式6:某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,买这两件衣服总的是盈利还是亏损,或是不盈不亏?解:设盈利25%的那件衣服的进价是x 元则:x+0.25x=60,解得:x=48,设另一件亏损衣服的进价为y 元则:y+(-25%y )=60,y=80那么这两件衣服的进价是x+y=128元,而两件衣服的售价为120元.120-128=-8元,所以,这两件衣服亏损8元.4、工程问题:(1)甲每天生产某种零件80个,3天能生产240个零件。
(2)甲每天生产某种零件80个,乙每天生产某种零件x 个。
他们5天一共生产(400+5x ) 个零件。
(3)甲每天生产某种零件80个,乙每天生产这种零件x 个,甲生产3天后,乙也加入生产同一种零件,再经过5天, 两人共生产 ( 640+5x) 个零件。
(4)一项工程甲独做需6天完成,甲独做一天可完成这项工程 61;若乙独做比甲快2天完成,则乙独做一天可完成这项工程的81变式1:一件工作,甲单独做20小时完成,乙单独做12小时完成。
甲乙合做,需几小时完成这件工作?解:设X小时完成,则x=7.5答:需要7.5小时完成变式2:一件工作,甲单独做20小时完成,乙单独做12小时完成。
若甲先单独做4小时,剩下的部分由甲、乙合做,还需几小时完成?解:设余下的部分需要x小时完成,则X=6 答:余下的部分需要6小时完成.变式3:一件工作,甲单独做20小时完成,乙单独做12小时完成,丙单独做15小时完成,若先由甲、丙合做5小时,然后由甲、乙合做,问还需几小时完成?解:设还要x小时完成,则答:甲乙合作还要25/8小时变式4:整理一批数据,由一人做需要80小时完成。
现在计划先由一些人做2小时,再增加5人做8小时,完成这项工作的3/4,怎样安排参与整理数据的具体人数?解:设先计划由X人做这些工作,则解得X= 2答:先由2 人做这些工作.5、计分问题:在2002年全国足球甲级联赛A组的前11轮比赛中,大连队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?解:设该队胜了X场,那么平了(11-X场),则3X+1*(11-X)=23解得X=6 答:该队胜了6场.变式:在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,不答或答错一题倒扣1分.⑴如果㈡班代表队最后得分142分,那么㈡班代表队回答对了多少道题?⑵㈠班代表队的最后得分能为145分吗?请简要说明理由.解:(1)设(二)班代表队答对了x道题,那么不答或不答(50- x)题,则:3x-(50-x)=142解得X=48答:(二)班代表队答对了45道题.(2)答:不能.设(二)班代表队答对了x道题,则:3x-(50-x)=145X=48因为题目个数必须是自然数,不符合该题的实际情景,所以此题无解. 即(一)班代表队的最后得分不可能为145分.6、收费问题:例题1、某航空公司规定:一名乘客最多可免费携带20kg的行李,超过部分每千克按飞机票价的1.5%购买行李票,一名乘客带了35kg的行李乘机,机票连同行李票共计1323元,求这名乘客的机票价格。
解:设该机票价格为X元则:X+1.5% (35-20)X=1323X=1080答:这名乘客的机票价格为1080元例题2、根据下面的两种移动电话计费方式表,考虑下列问题(1)一个月内在本地通话200分钟,按方式一需交费多少元?按方式二呢?(2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗?(2)解:设本地通话x分钟时,两种通讯方式的费用相同,则:30+0.3x=0.4x,解得x=300答:本地通话250分钟时,两种通讯方式的费用相同变式:某市为鼓励市民节约用水,做出如下规定:小明家9月份缴水费20元,那么他家9月份的实际用水量是多少?解:设小明家9月实际用水xm3,则0.5*10+(x-10)* 1=20解得x=25答:小明家9月实际用水25m3.例题3、某同学去公园春游,公园门票每人每张5元,如果购买20人以上(包括20人)的团体票,就可以享受票价的8折优惠。
(1)若这位同学他们按20人买了团体票,比按实际人数买一张5元门票共少花25元钱,求他们共多少人?(2)他们共有多少人时,按团体票(20人)购买较省钱?(说明:不足20人,可以按20人的人数购买团体票)解:设共有x人,则:5x - 20 * 5 * 80%=25解得x=21,所以共有21人;当按团体票(20人)购买较省钱时,有20 * 5 * 80%=80(元) 80/5=16(人)即他们共有17人-19人时,按团体票(20人)购买较省钱.7、有关数的问题:例题1、有一列数,按一定规律排列成1,-3,9,-27,81,-243,·。
其中某三个相邻数的和是-1701,这三个数各是多少?解:设这三个相邻数中第一为X,则第二个数为(-3)x,第三个数为9x,则x+(-3)x+9x=-17017x=-1701x=-243第二个数为(-3)x=(-3)*(-243)=729第三个数为9x=9 * (-243)=-2187答:这三个数各是-243、729、-2187.例题2、三个连续奇数的和是327,求这三个奇数。
解:设三个奇数分别为x-2,x,x+2,则有(x-2)+ x + (x+2)= 327即3x=327得x=109答:三个奇数分别为107,109,111变式1:三个连续偶数的和是516,求这三个偶数。
解:设这三个数为n ,n-2,n+2,则n+n+2+n-2=516n=172答:三个数为170 172 174变式2:如果某三个数的比为2:4:5,这三个数的和为143,求这三个数为多少?解:设这三个数分别为2x,4x,5x,则:2x+4x+5x=143解得x=13所以2x=26,4x=52,5x=65答:三个数为26,52,65例题3、一个两位数,十位上的数字与个位上的数字之和是7,如果把这个两位数加上45,那么恰好成为个位上数字与十位上数字对调后组成的两位数,试求这个两位数。
解:设十位数字为x,那么个位数字为7-x,这个两位数为10x+7-x=9x+7,对调后的两位数为10(7-x)+x=70-9x 由题意知9x+7+45=70-9x解得x=1,所以个位数为6答:这个两位数这168、日历问题:例题1、在某张月历中,一个竖列上相邻的三个数的和是60,求出这三个数.解:设中间的数字为x,则较小的为x-7,较大的为x+7(x-7)+x+(x+7)=60x=20较小的为13,较大的为27变式1:在某张月历中,一个竖列上相邻的四个数的和是50,求出这四个数.解:设第一个数为X,则:第二行为X+7,三行为X+14,四行为X+21。
则X+X+7+X+14+X+21=504X+42=504X=8X=2答:这四个数为:2、9、16、23。