一元一次方程知识点及经典例题
一元一次方程知识点归纳及典型例题

A.2 B. -2 C.1 D.
1 和-2
3☆下列方程是一元一次方程的是( )
A. 2 +1=5 B. 3(m-1 )-1 =2 C. x-y=6 D.都不是
x
4★若 x=4 是方程 x a=4 的解,则 a 等于(
)
2
A. 0 B.
1 C.-3 D.-2
2
5★★已知关于 x 的一元一次方程 ax-bx=m(m≠0)有解,则有( )
( 2)若 2x 3
2
x 3y 4
2
0 ,求 y 1
x2 的值.
2、方程中有未知字母,根据方程的解,求未知字母
( 1)已知 x
28 是方程 1
1
1 x
a
a
a 的解,求 a 的值 .
22 2
( 2)已知 x 2 时,代数式 2 x2 5x c 的值是 14,求 x 2 时代数式的值.
3、根据代数式值相等、同类项或相反数的知识
[2] 方程的解的个数随方程的不同而有多有 少〖见基础练习 T2〗,但一个一元一次方程有且.. 只.有.一个解。
[3] 一元一次方程的一般.形.式.. : ax+b=0 ( a 、 b 为常数,且 a≠0,即末知数的系数一 定不能为 0)〖见基础练习 T5〗。
一元一次方程, 一定是整式方程 (也就是说: 等号两边的式子都是整式) 。如: 3x-5=6x ,其 左边是一次二项式(多项式) 3x- 5,而右边是 单项式 6x 。
方法:把 x=b/a 分别代入原方程的两边,分别计算出结果。
① 若 左边=右边,则 x=b/a 是方程的解;
② 若 左边≠右边,则 x=b/a 不是方程的解。
注:当题目要求时,此步骤必须表达出来。
一元一次方程及其解法(知识点串讲)(原卷版)

专题09 一元一次方程及其解法知识网络重难突破知识点一方程及一元一次方程的定义(1)方程是指含有未知数的等式.(2)只含有一个未知数,并且未知数的指数是一次,这样的方程叫做一元一次方程.【典例1】已知(a﹣2)x|a|﹣1=﹣2是关于x的一元一次方程,则a的值为()A.﹣2 B.2 C.±2 D.±1【变式训练】1.下列方程中:①2x+4=6,②x﹣1=,③3x2﹣2x,④5x<7,⑤3x﹣2y=2,⑥x=3,其中是一元一次方程的有()A.5个B.4个C.3个D.2个2.已知关于x的方程(|m|﹣2)x2+(m+2)x﹣9=0为一元一次方程,则m=.知识点二方程的解方程的解:使方程左右两边的值相等的未知数的值叫做方程的解.【典例2】已知关于x的一元一次方程x+1=2x+a的解为x=﹣1,那么关于y的一元一次方程(y+2)+1=2(y+2)+a的解为()A.y=﹣1 B.y=1 C.y=﹣3 D.y=3【变式训练】1.下列方程中,以x=﹣为解的是()A.x=3x+3 B.3x=x+3 C.2x=3 D.x=3x﹣32.下面是一个被墨水污染过的方程:(1﹣2ax )=x +a ,答案显示此方程的解是x =﹣2,被墨水遮盖的是一个常数a ,则这个常数是( ) A .1B .﹣C .D .﹣3.若x =﹣1是关于x 的方程2x ﹣a +2b =0的解,则代数式2a ﹣4b +1的值是 .知识点三 解一元一次方程1.解一元一次方程的步骤:步骤操作依据 1 去分母 在方程两边都乘各分母的最小公倍数,注意不要漏乘等式的性质2 2 去括号 注意括号前的系数与符号.去括号法则 3 移项 把含有未知数的项移到方程的一边,其他项移到另一边,注意移项要改变符号等式的性质1 4 合并同类项 把方程化成ax =b (a ≠0)的形式合并同类项法则5 系数化为1方程两边同除以未知数的系数,得x =b a.等式的性质2【典例3】解方程:(1)3(2x +5)=2(4x +3)+1; (2)=1.【变式训练】1.将方程2x ﹣3=1+x 移项,得( ) A .2x +x =1﹣3B .2x +x =1+3C .2x ﹣x =1﹣3D .2x ﹣x =1+32.下列各题正确的是( ) A .由7x =4x ﹣3移项得7x ﹣4x =3B .由=1+去分母得2(2x ﹣1)=1+3(x ﹣3)C .由2(2x ﹣1)﹣3(x ﹣3)=1去括号得4x ﹣2﹣3x ﹣9=1D .由2(x +1)=x +7去括号、移项、合并同类项得x =53.若a ,b 互为相反数,c ,d 互为倒数,p 的绝对值等于2,则关于x 的方程(a +b )x 2+3cd •x ﹣p 2=0的解为x = .4.代数式5x +9与代数式﹣x +3的值互为相反数,则x 的值为 . 5.解方程(1)2(x ﹣2)﹣3(4x ﹣1)=5(1﹣x ); (2)﹣1=x ﹣.6.计算:老师所留的作业中有这样一道题,解方程:5﹣甲、乙两位同学完成的过程如下:甲同学:5﹣5﹣2(10x﹣21)=3x第一步5﹣20x+42=3x第二步﹣20x+3x=42+5第三步﹣17x=47第四步x=﹣第五步乙同学:5﹣50﹣2(10x﹣21)=3x第一步50﹣20x﹣42=3x第二步﹣20x﹣3x=﹣50+42第三步﹣23x=﹣8第四步x=第五步老师发现这两位同学的解答都有错误.(1)甲同学的解答从第步开始出现错误;错误的原因是;乙同学的解答从第步开始出现错误,错误的原因是;(2)请重新写出完成此题的正确解答过程.知识点四同解方程【典例4】已知方程x+7与关于x的方程3a﹣8=2(x+a)﹣a的解相同(1)求a的值;(2)若a、b在数轴上对应的点在原点的两侧,且到原点的距离相等,c是倒数等于本身的数,求(a+b ﹣c)2018的值.【变式训练】1.关于x的方程3﹣=0与方程2x﹣5=1的解相同,则常数a是()A.2 B.﹣2 C.3 D.﹣32.已知关于x的方程5x﹣2=3x+16的解与方程4a+1=4(x+a)﹣5a的解相同,则a=;若[m]表示不大于m的最大整数,那么[﹣1]=.一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.3.已知关于x的方程3[x﹣2(x﹣)]=4x和﹣=1有相同的解,求这个解.巩固训练1.下列方程:①3x﹣y=2:②x++2=0;③=1;④x=0;⑤3x﹣1≥5:⑥x2﹣2x﹣3=0;⑦x.其中一元一次方程有()A.5个B.4个C.3个D.2个2.把方程+=16的分母化为整数,结果应为()A.+=16 B.+=16C.﹣=160 D.+=1603.小马虎在计算16﹣x时,不慎将“﹣”看成了“+”,计算的结果是17,那么正确的计算结果应该是()A.15 B.13 C.7 D.﹣14.若与互为相反数,则m的值为()A.B.C.D.5.关于x的方程3x=2x+a的解与的解相同,则a的值为()A.﹣2 B.2 C.﹣1 D.16.若关于x的方程(m﹣4)x|m|﹣3﹣2=0是一元一次方程,则m=.7.解方程=2﹣,有下列步骤:①3(3x+1)=12﹣(2x﹣1),②9x+3=12﹣2x+1,③9x﹣2x =12+1+3,④7x=16,⑤x=,其中首先发生错误的一步是.8.解方程:(1)﹣=2x+1;(2)[x﹣(x﹣1)]=(x﹣2).9.(2020•杭州)以下是圆圆解方程=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.10.若方程(|m|﹣2)x2﹣(m+2)x+8=0是关于x的一元一次方程.(1)求m的值;(2)若它与方程5x+ax=12有相同的解,求a的值.。
一元一次方程经典例题讲解解析

一元一次方程知识点梳理1.一元一次方程的有关概念(1)一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0,这样的方程叫做一元一次方程. 2.等式的基本性质(1)等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式。
用字母表示若a=b ,则a+m=b+m ,a-m=b-m(2)等式的两边都乘以同一个数或都除以同一个数(除数不为0),所得的结果仍是等式. 用字母表示:若a=b,则am=bm,n a =nb(n 不为0) 3.解一元一次方程的基本步骤:例1、解方程(1)y-522-=例2、由两个方程的解相同求方程中子母的值已知方程104x x =-的解与方程522x m +=的解相同,求m 的值.例3 、解方程知识与绝对值知识综合题型 解方程:73|12|=-x一元一次方程应用题(找出等量关系) 一 、列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案. 1、数字问题要搞清楚数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c (其中a 、b 、c 均为整数,且1≤a ≤9, 0≤b ≤9, 0≤c ≤9)则这个三位数表示为:100a+10b+c 。
例1、 若三个连续的偶数和为18,求这三个数。
例2、 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数等量关系:原两位数+36=对调后新两位数例3、有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。
一元一次方程应用题公式大全

一元一次方程应用题公式大全一、行程问题。
1. 基本公式。
- 路程 = 速度×时间(s = vt)。
- 速度=s÷ t,时间=s÷ v。
2. 相遇问题。
- 公式:s_总=v_1t + v_2t=(v_1+v_2)t(s_总表示总路程,v_1、v_2分别表示两者的速度,t表示相遇时间)。
- 例题:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲的速度是3千米/小时,乙的速度是2千米/小时,几小时后两人相遇?- 解析:设t小时后两人相遇。
根据相遇问题公式s_总=(v_1+v_2)t,这里s_总 = 20千米,v_1=3千米/小时,v_2=2千米/小时。
则(3 + 2)t=20,5t = 20,解得t = 4小时。
3. 追及问题。
- 公式:s_追及=v_1t - v_2t=(v_1-v_2)t(s_追及表示追及路程,v_1表示快者速度,v_2表示慢者速度,t表示追及时间)。
- 例题:甲、乙两人相距5千米,甲以6千米/小时的速度追赶乙,乙以4千米/小时的速度逃跑,甲几小时能追上乙?- 解析:设甲t小时能追上乙。
根据追及问题公式s_追及=(v_1-v_2)t,这里s_追及=5千米,v_1=6千米/小时,v_2=4千米/小时。
则(6 - 4)t=5,2t = 5,解得t = 2.5小时。
二、工程问题。
- 工作总量 = 工作效率×工作时间(W = p× t)。
- 工作效率=W÷ t,工作时间=W÷ p。
通常把工作总量看成单位“1”。
2. 合作问题。
- 公式:1=(p_1+p_2)t(p_1、p_2分别表示两者的工作效率,t表示合作时间)。
- 例题:一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要几天完成?- 解析:设两人合作需要t天完成。
甲的工作效率p_1=(1)/(10),乙的工作效率p_2=(1)/(15)。
根据合作问题公式1 = ((1)/(10)+(1)/(15))t,(1)/(10)+(1)/(15)=(3 +2)/(30)=(1)/(6),则(1)/(6)t = 1,解得t = 6天。
清单03一元一次方程(五大考点梳理题型解读解决实际问题12种题型)(原卷版)

清单03 一元一次方程(五大考点梳理+题型解读+解决实际问题12种题型)【知识导图】【知识清单】考点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.【例1】(2022秋•颍州区期末)下列各式中,是方程的个数为()①x=0;②3x﹣5=2x+1;③2x+6;④x﹣y=0;⑤=5y+3;⑥a2+a﹣6=0.A.2个B.3个C.5个D.4个2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.细节剖析:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.【例2】(2022秋•汉台区期末)已知(m﹣3)x|m|﹣2=18是关于x的一元一次方程,则()A.m=2B.m=﹣3C.m=±3D.m=13.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.【例3】(2023春•蒸湘区校级期末)若x=﹣1是方程2x+m﹣6=0的解,则m的值是()A.﹣4B.4C.﹣8D.8【变式】(2022秋•宁阳县期末)若一元一次方程ax+b=0的解是x=1,则a,b的关系为()A.相等B.互为相反数C.互为倒数D.互为负倒数4.解方程:求方程的解的过程叫做解方程.考点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.【例4】(2022秋•雅安期末)下列等式变形错误的是()A.若,则x﹣1=2xB.若x﹣1=3,则x=4C.若x﹣3=y﹣3,则x﹣y=0D.若3x+4=2x,则3x﹣2x=﹣42.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.考点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解bxa(a≠0).(6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.【例5】(2022秋•东宝区期末)解方程:(1)4﹣2x=﹣3(2﹣x);(2).考点四、列方程解应用题的步骤:①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为x)③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)【例6】(2022秋•汇川区期末)如图,已知数轴上有A,B两点,它们分别表示数a,b,且(a+6)2+|b﹣12|=0.(1)填空:a=,b=;(2)点C以2个单位长度/秒的速度从点A向点B运动,到达点B后停止运动.若点D为AC中点,点E为BC中点,在点C运动过程中,线段DE的长度是否发生改变?若不变,求线段DE的长度,若变化,请说明原因;(3)在(2)的条件下,点P以1个单位长度/秒的速度同时从原点O向点B运动,P点到达B点后停止运动,问点P运动多少秒后,点P与点C相距2个单位长度?【例7】(2022秋•秦淮区期末)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(元/千瓦时)不超过150千瓦时的部分a 超过150千瓦时,但不超过300千瓦时的部分b 超过300千瓦时的部分a +0.32015年5月份,该市居民甲用电100千瓦时,交费60元;居民乙用电200千瓦时,交费125元. (1)求上表中a 、b 的值;(2)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月交费285元?【例8】.(2022秋•常州期末)列方程解决问题:小华和妈妈一起玩成语竞猜游戏,商定如下规则:小华猜中1个成语得2分,妈妈猜中1个成语得1分,结果两人一共猜中了30个成语,得分恰好相等.请问小华猜中了几个成语?考点五、用一元一次方程解决实际问题的常见类型 1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+ 7.数字问题;8.分配问题; 9.比赛积分问题;10.水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度水流速度).题型1.配套问题1.某生产教具的厂家准备生产正方体教具,教具由塑料棒和金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),安排一个车间负责生产这款正方体教具,该车间共有34名工人,每个工人每天可生产塑料棒100根或金属球75个,如果你是车间主任,你会如何分配工人成套生产正方体教具?2.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?题型2.销售问题销售问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。
一元一次方程知识点总结

一元一次方程【知识点归纳】一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.等式的性质(1)用式子形式表示为:如果a=b ,那么a±c=b±c(2)等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x=b a). 六、用方程思想解决实际问题的一般步骤1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.2. 设:设未知数(可分直接设法,间接设法)3. 列:根据题意列方程.4. 解:解出所列方程.5. 检:检验所求的解是否符合题意.6. 答:写出答案(有单位要注明答案)七、有关常用应用类型题及各量之间的关系1. 和、差、倍、分问题:增长量=原有量×增长率 现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.2. 等积变形问题:(1)“等积变形”是以形状改变而体积不变为前提.常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.(2 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S ·h = r2h②长方体的体积 V =长×宽×高=abc3. 劳力调配问题:这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4. 数字问题(1)要搞清楚数的表示方法:一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.5. 工程问题:工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=16.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.商品销售问题(1)商品利润率=商品利润商品成本价×100%(2)商品销售额=商品销售价×商品销售量(3)商品的销售利润=(销售价-成本价)×销售量(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.有关关系式:商品售价=商品标价×折扣率(5)商品利润=商品售价—商品进价=商品标价×折扣率—商品进价8. 储蓄问题⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税⑵利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)(3)利润=每个期数内的利息本金×100% 、【典型例题】一、一元一次方程的有关概念例1.一个一元一次方程的解为2,请写出这个一元一次方程 .二、一元一次方程的解例2.若关于x 的一元一次方程23132x kx k---=的解是1x =-,则k 的值是( )A . 27B .1C .1311- D .0三、一元一次方程的解法例3.如果2005200.520.05x -=-,那么x 等于( )(A)1814.55 (B)1824.55 (C)1774.45 (D)1784.45例4. 23{32[12(x-1)-3]-3}=四、一元一次方程的实际应用例5.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.例6.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?例7.(2006·益阳市)八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?。
七年级上一元一次方程题型及知识点总结

七年级上一元一次方程题型及知识点总结一元一次方程题型及知识点总结一、知识点1.等式:用“=”号连接而成的式子叫等式。
2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。
3.方程:含未知数的等式,叫方程。
4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项。
移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b 是已知数,且a≠0)。
8.一元一次方程解法的一般步骤:化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号合并同类项——合并后注意符号系数化为1——未知数细数是几就除以几二、典型例题:例1:解下列方程:1) 2x+1=10x+13y-15y+17y+12) x-1=4/-4/1.55x-0.813) (x-3)/(4+11)=2/(3-x)4) 0.5x^2+0.2x-41=2.3x5) 233.0-26.3x=1+(6)-x课堂练1】解方程:1) 3x-2=5x+32) 2x-3/4=1/2-3x/8巩固练:一、选择题1、下列方程中是一元一次方程的是()A、x-y=2005.B、3x-2004.C、x^2+x=1.D、2=32、方程1-(2x-4)/(x-2)=-7/36去分母得()A.1-2(2x-4)=-(x-7)B.6-2(2x-4)=-x-7C.6-2(2x-4)=-(x-7)D.以上答案均不对3、代数式x-(x-1)/3的值等于1时,x的值是().A)3(B)1(C)-3(D)-14、方程2-(3x-7)/(x^2+17)=4/45去分母得(。
一元一次方程知识点及经典例题

一元一次方程知识点及经典例题一、知识要点梳理知识点一:方程和方程的解1.方程:含有未知数的等式叫方程。
注意:a.必须是等式b.必须含有未知数。
易错点:(1).方程式等式,但等式不一定是方程;(2).方程中的未知数可以用x表示,也可以用其他字母表示;(3).方程中可以含多个未知数。
考法:判断是不是方程:例:下列式子:(1).8-7=1+0(2).1、一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件:1)只含有一个未知数;2)未知数的次数是1次;3)整式方程。
2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等。
知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a+c=b+c;(c为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a=b,那么ac=bc;如果a=b(且c≠0),那么a/c=b/c。
要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6.方程的右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:解一元一次方程的一般步骤:1.变形步骤具体方法变形根据注意事项1.不能漏乘不含分母的项;去分母公倍数2.掉分母后,如果分子是多项式,则要加括号2.合并同类项1.分配律应满足分配到每一项去先去小括号,再乘法分配律、去括号2.注意符号,特别是去掉括号3.移项要变号;一般把含有未知数的项移动到方程左边,其余项移到右边4.合并同类项时,把同类项的同系数相加,字母与字母的指数不变5.未知数的系数a,成“ax=b”的形式6.方程两边同除以未知数的系数a,分子、分母不能颠倒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理一、知识要点梳理知识点一:方程和方程的解1.方程:含有_____________的______叫方程注意:a.必须是等式b.必须含有未知数。
易错点:(1).方程式等式,但等式不一定是方程;(2).方程中的未知数可以用x表示,也可以用其他字母表示;(3).方程中可以含多个未知数。
考法:判断是不是方程:例:下列式子:(1).8-7=1+0(2).1、一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件:(1)只含有一个未知数;(2)未知数的次数是1次;(3)整式方程.2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等.知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果,那么;(c为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6。
方程的右边没有变化,这要与“去分母”区别开。
、解一元一次方程的一般步骤:解一元一次方程的一般步骤变形步骤具体方法变形根据注意事项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号乘法分配律、去括号法则1.分配律应满足分配到每一项2.注意符号,特别是去掉括号移项把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同类项把方程中的同类项分别合并,化成“bax=”的形式(0≠a)合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系方程两边同除以未知数的系数a,得abx=等式性质2分子、分母不能颠倒数化成“1”要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用: ①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。
牛刀小试例1、解方程(1)y-52221+-=-yy例2、由两个方程的解相同求方程中子母的值已知方程104x x =-的解与方程522x m +=的解相同,求m 的值.例3、解方程知识与绝对值知识综合题型解方程:73|12|=-x二、经典例题透析类型一:一元一次方程的相关概念1、已知下列各式:①2x-5=1;②8-7=1;③x+y ;④x -y =x 2;⑤3x+y =6;⑥5x+3y +4z =0;⑦=8;⑧x=0。
其中方程的个数是( )A 、5B 、6C 、7D 、8举一反三:[变式1]判断下列方程是否是一元一次方程:(1)-2x2+3=x(2)3x-1=2y(3)x+=2(4)2x2-1=1-2(2x-x2)[变式2]已知:(a-3)(2a+5)x+(a-3)y+6=0是一元一次方程,求a的值。
[变式3](2011重庆江津)已知3是关于x的方程2x-a=1的解,则a的值是() A.-5 B.5 C.7 D.2类型二:一元一次方程的解法解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、系数化为1。
如果我们在牢固掌握这一常规解题思路的基础上,根据方程原形和特点,灵活安排解题步骤,并且巧妙地运用学过的知识,就可以收到化繁为简、事半功倍的效果。
1.巧凑整数解方程:2、举一反三:[变式]解方程:=2x-52..巧去括号解方程:4、举一反三:[变式]解方程:4.运用拆项法解方程:5、5.巧去分母解方程:6、举一反三:[变式](2011山东滨州)依据下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。
解:原方程可变形为(__________________________)去分母,得3(3x+5)=2(2x-1).(__________________________)去括号,得9x+15=4x-2.(____________________________)(____________________),得9x-4x=-15-2.(____________________________)合并,得5x=-17.(合并同类项)(____________________),得x=.(_________________________)6.巧组合解方程:7、思路点拨:按常规解法将方程两边同乘72化去分母,但运算较复杂,注意到左边的第一项和右边的第二项中的分母有公约数3,左边的第二项和右边的第一项的分母有公约数4,移项局部通分化简,可简化解题过程。
7.巧解含有绝对值的方程:8、|x-2|-3=0思路点拨:解含有绝对值的方程的基本思想是先去掉绝对值符号,转化为一般的一元一次方程。
对于只含一重绝对值符号的方程,依据绝对值的意义,直接去绝对值符号,化为两个一元一次方程分别解之,即若|x|=m,则x=m或x=-m;也可以根据绝对值的几何意义进行去括号,如解法二。
举一反三:【变式1】(2011福建泉州)已知方程,那么方程的解是________.;[变式2]5|x|-16=3|x|-4[变式3]8.利用整体思想解方程:9、思路点拨:因为含有的项均在“”中,所以我们可以将作为一个整体,先求出整体的值,进而再求的值。
参考答案例1:解:是方程的是①④⑤⑥⑦⑧,共六个,所以选B总结升华:根据定义逐个进行判断是解题的基本方法,判断时应注意两点:一是等式;二是含有未知数,体现了对概念的理解与应用能力。
举一反三1.解析:判断是否为一元一次方程需要对原方程进行化简后再作判断。
答案:(1)(2)(3)不是,(4)是2.解析:分两种情况:(1)只含字母y,则有(a-3)(2a+5)=0且a-3≠0(2)只含字母x,则有a-3=0且(a-3)(2a+5)≠0不可能综上,a的值为。
3.答案:B例2.解:移项,得。
合并同类项,得2x=-1。
系数化为1,得x=-。
举一反三解:原方程可变形为=2x-5整理,得8x+18-(2+15x)=2x-5,去括号,得8x+18-2-15x=2x-5移项,得8x-15x-2x=-5-18+2合并同类项,得-9x=-21系数化为1,得x=。
例4解:去括号,得去小括号,得去分母,得(3x-5)-8=8去括号、移项、合并同类项,得3x=21两边同除以3,得x=7∴原方程的解为x=7举一反三解:依次移项、去分母、去大括号,得依次移项、去分母、去中括号,得依次移项、去分母、去小括号,得,∴x=48例5解:原方程逆用分数加减法法则,得移项、合并同类项,得。
系数化为1,得。
例6解:原方程化为去分母,得100x-(13-20x)=7去括号、移项、合并同类项,得120x=20两边同除以120,得x=∴原方程的解为总结升华:应用分数性质时要和等式性质相区别。
可以化为同分母的,先化为同分母,再去分母较简便。
举一反三【答案】解:原方程可变形为(_分式的基本性质_)去分母,得3(3x+5)=2(2x-1).(_等式性质2_)去括号,得9x+15=4x-2.(去括号法则或乘法分配律_)(______移项_______),得9x-4x=-15-2.(等式性质1_)合并,得5x=-17.(合并同类项)(_______系数化为1____),得x=.(等式性质2)例7解:移项通分,得化简,得去分母,得8x-144=9x-99。
移项、合并,得x=-45。
例8解法一:移项,得|x-2|=3当x-2≥0时,原方程可化为x-2=3,解得x=5当x-2<0时,原方程可化为-(x-2)=3,解得x=-1。
所以方程|x-2|-3=0的解有两个:x=5或x=-1。
解法二:移项,得|x-2|=3。
因为绝对值等于3的数有两个:3和-3,所以x-2=3或x-2=-3。
分别解这两个一元一次方程,得解为x=5或x=-1。
举一反三1.【答案】2.解:5|x|-3|x|=16-42|x|=12|x|=6x=±63.解:|3x-1|=83x-1=±83x=1±83x=9或3x=-7x=3或例9解:移项通分,得:化简,得:移项,系数化1得:总结升华:解一元一次方程有一般程序化的步骤,我们在解一元一次方程时,既要学会按部就班(严格按步骤)地解方程,又要能随机应变(灵活打乱步骤)解方程。
对于一般解题步骤与解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧。
三、课堂练习一、选择题1、已知下列方程:(1)x-2=x 3;(2)0.3x=1;(3)2x=5x-1;(4)x 2-4x=3;(5)x=0;(6)x+2y=0.其中一元一次方程的个数是()234A7x=x+5B7x+5=xC6x=11D-8+3=-6x5、下列方程的变形中,是移项的是()A 由3=25x ,得25x=3B 由6x=3+5x ,得6x=5x+3⑤6x =;⑥20x y +=.其中一元一次方程的个数是 ().A .2B .3C .4D .513、已知关于x 的方程5(21)a x a x +=-+的解是1x =-,则a 的值是 ( ).A .-5B .-6C .-7D .814、方程3521x x +=-移项后,正确的是().A .3251x x +=-B .3215x x -=-+C .3215x x -=-D .3215x x -=--15、方程2412332x x -+-=-,去分母得 (). A .C .16、2.5km ,A .17、A 1234、3a 32-m b 4与2a m -6b 4是同类项,则m=.5、若y x -+(y+1)2=0,则x-y=.6、某商品的进价为250元,为了减少库存,决定每件商品按标价打8折销售,结果每件商品仍获利10元,那么原来标价为。
7、当x=时,1528x 的值是0.三、一元一次方程应用题(找出等量关系)一、列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检1a、b、c例1例例32例1例2例3几?3常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。