一元一次方程与实际问题典型例题
实际问题与一元一次方程(行程问题)

1. 谈谈你的收获. 2.你还有什么疑惑吗?
相遇问题: 甲路程+乙路程=总路程 追及问题: 追者路程=被追者路程+相隔距离
<1>学会借助线段图分析等量关 系;
<2>在探索解决实际问题时,应 从多角度思考问题.
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
一列客车和一列货车同时从两地车 站相对开出,货车每小时行35千米, 客车每小时行45千米,2.5小时相遇, 两车站相距多少千米?
速度、路程、时间之间的关系? 路程= 速度×时间 速度= 路程÷时间 时间= 路程÷速度
导入
想一想回答下面的问题:
1、A、B两车分别从相距S千米的甲、乙两地同时出 发,相向而行,两车会相遇吗?
精讲 例题
分
析
例1、 A、B两车分 别停靠在相距240千米
线段图分析:
的甲、乙两地,甲车每 小时行50千米,乙车每 小时行30千米.
A 50 x
甲
80千米
30 x B
乙
〔2若两车同时相向而 行,请问B车行了多长时 第一种情况: 间后两车相距80千米? A车路程+B车路程+相距80千米=
相距路程
相等关系:总量=各分量之和
3若解两:车设相〔y向小4而8时+行后60,慢两X=车车1先6相2开距出2710小公时里,再,由用题多意少得时:间
4两两车车同〔才时4能同8+相向解60遇 而得y行?:+1〔X6=2快1=.2车57在0 后面,几小时后快车 解可答:以:设追两再解上列用得慢火z:车车小?同时时两相车y向才=1而能行相,遇1.,5由小题时意可得以:相遇
解:设小王追上连队需要x小时,则小王行驶的路程为 14x千米,连队所行路程是 (6 18 6x) 千米 60 等量关系:小王所行路程=连队所行路程
一元一次方程应用题8种类型例题

一元一次方程应用题8种类型例题
类型一:物品价格
1.某商店连续3天在降价促销,第一天一种水果的价格为x元,第二
天降价10%,第三天再降价20%,最终第三天的价格为16元,求第一天水
果的原价。
类型二:工作效率
2.甲工人单独工作需要5小时完成某项工作,乙工人单独工作需要7
小时完成同样的工作,如果两人一起工作,需要2.5小时完成,请问他们一起
工作的效率是单独工作的几倍?
类型三:平均分配
3.分别有甲、乙两个人一起捕鱼,如果甲一个人用4小时捕到12条鱼,乙一个人用3小时捕到9条鱼,现在如果两人分配捕到的鱼,每个人平均分
得多少条鱼?
类型四:钱币问题
4.小明有一些1元、2元、5元三种面值的硬币共30枚,共计80元,且5元硬币的数量是1元硬币数量的两倍,求1元硬币的数量。
类型五:行程问题
5.一辆自行车骑行4小时可以到达甲地,同样的路程乘汽车只需要1
小时,如果自行车的速度是每小时10公里,汽车的速度是每小时40公里,
问这段路程的长度是多少?
类型六:温度问题
6.有一加热器每小时的加热量是50瓦,现在将加热时间缩短为原来的
2/3,加热器每小时的加热量增加到了75瓦,求原来的加热器每小时的加热
时间。
类型七:混合物问题
7.有两桶水,一桶水中含有60升的纯净水,另一桶水中含有40升的
纯净水,现从第一桶水中取出x升加入到第二桶水中,使得第二桶水中纯净
水的含量降低为50%,求x值。
类型八:年龄问题
8.某家庭中父亲现在年龄是儿子的7/5倍,2年前父亲的年龄是儿子
的5/3倍,求现在儿子的年龄。
以上是一元一次方程应用题8种类型例题,希望对您有所帮助。
实际问题与一元一次方程(四)数字问题

④新数=原数-63.
借助表格
原数 新数
初中数学
十位数字 4x+1 x
个位数字 x
4x+1
两位数 10(4x+1)+x
10x+4x+1
分析:①原数=十位数字×10+个位数字;
②十位数字=4×个位数字+1;
4x+1
x
③新数=原数的个位数字×10+原数的十位数字;
④新数=原数-63. 10x+(4x+1)=10(4x+1)+x-63
原数 新数
百位数字 十位数字 个位数字
1
b
c
b
c
三位数 100+10b+c 100b+10c+1
初中数学
例题讲解
例2 有一个三位数,它的百位数字是1,如果把1移 到最后,其他两位数字顺序不变,所得的三位数比 这个三位数的2倍少7,求这个三位数.
原数 新数
百位数字 十位数字 个位数字
1
b
c
b
c
1
三位数
初中数学
例题小结
3. 未知数的选择;
原数 新数
十位数字 4x+1 x
个位数字 x
4x+1
初中数学
原数 新数
十位数字 y
(y-1)÷4
个位数字 (y-1)÷4
y
两位数 10(4x+1)+x
10x+4x+1
两位数 10y+(y-1)÷4
10y -1 4 y
例题小结
1. 逐字提取信息; 2. 两位数的表示; 3. 未知数的选择; 4. 检验的方法.
初一数学《一元一次方程解应用题》典型例习题及答案

《一元一次方程解应用题》典型例习题1、分配问题:例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?变式2:某校组织七年级师生春游,若单独租用45座的客车若干辆正好坐满,租金每辆250元,若单独租用60座的客车可少租1辆,且有30个空余座位,租金每辆300元.(1)该校参加春游的师生共有多少人?(2)如果这两种车都租用了,且60座的车比45座的车多租了一辆,这样租车的总费用要比单独某一种车辆更省钱,求按这种方案租车需要租金多少元?2、匹配问题:例题2、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。
为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、5个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?3、利润问题例3 、一件商品每件的进价为250元,按标价的九折销售时,利润为15.2%,这种商品每件标价是多少?变式1:一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______;一件衣服的进价为x元,若要利润率是20%,应把售价定为________.变式2:一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是______元,利润率是__________.变式3:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________.;一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?变式5:一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少?变式6:某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,买这两件衣服总的是盈利还是亏损,或是不盈不亏?4、工程问题:例4. 一件工作,甲单独做20小时完成,乙单独做12小时完成。
一元一次方程应用题 典型例题总结

一元一次方程应用题1、9人14天完成了一件工作的53,而剩下的工作要在4天内完成,则需增加几个人?2、有一个单向通道口,通常情况下每分钟可以通过15辆车,一天,司机小王驾车到达通道口时发现道口堵塞,每分钟只能通过3辆车,此时前面还有60辆车等待通过。
(1) 如果绕山道过去需12分钟,为了节约时间,小王应该怎么办。
(2) 若立即打电话给交警,交警4分钟干到,则交警最多几分钟维持秩序,才能保证小王在12分钟内通过道口(维持秩序期间每分钟仍有三辆车通过)?3、一队学生从学校出发去部队军训,行进速度是5km/h ,走了4.5km 时一名通信员按原路返回学校取文件,然后他随即追赶队伍,通信员的速度是14km/h ,他在距部队6km 的地方追上队伍,问学校到部队有多少千米?(取文件时间忽略不计)4、甲乙两队学生从相隔18千米的两地同时出发相向而行.一个同学同时骑自行车以每小时15千米的速度在两队之间不停地往返联络.甲队每小时行5千米,乙队每小时行4千米.两队相遇时,骑自行车的同学共行多少千米?5、A 、B 两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米.一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去.这样一直飞下去,燕子飞了多少千米,两车才能相遇?6、两个长方形的重叠部分的面积,相当于大长方形的61,相当于小长方形面积的41,阴影部分的面积为160平方厘米,求重叠部分的面积。
7、一个大长方形正好被分成6个正方形,如果中间的小正方形面积为1,求长方形的面积8、某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润1000元,经过粗加工后每吨利润可达4500元,经过精加工后销售每吨利润7500元。
当地一家农工商公司获这种蔬菜140吨。
该公司加工厂的生产能力是:如精加工每天能加工16吨;如进行精加工每天可加工6吨,但两种方式不能同时进行,受季节等条件限制,公司需在半个月内全部加工完毕,为此公司研制了三种可行的方案;方案一;将蔬菜全部进行粗加工。
一元一次方程工程问题典型例题

一元一次方程工程问题典型例题一元一次方程是初中阶段数学中的基础知识,也是实际生活中常见的数学工具之一。
在工程问题中,一元一次方程的应用更是广泛,从简单的线性关系到复杂的工程计算,都离不开一元一次方程的运用。
下面我们就来看几个典型的一元一次方程工程问题例题。
例题一:水池灌溉问题某个农场的水池里有3000立方米的水,水泵每小时可以抽出200立方米的水。
如果每小时用40立方米的水灌溉田地,问多长时间,水池里的水会被抽空?解析:设时间为t小时,根据题意可以列出一元一次方程:3000 - 200t = 40t化简得:3000 = 240tt = 3000 / 240t = 12.5答案是12.5小时,水池里的水会被抽空。
例题二:汽车行驶问题某辆汽车以每小时60公里的速度行驶,已行驶2小时后,又以每小时75公里的速度行驶,问多长时间行程达到315公里?解析:设时间为t小时,根据题意可以列出一元一次方程:60 * 2 + 75t = 315化简得:120 + 75t = 31575t = 315 - 12075t = 195t = 195 / 75t = 2.6答案是2.6小时,行程达到315公里。
例题三:混合物问题有两种价值分别为20元/公斤和15元/公斤的两种茶叶共混合了40公斤,使得混合后的茶叶总价值为16.5元/公斤,问两种茶叶各混合了多少公斤?解析:设第一种茶叶混合了x公斤,第二种混合了(40-x)公斤,根据题意可以列出一元一次方程:20x + 15(40-x) = 16.5 * 40化简得:20x + 600 - 15x = 6605x = 60x = 12答案是第一种茶叶混合了12公斤,第二种茶叶混合了28公斤。
通过以上三个典型的一元一次方程工程问题例题,我们可以看到在实际生活中,一元一次方程的应用是非常广泛的。
通过掌握一元一次方程的解题方法,我们可以更好地解决工程和日常生活中的各种实际问题。
希望大家能够在学习中牢固掌握这一知识,为以后的应用打下坚实的基础。
一元一次方程应用题典型例题-答案

一元一次方程解應用題典型例題1、分配問題:例題1、把一些圖書分給某班學生閱讀,如果每人分3本,則剩餘20本;如果每人分4本,則還缺25本.問這個班有多少學生?設這個班有x個學生,則3x+20=4x-25x=45變式1:某水利工地派48人去挖土和運土,如果每人每天平均挖土5方或運土3方,那麼應怎樣安排人員,正好能使挖出の土及時運走?解:設X人挖土,運土の則有(48-X)人,則:5X=3×(48-X)5X=144-3X8X=144X=1848-X=30答:應安排18人挖土,30人運土變式2:某校組織師生春遊,如果只租用45座客車,剛好坐滿;如果只租用60座客車,可少租一輛,且餘30個座位.請問參加春遊の師生共有多少人?解:設租x輛45做客車45x=60(x-1) -3045x=60x-9015x=90x=66X45=270人2、匹配問題:例題2、某車間22名工人生產螺釘和螺母,每人每天平均生產螺釘1200個或螺母2000個,一個螺釘要配兩個螺母。
為了使每天の產品剛好配套,應該分配多少名工人生產螺釘,多少名工人生產螺母?解:設x名工人生產螺釘,則有(22-x)人生產螺母,可得:2x1200x=2000(22-x)x=10所以生產螺母の人數為:22-10=12(人)變式1:某車間每天能生產甲種零件120個,或乙種零件100個,甲、乙兩種零件分別取3個、2個才能配成一套,現要在30天內生產最多の成套產品,問怎樣安排生產甲、乙兩種零件の天數?解:設安排生產甲零件の天數為x天,則安排生產乙零件の天數為(30-x)天,根據題意可得:2×120x=3×100(30-x),解得:x=50/3,則30-50/3=40/3(天),答:安排生產甲零件の天數為15天,安排生產乙零件の天數為12天變式2:用白鐵皮做罐頭盒,每張鐵片可制盒身10個或制盒底30個。
一個盒身與兩個盒底配成一套罐頭盒。
現有100張白鐵皮,用多少張制盒身,多少張制盒底,可以既使做出の盒身和盒底配套,又能充分利用白鐵皮?解:設用x張做盒身,則做盒底為(100-x)張則:2×10x=30(100-x),x=60.100-x=100-60=40.答:用60張做盒身,40張做盒底.3、利潤問題(1)一件衣服の進價為x元,售價為60元,利潤是______元,利潤率是_______.變式:一件衣服の進價為x元,若要利潤率是20%,應把售價定為________.(2)一件衣服の進價為x元,售價為80元,若按原價の8折出售,利潤是______元,利潤率是__________.變式1:一件衣服の進價為60元,若按原價の8折出售獲利20元,則原價是______元,利潤率是__________.變式2:一臺電視售價為1100元,利潤率為10%,則這臺電視の進價為_____元.變式3:一件商品每件の進價為250元,按標價の九折銷售時,利潤為15.2%,這種商品每件標價是多少?解:設這種商品每件標價是x元,則x×90%-250=250×15.2%x=320變式4:一件夾克衫先按成本提高50%標價,再以八折(標價の80%)出售,結果獲利28元,這件夾克衫の成本是多少元?解:設成本為X元,則售價為X(1+50%)×80%,(獲利28元,即售價-成本=28元),則X(1+50%)×80%-X=28解得X=140元。
3_4实际问题与一元一次方程——行程问题(11_4)

实际问题与一元一次方程——行程问题例1、电动机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电机车速度的5倍还快20千米/小时,半小时后相遇。
两车的速度各是多少?(课本P.102第6题)【配套练习】1.甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米.两人几小时后相遇?2. 一架飞机在A、B两地间航行。
从A地到B地需5.5小时,从B地到A地需6小时,风速为24千米/时,A、B两地的距离是多少?3.运动场跑道一圈长400米,甲、乙两人同时从同一处反向出发,甲每分钟跑290米,乙每分钟跑270米,那么经过多长时间首次相遇?又经过多长时间再次相遇?追及..问题例2:解放军某部从营地出发,以每小时6千米的速度向目的地前进,8小时后部队有急事,派通讯员骑摩托车以每小时54千米的速度前去联络,多长时间后,通讯员能赶上队伍?【配套练习】1. 小明每天早上要在7:50之前赶到距家1000米的学校上学。
小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书。
于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。
(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?2.甲乙两人登一座山,甲每分钟登高10米,且甲先出发3 0分,乙每分钟登高15米,两人同时登上山顶,甲用多长时间登山?这座山有多高?(课本P.102第5题)3.跑得快的马每天走240里,跑得快的马每天走150里。
慢马先走12天,快马几天能够追上慢马?(课本P.113第5题)行船问题:1. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?2.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。
3、一轮船往返A,B两港之间,逆水航行需3时,顺水航行需2时,水流速度是3千米/时,则轮船在静水中的速度是多少?4. 某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程与实际问题典型例题
1、一套仪器由一个A部件和三个B部件构成。
用13
m钢材可做40个A部件或240个B部件。
现要用63
m钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,恰好配成这种仪器多少套?
2、制作一张桌子要用一个桌面和4条桌腿,13
m木材可制作20个桌面,或者制作400条桌腿,现有123
m木材,应怎样计划用料才能制作尽可能多的桌子?
3、某车间每天能制作甲种零件500只,或者制作乙种零件250只,甲、乙两种零件各一只配成一套产品,现要在30天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?
4、某人工作一年的报酬是年终给他一件衣服和10枚银币,但他干满了7个月就决定不再继续干了,结账时给他一件衣服和10枚硬币,这件衣服值多少枚银币?
5、用A型和B型机器生产同样的产品,已知5台a型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产一个,求每箱装多少个产品?
6、某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小月饼。
制作1块要用0.05kg面粉,一块小月饼要用0.02kg面粉。
现共有面粉4500kg,制作两种月饼应各用多少面粉,才能生产更多的盒装月饼?
7、一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天。
如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?
8、某中学的的学生自己动手整修操场,如果让七年级学生单独工作,需要7.5h完成;如果让八年级学生单独工作,需要5h完成。
如果让七、八年级学生一起工作1h,再由八年级学生单独完成剩余部分,共需多少时间完成?
9、甲组的4名工人3月份完成的工作总量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的工作总量比此月人均定额的6倍少20件。
(1)如果两组工人实际完成的此月人均工作量相等,那么此月的人均定额是多少件?
(2)如果甲组工人实际完成的此月人均工作量比乙组的多2件,那么此月人均定额是多少件?
(3)如果甲组工人实际完成的此月人均工作量比乙组的少2件,那么此月人均定额是多少件?
10、某商店有两种书包,每个小书包比每个大书包的进价少10元,而它们的售后利润额相同。
其中,每个小书包的盈利率为30%,每个大书包的盈利率为20%,试求两种书包的进价。
11、现对某商品降价20%促销,为了使销售总额不变,销售量要比原价销售时增加百分之几?
12、某商品的月末进货价比月初的进货价降了8%,而促销价不变,这样,利润率月末比月初高10%,问月初的利润率是多少?
13、某商店出售一种商品,若先提价10%,再降价10%,相当于一次降价多少?
一变:某商店出售一种商品,若连续两次降价,分别降20%和15%,相当于一次降价多少?
二变:某商店出售一种商品,若先降价20%,再提价20%,相当于一次降价多少?
二,巩固练习
1..若,则的值为 ( )
A .5
B .1 C.5或1 D.-5或-1
2、若代数式X 2+3X 的值为12,则代数式3X 2+9X-2的值为( )
A 、0
B 、24
C 、34
D 、44
3、 由四舍五入得到的近似数5.030,下列说法正确的是( )
A 、精确到千分位,有3个有效数字
B 、精确到千分位,有4个有效数字
C 、精确到千位,有4个有效数字
D 、精确到千位,有3个有效数字
2,3-==b a b a -
4、在实数0,722,2,0.1235,π中,无理数的个数为( ) A.0个 B.1个 C.2个 D.3个
5.如果x =y ,那么下列等式不一定成立的是( )
A x -5=y -5
B 33y x -=-
C 33+=+a y a x
D 1
122+=+a y a x 6.大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个.
7已知代数式的值为8那么代数式的值为__________
8、 化简:12-=___________。
9、 写出一个..
比3小的无理数 . 10.已知代数式x -2y 的值是-5,则代数式2001-2x +4y 的值是 。
11.已知a 、b 、c 是有理数,且0=++c b a ,abc 是负数,则
的,则a b 的值为 。
12若b a 、是有理数,定义新运算21a b ab ∆∆=-:,例如
(3)42(3)4125-∆=⨯-⨯-=-,那么[]3(2)1∆-∆=_____________ 。
、 13、已知()0322
=++-y x ,则 x y = 14、如图所示的运算程序中,若开始输入的x 值为24,
我们发现第1次输出的结果为 12,第2次输出的结果为6,……
第2012次输出的结果为__________.
226y y -+2241y y -+c
b a b
c a a c b +++++
15.(本题14分)数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.
(1)(4分)画数轴并在数轴上标示出-5、-3、-2、1、4
(2)(2分)数轴上到1的距离是5的点所表示的有理数是 (3)(4分)若数轴画在纸面上,折叠纸面 ①若1表示的点和表示-1的点重合,则2表示的点与数 表示的点重合; ②若3表示的点和-1表示的点重合,则5表示的点和数 表示的点重合;这时如果A 、B 两点之间的距离为6,且A 、B 两点经折叠后重合,则点A
表示的数是 .
(4)(4分)若|x+1|=4,则x= .若|x+1|+|x-2|=3,则x 的取值范围是
16.有理数c b a 、、在数轴上对应点的位置如图所示:
b
C
a 0
试化简下式:b a a b b c c a ++-----2。