(完整word)一元一次方程典型应用题汇编(精选题型含答案),推荐文档

合集下载

完整版)一元一次方程应用题及答案

完整版)一元一次方程应用题及答案

完整版)一元一次方程应用题及答案1.某商店开业,为了吸引顾客,所有商品均以八折优惠出售。

已知某种皮鞋进价为60元一双,商家以40%的利润率出售。

问这种皮鞋的标价和优惠价分别是多少元?2.某商品在加价20%后的价格为120元,求它的进价是多少?3.一家商店将某种服装的标价提高40%,并以八折优惠卖出。

结果每件服装仍可获得15元的利润。

问这种服装每件的进价是多少?4.一家商店将一种自行车的标价提高45%,并以八折优惠卖出。

结果每辆自行车仍可获得50元的利润。

问这种自行车每辆的进价是多少元?5.某商品的进价为800元,出售时标价为1200元。

由于该商品积压,商店准备打折出售。

但要保持利润率不低于5%,则至多可以打几折?6.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”。

经顾客投诉后,拆迁部门按已得非法收入的10倍处以每台2700元的罚款。

求每台彩电的原售价是多少?7.甲乙两件衣服的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价。

在实际销售时,两件服装均按9折出售。

这样商店共获利157元。

求甲乙两件服装的成本各是多少元?8.某同学在A、B两家超市发现他看中的随身听和书包的单价和为452元,且随身听的单价比书包的单价的4倍少8元。

某天该超市打折,A超市所有商品打8折出售,B超市购物每满100元返购物券30元。

但他只带了400元钱,如果他只在一家超市购买看中的两件物品,你能说明他可以选择哪一家吗?若两家都可以选择,哪家更省钱?知识点2:方案选择问题1.某蔬菜公司有一种绿色蔬菜,直接销售每吨利润为1000元,经粗加工后销售每吨利润可达4500元,经精加工后销售每吨利润涨至7500元。

当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行粗加工,每天可加工6吨。

但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕。

一元一次方程典型应用题汇编(精选题型含答案解析)

一元一次方程典型应用题汇编(精选题型含答案解析)

一元一次方程的应用1、列方程解应用题的基本步骤和方法:注意:(1)初中列方程解应用题时,怎么列简单就怎么列(即所列的每一个方程都直接的表示题意),不用担心未知数过多,简化审题和列方程的步骤,把难度转移到解方程的步骤上.(2)解方程的步骤不用写出,直接写结果即可.(3)设未知数时,要标明单位,在列方程时,如果题中数据的单位不统一,必须把单位换算成统一单位,尤其是行程问题里需要注意这个问题.2、设未知数的方法:设未知数的方法一般来讲,有以下几种:(1)“直接设元”:题目里要求的未知量是什么,就把它设为未知数,多适用于要求的未知数只有一个的情况;(2)“间接设元”:有些应用题,若直接设未知数很难列出方程,或者所列的方程比较复杂,可以选择间接设未知数,而解得的间接未知数对确定所求的量起中介作用.(3)“辅助设元”:有些应用题不仅要直接设未知数,而且要增加辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知量,可以在解题时消去.(4)“部分设元”与“整体设元”转换:当整体设元有困难时,可以考虑设其一部分为未知数,反之亦然,如:数字问题.模块一:数字问题(1)多位数字的表示方法:一个两位数的十位数字、个位数字分别为a 、b ,(其中a 、b 均为整数,19a ≤≤,09b ≤≤)则这个两位数可以表示为10a b +.一个三位数的百位数字为a ,十位数字为b ,个位数字为c ,(其中均为整数,且19a ≤≤,09b ≤≤,09c ≤≤)则这个三位数表示为:10010a b c ++.(2)奇数与偶数的表示方法:偶数可表示为2k ,奇数可表示为21k +(其中k 表示整数).(3)三个相邻的整数的表示方法:可设中间一个整数为a ,则这三个相邻的整数可表示为1,,1a a a -+.【例1】 一次数学测验中,小明认为自己可以得满分,不料卷子发下来一看得了96分,原来是由于粗心把一个题目的答案十位与个位数字写颠倒了,结果自己的答案比正确答案大了36,而正确答案的个位数字是十位数字的2倍.正确答案是多少【解析】此题中数据96与列方程无关.与列方程有关的量就是小明粗心后所涉及的量.设正确答案的十位数字为x ,则个位数字为2x , 依题意,得(102)(102)36x x x x ⨯+-+=,解之得4x =. 于是28x =.所以正确答案应为48.【答案】48【例2】 某年份的号码是一个四位数,它的千位数字是2,如果把2移到个位上去,那么所得的新四位数比原四位数的2倍少6,求这个年份.【解析】设这个年份的百位数字、十位数字、个位数字组成的三位数为x ,则这个四位数字可以表示为21000x ⨯+,根据题意可列方程:()1022210006x x +=⨯+-,解得499x =【答案】2499年【例3】 有一个四位数,它的个位数字是8,如果将个位数字8调到千位上,则这个数就增加117,求这个四位数.【解析】设由原数中的千位数字、百位数字和十位数字组成的三位数为x ,则这个四位数可以表示为108x +,则调换后的新数可以表示为8000x +,根据题意可列方程1088000117x x +=+-,解得875x =,所以这个四位数为8758【答案】8758【例4】 五一放假,小明的爸爸开车带着小明和妈妈去郊游,他们在公路上匀速行驶,下表是小明每隔1小时看到的路边里程碑上数的信息.你能确定小明在7:00时看到的里程碑上的数是多少吗【解析】设小明在7:00时看到的两位数的十位数字是x ,则个位数字是7x -,根据题意可列方程:()()()()10071071071007x x x x x x x x +---+=-+-+-⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦,解得1x =,所以76x -=.【答案】小明在7:00时看到的两位数是16.模块二:日历问题(1)、在日历问题中,横行相邻两数相差1,竖列相邻两数相差7.(2)、日历中一个竖列上相邻3个数的和的最小值时24,最大值时72,且这个和一定是3的倍数. (3)、一年中,每月的天数是有规律的,一、三、五、七、八、十、十二这七个月每月都是31天,四、六、九、十一这四个月每月都是30天,二月平年28天,闰年29天,所以,日历表中日期的取值是有范围的.【例5】 下表是2011年12月的日历表,请解答问题:在表中用形如下图的平行四边形框框出4个数, 【例6】 (1)若框出的4个数的和为74,请你通过列方程的办法,求出它分别是哪4天 【例7】 (2)框出的4个数的和可能是26吗为什么【解析】(1)设第一个数是x ,则根据平行四边形框框出4个数得其他3天可分别表示为1x +,6x +,7x +.根据题意可列方程:()()()16774x x x x ++++++=,解得15x =; 所以它分别是:15,16,21,22;(2)设第一个数为x ,则41426x +=,3x =,本月3号是周六,由平行四边形框框出4个数, 得出结论:无法构成平行四边形.【答案】(1)15,16,21,22;(2)无法构成平行四边形.【例8】 如图,框内的四个数字的和为28,请通过平移长方形框的方法,使框内的数字之和为68,这样的长方形的位置有几个能否使框内的四个数字之和为49若能,请找出这样的位置;若不能,请说明理由.【解析】(1)设四个数字是a ,1a +,7a +,8a +,根据题意可列方程:17868a a a a ++++++=,解得13a =.则平移后的四个数是13、14、20、21.(2)设四个数字是x ,1x +,7x +,8x +,则41649x +=,334x =.不合题意,舍去. 【答案】平移后的四个数是13、14、20、21,这样的长方形的位置只有1个;不存在能使四个数字的和为49的长方形.【例9】 把2012个正整数1,2,3,4,…,2012按如图方式排列成一个表.【例10】 (1)用如图方式框住表中任意4个数,记左上角的一个数为x ,则另三个数用含x 的式子表示出来,从小到大依次是________________.(2)由(1)中能否框住这样的4个数,它们的和会等于244吗若能,则求出x 的值;若不能,则说明理由.【解析】(1)∵记左上角的一个数为x ,∴另三个数用含x 的式子表示为:8x +,16x +,24x +.(2)不能.假设能够框住这样的4个数,则:()()()81624244x x x x ++++++=,解得49x =. ∵49是第七行最后一个数,∴不可以用如图方式框住.【答案】(1)8x +,16x +,24x +;(2)不能.模块三:和差倍分问题和、差、倍问题关键要分清是几倍多几和几倍少几.(1)当较大量是较小量的几倍多几时,=⨯较大量较小量倍数+多余量; (2)当较大量是较小量的几倍少几时,=⨯较大量较小量倍数-所少量. 【例11】 一部拖拉机耕一片地,第一天耕了这片地的23;第二天耕了剩下部分的13,还剩下42公顷没耕完,则这片地共有多少公顷【解析】设这片地共有x 公顷,第一天耕了这片地的23,则耕地23x 公顷,第二天耕了剩下部分的13,则第二天耕地1211339x x ⎛⎫⨯-= ⎪⎝⎭(公顷),根据题意可列方程:214239x x x --=,解得189x =.【答案】189.【例12】 牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有100只吧!”牧羊人答道:“如果这群羊增加一倍,再加上原来这群羊的一半,又加上原来这群羊一半的一半,连你这只羊也算进去,才刚好凑满100只.”问牧羊人的这群羊共有多少只【解析】设这群羊共有x 只,根据题意可列方程:112110024x x x +++=,解得36x =. 【答案】36【例13】 有粗细不同的两支蜡烛,细蜡烛之长时粗蜡烛之长的2倍,细蜡烛点完需1小时,粗蜡烛点完需2小时,有一次停电,将这样的两支未使用过的蜡烛同时点燃,来电时,发现两支蜡烛所剩的长度一样,问停电的时间有多长【解析】设停电时间为x 小时,粗蜡烛长l 米,则细蜡烛长2l 米,那么细蜡烛每小时点燃2l 米,粗蜡烛没小时点燃2l 米,根据题意可列方程:222l l l x l x -⋅=-,解得23x =【答案】停电时间为23小时【例14】 2006年我市在全国率先成为大面积实施“三免一补”的州市,据悉,2010年我市筹措农村义务教育经费与“三免一补”专项资金亿元【由中央、省、市、县(区)四级共同投入,其中,中央投入的资金约亿元,市级投入的资金分别是县(区)级、省级投入资金的倍、18倍】,且2010年此项资金比2009年增加亿元.【例15】 (1)2009年我市筹措农村义务教育经费与“三免一补”专项资金多少亿元【例16】 (2)2010年省、市、县(区)各级投入的农村义务教育经费与“三免一补”专项资金各多少亿元 【例17】 (3)如果按2009-2010年筹措此项资金的年平均增长率计算,预计2011年,我市大约需要筹措农村义务教育经费与“三免一补”专项资金多少亿元(结果保留一位小数)【解析】(1)3.61 1.69 1.91-=(亿元).(2)设市级投入x 亿元,则县级投入23x 亿元,省级投入118x 亿元,由题意得:212.98 3.6318x x ++=,解得0.36x =.所以20.243x =(亿元),10.0218x =(亿元).(3) 1.693.61 6.81.91⎛⎫⨯+≈ ⎪⎝⎭(亿元). 【答案】(1)亿元;(2)省、市、县分别投入亿元、亿元、亿元;(3)亿元.模块四:行程问题一、 行程问题路程=速度×时间 相遇路程=速度和×相遇时间 追及路程=速度差×追及时间二、 流水行船问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度水流速度=12×(顺流速度-逆流速度) 三、 火车过桥问题火车过桥问题是一种特殊的行程问题,需要注意从车头至桥起,到车尾离桥止,火车所行距离等于桥长加上车长,列车过桥问题的基本数量关系为:车速×过桥时间=车长+桥长.【例18】 有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙背向而行.甲每分钟走40米,乙每分钟走38米,丙每分钟走36米.出发后,甲和乙相遇后3分钟和丙相遇,求花圃的周长.【解析】设甲、乙相遇时间为t 分钟,则甲、丙相遇时间为()3t +分钟,根据题意,由相遇路程相等可列方程()()383634036t -=⨯+【答案】8892米【例19】 某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开车时间迟到15分钟,现在此人打算在火车开车前10分钟到达火车站,则此人此时骑摩托车的速度应为多少【解析】设此人从家里出发到火车开车的时间为x 小时,根据题意可列方程:151530()18()6060x x -=+,解得1x =,此人打算在火车开车前10分钟到达,骑摩托车的速度应为1530(1)602710160⨯-=-(千米/时) 【答案】27【例20】 甲、乙两车同时从A ,B 两地出发,相向而行,在A ,B 两地之间不断往返行驶.甲车到达B 地后,在B 地停留了2个小时,然后返回A 地;乙车到达A 地后,马上返回B 地;两车在返回的途中又相遇了,相遇的地点距离B 地288千米.已知甲车的速度是每小时60千米,乙车的速度是每小时40千米.请问:A ,B 两地相距多少千米【解析】设A 、B 两地相距x 千米,根据题意可列方程:228828824060x x -+-=,解得420x = 【答案】420千米【例21】 某人骑自行车从A 地先以每小时12千米的速度下坡后,再以每小时9千米的速度走平路到B 地,共用了55分钟.回来时,他以每小时8千米的速度通过平路后,再以每小时4千米的速度上坡,从B 地到A 地共用112小时,问A 、B 两地相距多少千米【解析】间接设未知数,设从A 地到B 地共用x 小时,根据题意可列方程:5531293438602t t t t ⎛⎫⎛⎫+-⨯=⨯+-⨯ ⎪ ⎪⎝⎭⎝⎭,解得14t =,所以A 、B 两地相距55129960t t ⎛⎫+-⨯= ⎪⎝⎭(千米)【答案】9千米【例22】 一人步行从甲地去乙地,第一天行若干千米,自第二天起,每一天都比前一天多走同样的路程,这样10天可以到达乙地;如果每天都以第一天所行的相同路程步行,用15天才能到达乙地;如果每天都以第一种走法的最后一天所行的路程步行到乙地,需要几天【解析】设a 是第一次第一天走的路程,b 是第二天起每天多走的路程,x 是所求的天数.则根据题意可列方程:1523456789a a a b a b a b a b a b a b a b a b a b =++++++++++++++++++()()()()()()()()(), 解得9a b =.又()159a x a b =+,解得7.5x =.【答案】天【例23】 一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港航行需3小时,水流速度增加后,从乙港返回甲港需航行多少小时【解析】设小船在静水中的速度为a ,原来的水速为b ,则2()3(2)a b a b -=-,解得4a b =,故所求时间为2()1(2)a b a b -=+(小时).【答案】1【例24】 一个人乘木筏在河面顺流而下,漂到一座桥下时此人想锻炼一下身体,便跳入水中逆水游泳,10分钟后转身追赶木筏,终于在离桥1500米远的地方追上木筏,假设水流速度及此人游泳的速度都一直不变,那么水流速度为多少【解析】因为向上游了10分钟,所以返回追赶也要10分钟(流水中的相遇时间与追及时间都与水流速度无关),即水流20分钟的路程为1500米,水流速度为11.5 4.53÷=(千米∕时).【答案】水流速度为4.5千米/时【例25】 一小船由A 港到B 港顺流需行6小时,由B 港到A 港逆流需行8小时,一天,小船从早晨6点由A 港出发顺流行至B 港时,发现一救生圈在途中掉落在水中,立即返回,1小时后找到救生圈.问:【例26】 (1)若小船按水流速度由A 港漂流到B 港需多少小时(2)救生圈是何时掉入水中的【解析】(1)设小船在静水中的速度为a ,水流速度为b ,则6()8()a b a b +=-,解得7a b =,故小船按水流速度由A 港漂流到B 港所需时间为6()48a b b+=(小时); (2)设小船行驶x 小时后,救生圈掉入水中,则(61)()1(6)()x b a b x a b -++-⨯=-+,将7a b =代入上式,得到5x =,故救生圈是上午11点掉入水中的【答案】48;5模块五:工程问题工作总量=工作时间×工作效率 各部分工作量之和=1【例27】 有甲、乙、丙三个水管,独开甲管5小时可以注满一池水;甲、乙两管齐开,2小时可注满一池水;甲、丙两管齐开,3小时注满一池水.现把三管一齐开,过了一段时间后甲管因故障停开,停开后2小时水池注满.问三管齐开了多少小时【解析】由题意知,甲管注水效率为15,甲、乙两管的注水效率之和为12,甲、丙两管的注水效率之和为13,设三管齐开了x 小时,根据题意可列方程:()1112215235x x ⎛⎫++-+= ⎪⎝⎭,解得419x =【答案】419小时【例28】 检修一住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天.前7天由甲、乙两人合作,但乙中途离开了一段时间,后2天由乙、丙两人合作完成,问乙中途离开了几天【解析】设乙中途离开了x 天,根据题意可列方程()1111772114181812x ⎛⎫⨯+-+⨯+= ⎪⎝⎭,解得3x = 【答案】乙中途离开了3天【例29】 某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.【例30】 (1)问该中学库存多少套桌凳【例31】 (2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱为什么【解析】(1)设该中学库存x 套桌凳,根据题意可列方程:201624x x-=,解得960x =. (2)方案①所需费用:()9608010540016⨯+=(元); 方案②所需费用:()96012010520024⨯+=(元);方案③所需费用:()960801201050401624⨯++=+(元). 综上,方案③最省钱.【答案】(1)960套;(2)方案③最省钱.模块六:商品销售问题在现实生活中,购买商品和销售商品时,经常会遇到进价、标价、售价、打折等概念,在了解这些基本概念的基础上,还必须掌握以下几个等量关系:()=1+⨯标价进价利润率利润=售价-进价 =100%⨯利润利润率进价利润=进价×利润率 实际售价=标价×打折率【例32】 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,求经销这种商品原来的利润率.【解析】设经销这种商品原来的利润率为x ,原进价为a ,根据题意可列方程:(1)(1 6.4%)(18%)a x a x +=-++,解得17%x =.【答案】17%【例33】 某商品月末的进货价为比月初的进货价降了8%,而销售价不变,这样,利润率月末比月初高10%,问月初的利润率是多少【解析】设月初进货价为a 元,月初利润率为x ,则月初的销售价为()1a x +元,月末进货价为()18%a -元,销售价为()()18%110%a x -++⎡⎤⎣⎦元,根据月初销售价与月末销售价相等可列方程:()()()118%110%a x a x +=-++⎡⎤⎣⎦,解得0.15x =.【答案】15%【例34】 某公司生产一种饮料是由A ,B 两种原料液按一定比例配制而成,其中A 原料液的成本价为15元/千克,B 原料液的成本价为10元/千克,按现行价格销售每千克获得70%的利润率.由于市场竞争,物价上涨,A 原料液上涨20%,B 原料液上涨10%,配制后的总成本增加了12%,公司为了拓展市场,打算再投入现总成本的25%做广告宣传,如果要保证每千克利润不变,则此时这种饮料的利润率是多少【解析】原料液A 的成本价为15元/千克,原料液B 的成本价为10元/千克,涨价后,原A 价格上涨20%,变为18元;B 上涨10%,变为11元,总成本上涨12%,设每100千克成品中,二原料比例A 占x 千克,B 占(100-x )千克,则涨价前每100千克成本为()1510100x x +-,涨价后每100千克成本为()1811100x x +-,根据题意可列方程:()()()18111001510100112%x x x x +-=+-⨯+⎡⎤⎣⎦,解得1007x =,所以6001007x -= 即二者的比例是::1:6A B =,则涨价前每千克的成本为156075777+=(元),销售价为127.57元,利润为元. 原料涨价后,每千克成本变为12元,成本的25%为3元,保证利润为元,则利润率为:()7.512350%÷+=.【答案】50%.模块七:方案决策问题在实际生活中,做一件事情往往会有多种选择,这就需要从几种方案中,选择最佳方案,如网络的使用,到不同旅行社购票等,一般都要运用方程解答,把每一种方案的结果先算出来,进行比较后得出最佳方案.【例35】 某开发商进行商铺促销,广告上写着如下条款:【例36】 投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:【例37】 方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.【例38】 方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.【例39】 (1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高为什么(注:=100%⨯投资收益投资收益率实际投资额) (2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元【解析】(1)设商铺标价为x 万元,则按方案一购买,则获投资收益()120%110%50.7x x x -+⋅⨯=,投资收益率为0.7100%70%x x⨯= 按方案二购买,则获投资收益()()120%0.8510%110%30.62x x x -+⋅⨯-⨯=, 投资收益率为0.62100%72.9%0.85x x⨯≈. 所以投资者选择方案二获得的投资收益率高.(2)由题意得,0.70.625x x -=,解得62.5x =,所以甲投资了万元,乙投资了万元【答案】略【例40】 有一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天王老师到达道口时,发现由于拥挤,每分钟只能有3人通过道口,此时,自己前面还有36个人等待通过,通过道口后,还需7分钟到达学校.【例41】 (1)若绕道而行,要15分钟到达学校。

(完整word版)初一数学一元一次方程应用题各类型经典题

(完整word版)初一数学一元一次方程应用题各类型经典题

初一数学一元一次方程应用题各类型经典题一、行程问题:包括相遇、追击、环形跑道和飞行、航行的速度问题其基本关系是:路程=时间×速度(一)相遇问题的等量关系:甲行距离+乙行距离=总路程(二)追击问题的等量关系:(1)同时不同地:慢者行的距离+两者之间的距离=快者行的距离(2)同地不同时:甲行距离=乙行距离或慢者所用时间=快者所用时间+多用时间(三)环形跑道常用等量关系:(1)同时同向出发:快的走的路程-环行跑道周长=慢的走的路程(第一次相遇)(2)同时反向出发:甲走的路程+乙走的路程=环行周长(第一次相遇)(四)航行问题常用的等量关系:(1)顺水速度=静水速度+水流速度(2)逆水速度=静水速度-水流速度(3)顺速–逆速= 2水速;顺速+ 逆速= 2船速(4)顺水的路程= 逆水的路程例题1、甲、乙两地相距162公里,一列慢车从甲站开出,每小时走48公里,一列快车从乙站开出,每小时走60公里试问:1)两列火车同时相向而行,多少时间可以相遇?2)两车同时反向而行,几小时后两车相距270公里?3)若两车相向而行,慢车先开出1小时,再用多少时间两车才能相遇?4)若两车相向而行,快车先开25分钟,快车开了几小时与慢车相遇?5)两车同时同向而行(快车在后面),几小时后快车可以追上慢车?6)两车同时同向而行(慢车在后面),几小时后两车相距200公里?例题2、某连队从驻地出发前往某地执行任务,行军速度是6千米/小时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达到该连队,小王骑自行车以14千米/小时的速度沿同一路线追赶连队,问是否能在规定时间内完成任务?练习:1、小明每天早上要在7:20之前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。

问:(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?2、一架飞机飞行两城之间,顺风时需要5小时30分钟,逆风时需要6小时,已知风速为每小时24公里,求两城之间的距离和无风时飞机的速度?3、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么过2分钟他们两人就要相遇。

一元一次方程应用题集(含答案)

一元一次方程应用题集(含答案)

一元一次方程应用题集(含答案)一元一次方程应用题集(含答案)1. 碰碰车票价问题A市游乐园内的碰碰车是最受欢迎的项目之一。

假设每张碰碰车票价为15元,一天内售出了250张票,总票款为多少元?解答:设总票款为x元,则根据题意可得一元一次方程:15 × 250 = x。

解这个方程可得x = 3750。

所以,游乐园一天内的碰碰车票款为3750元。

2. 足球比赛门票销售问题一场足球比赛在体育馆举行,门票分为成人票和学生票,成人票的售价为50元,学生票的售价为30元。

某次比赛一共售出了210张门票,总票款为6900元。

问成人票和学生票各售出多少张?解答:设成人票的售出数量为x张,学生票的售出数量为y张。

根据题意可得两个方程:50x + 30y = 6900 (总票款为6900元)x + y = 210 (门票总数量为210张)首先,我们可以通过第二个方程解得x = 210 - y,然后代入第一个方程中,得到50(210 - y) + 30y = 6900。

化简后可得到50y - 50(210) + 30y = 6900,继续化简得到80y = 6900 - 50(210)。

继续计算可得到80y = 6900 - 10500,即80y = -3600。

解这个方程可得y = -3600 / 80,即y = -45。

然后将y的值代回第二个方程,可得x = 210 -(-45),即x = 210 + 45。

所以,成人票售出了255张,学生票售出了45张。

3. 汽车行驶问题小明开车从A市到B市,全程共500公里。

他以每小时80公里的速度行驶,途中共用了多长时间?解答:设小明使用的时间为t小时,则根据题意可得一元一次方程:80t = 500。

解这个方程可得t = 500 / 80,即t = 6.25。

所以,小明行驶这段距离共用了6.25小时。

4. 苹果购买问题小华去水果市场购买苹果,市场上卖家A每斤售价为4元,卖家B 每斤售价为3元。

一元一次方程应用题归类汇集(含答案)

一元一次方程应用题归类汇集(含答案)

一元一次方程应用题归类聚集〔含答案〕一、一般行程问题〔相遇与追击问题〕1.行程问题中的三个根本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题根本类型〔1〕相遇问题:快行距+慢行距=原距〔2〕追及问题:快行距-慢行距=原距二、环行跑道与时钟问题:三、行船与飞机飞行问题:航行问题:顺水〔风〕速度=静水〔风〕速度+水流〔风〕速度逆水〔风〕速度=静水〔风〕速度-水流〔风〕速度水流速度=〔顺水速度-逆水速度〕÷2四、工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间2.经常在题目中未给出工作总量时,设工作总量为单位1。

即完成某项任务的各工作量的和=总工作量=1.一元一次方程应用题型1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75〔a-1〕=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地间隔。

设原定时间为a小时45分钟=3/4小时根据题意40a=40×3+〔40-10〕×〔a-3+3/4〕40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙间隔40×21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,那么甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?解:设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2×〔a+16〕-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14×2=28人如今乙队有14+16=30人,甲队有28-16=12人4、某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。

一元一次方程典型应用题汇编(精选题型含答案)

一元一次方程典型应用题汇编(精选题型含答案)

一元一次方程典型应用题汇编(精选题型含答案)1、列方程解应用题的基本步骤和方法:解应用题的基本步骤包括:审题,设未知数,列方程,解方程,检验结果,并作出结论。

在设未知数时,可以直接设元,也可以间接设元,但需要注意单位的统一。

解方程的步骤不必写出,直接写出结果即可。

最后,检验方程的解是否符合实际问题。

2、设未知数的方法:设未知数的方法有直接设元、间接设元、辅助设元、部分设元和整体设元转换。

其中,直接设元适用于只有一个未知数的情况;间接设元可以解决难以列出方程或方程较复杂的问题;辅助设元可以帮助列方程,消去不必要的未知数;部分设元和整体设元转换则适用于数字问题。

数字问题中,一个两位数可以表示为10a+b,其中a、b分别为十位数和个位数;一个三位数可以表示为100a+10b+c,其中a、b、c分别为百位数、十位数和个位数。

在列方程时,需要注意单位的统一。

XXX在7:00时看到的两位数是16.解法是:将16表示为10(1)+6,然后代入题目中的表达式,得到10(7-x)+(1+x)=100x+(7-x),化简得到9x=93,解得x=10,因此7-x=6.在日历问题中,横行相邻两数相差1,竖列相邻两数相差7.此外,一个竖列上相邻3个数的和的最小值是24,最大值是72,且这个和一定是3的倍数。

一年中,每个月的天数也有规律,其中1、3、5、7、8、10、12月每月都是31天,4、6、9、11月每月都是30天,2月平年28天,闰年29天。

因此,在日历表中日期的取值是有范围的。

在2011年12月的日历表中,框出的4个数的和为74.设第一个数是x,则根据平行四边形框框出4个数,其他3天可分别表示为x+1,x+6,x+7.根据题意可列方程:x+(x+1)+(x+6)+(x+7)=74,解得x=15,因此这4天分别是15、16、21、22.在图中,框内的四个数字的和为28.设四个数字是a,a+1,a+7,a+8,则根据题意可列方程:a+(a+1)+(a+7)+(a+8)=28,解得a=5.因此,这4个数字分别是5、6、12、13.要使框内的四个数字之和为68,可以将框向右平移5格,得到13、14、20、21.但无法使框内的四个数字之和为49,因为49不是4的倍数,而一个竖列上相邻3个数的和一定是3的倍数。

(完整版)一元一次方程经典题型(可编辑修改word版)

(完整版)一元一次方程经典题型(可编辑修改word版)

4 一元一次方程经典题型1.以y 为未知数的方程2ay = 5c (a ≠ 0, b≠ 0)的解是()bA.y =10bca B.y =2bc5c C.y =5bc2aD.y =10bcc2.要使5m +1与⎛+1 ⎫互为相反数,那么m 的值是()5 m ⎪4 ⎝⎭A.0B.320C.120D.-3203.已知4x 2n-3+ 5 = 0 是关于x 的一元一次方程,则n =. 4.若9a x b7与- 7a3x-4b 2y-1是同类项,则x =, y =.5.若- 2 是关于x 的方程3x + 4 =x-a 的解,则a100-21=.a1006、若关于x 的方程mx m-2-m + 3 = 0 是一元一次方程,则这个方程的解是.6、已知:1-(3m-5)2有最大值,则方程5m - 4 = 3x + 2 的解是.7、方程4x - 5 y= 6, 用含x 的代数式表示y 得,用含y 的代数式表示x 得。

2x 0.25 -0.1x3、解方程+= 0.1时,把分母化为整数,得。

0.03 0.022、方程2 -3(x +1) = 0 的解与关于x 的方程7.0.5x - 0.1+ 2x = 2.0.2k +x2-3k - 2 = 2x 的解互为倒数,求k 的值。

6.3.1从实际问题到方程一、本课重点,请你理一理列方程解应用题的一般步骤是:(1)“找”:看清题意,分析题中及其关系,找出用来列方程的;(2)“设”:用字母(例如x)表示问题的;(3)“列”:用字母的代数式表示相关的量,根据列出方程;(4)“解”:解方程;(5)“验”:检查求得的值是否正确和符合实际情形,并写出答案;(6)“答”:答出题目中所问的问题。

二、基础题,请你做一做1.已知矩形的周长为20 厘米,设长为x 厘米,则宽为().A. 20-xB. 10-xC. 10-2xD. 20-2x2.学生a 人,以每10 人为一组,其中有两组各少1 人,则学生共有()组.A. 10a-2B. 10-2aC. 10-(2-a)D.(10+2)/a三、综合题,请你试一试1.在课外活动中,张老师发现同学们的年龄大多是13 岁.就问同学:“我今年45 岁,几年以后你们的年龄是我年龄的三分之一?”2.小明的爸爸三年前为小明存了一份3000 元的教育储蓄.今年到期时取出,得到的本息和为3243 元,请你帮小明算一算这种储蓄的年利率.3.小赵去商店买练习本,回来后问同学:“店主告诉我,如果多买一些就给我八折优惠.我就买了20 本,结果便宜了1.60 元.”你能列出方程吗?四、易错题,请你想一想1.建筑工人浇水泥柱时,要把钢筋折弯成正方形.若每个正方形的面积为400 平方厘米,应选择下列表中的哪种型号的钢筋?思路点拨:解出方程有两个值,必须进行检查求得的值是否Array正确和符合实际情形,因为钢筋的长为正数,所以取x=80,故应选折C 型钢筋.2.你在作业中有错误吗?请记录下来,并分析错误原因.6.3.2行程问题一、本课重点,请你理一理1.基本关系式:;2.基本类型:相遇问题; 相距问题; ;3.基本分析方法:画示意图分析题意,分清速度及时间,找等量关系(路程分成几部分).4.航行问题的数量关系:(1)顺流(风)航行的路程=逆流(风)航行的路程(2)顺水(风)速度=逆水(风)速度=二、基础题,请你做一做1、甲的速度是每小时行4 千米,则他x 小时行()千米.2、乙3 小时走了x 千米,则他的速度是().3、甲每小时行4 千米,乙每小时行5 千米,则甲、乙一小时共行()千米,y 小时共行()千米.4、某一段路程x 千米,如果火车以49 千米/时的速度行驶,那么火车行完全程需要()小时.三、综合题,请你试一试1.甲、乙两地路程为 180 千米,一人骑自行车从甲地出发每时走 15 千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的 3 倍,若两人同时出发,相向而行,问经过多少时间两人相遇?2.甲、乙两地路程为180 千米,一人骑自行车从甲地出发每时走15 千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3 倍,若两人同向而行,骑自行车在先且先出发2 小时,问摩托车经过多少时间追上自行车?3.一架直升机在A,B两个城市之间飞行,顺风飞行需要4 小时,逆风飞行需要5 小时.如果已知风速为30km/h,求A,B 两个城市之间的距离.四、易错题,请你想一想1.甲、乙两人都以不变速度在400 米的环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为100 米/分乙的速度是甲速度的3/2 倍,问(1)经过多少时间后两人首次遇(2)第二次相遇呢?思路点拨:此题是关于行程问题中的同向而行类型。

(整理)一元一次方程应用题归类汇集(含答案)

(整理)一元一次方程应用题归类汇集(含答案)

一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设——设出未知数:根据提问,巧设未知数.(3)找——等量关系:根据题意找出等量关系。

(4)列——列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(5)解——解方程:解所列的方程,求出未知数的值.(6)验——检验所求出的未知数的值是否是方程的解,是否符合实际。

(7)答——作答检验后写出答案.(注意带上单位)二、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。

2、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?二、环行跑道与时钟问题:1、在6点和7点之间,什么时刻时钟的分针和时针重合?2、甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?3、在3时和4时之间的哪个时刻,时钟的时针与分针:⑴重合;⑵成平角;⑶成直角;三、行船与飞机飞行问题:航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷21、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程的应用1、列方程解应用题的基本步骤和方法:注意:(1)初中列方程解应用题时,怎么列简单就怎么列(即所列的每一个方程都直接的表示题意),不用担心未知数过多,简化审题和列方程的步骤,把难度转移到解方程的步骤上.(2)解方程的步骤不用写出,直接写结果即可.(3)设未知数时,要标明单位,在列方程时,如果题中数据的单位不统一,必须把单位换算成统一单位,尤其是行程问题里需要注意这个问题.2、设未知数的方法:设未知数的方法一般来讲,有以下几种:(1)“直接设元”:题目里要求的未知量是什么,就把它设为未知数,多适用于要求的未知数只有一个的情况;(2)“间接设元”:有些应用题,若直接设未知数很难列出方程,或者所列的方程比较复杂,可以选择间接设未知数,而解得的间接未知数对确定所求的量起中介作用.(3)“辅助设元”:有些应用题不仅要直接设未知数,而且要增加辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知量,可以在解题时消去.(4)“部分设元”与“整体设元”转换:当整体设元有困难时,可以考虑设其一部分为未知数,反之亦然,如:数字问题.模块一:数字问题(1)多位数字的表示方法:一个两位数的十位数字、个位数字分别为a 、b ,(其中a 、b 均为整数,19a ≤≤,09b ≤≤)则这个两位数可以表示为10a b +.一个三位数的百位数字为a ,十位数字为b ,个位数字为c ,(其中均为整数,且19a ≤≤,09b ≤≤,09c ≤≤)则这个三位数表示为:10010a b c ++.(2)奇数与偶数的表示方法:偶数可表示为2k ,奇数可表示为21k +(其中k 表示整数).(3)三个相邻的整数的表示方法:可设中间一个整数为a ,则这三个相邻的整数可表示为1,,1a a a -+.【例1】 一次数学测验中,小明认为自己可以得满分,不料卷子发下来一看得了96分,原来是由于粗心把一个题目的答案十位与个位数字写颠倒了,结果自己的答案比正确答案大了36,而正确答案的个位数字是十位数字的2倍.正确答案是多少?【解析】此题中数据96与列方程无关.与列方程有关的量就是小明粗心后所涉及的量.设正确答案的十位数字为x ,则个位数字为2x , 依题意,得(102)(102)36x x x x ⨯+-+=,解之得4x =. 于是28x =.所以正确答案应为48.【答案】48【例2】 某年份的号码是一个四位数,它的千位数字是2,如果把2移到个位上去,那么所得的新四位数比原四位数的2倍少6,求这个年份.【解析】设这个年份的百位数字、十位数字、个位数字组成的三位数为x ,则这个四位数字可以表示为21000x ⨯+,根据题意可列方程:()1022210006x x +=⨯+-,解得499x =【答案】2499年【例3】 有一个四位数,它的个位数字是8,如果将个位数字8调到千位上,则这个数就增加117,求这个四位数.【解析】设由原数中的千位数字、百位数字和十位数字组成的三位数为x ,则这个四位数可以表示为108x +,则调换后的新数可以表示为8000x +,根据题意可列方程1088000117x x +=+-,解得875x =,所以这个四位数为8758【答案】8758【例4】 五一放假,小明的爸爸开车带着小明和妈妈去郊游,他们在公路上匀速行驶,下表是小明每隔1小时看到的路边里程碑上数的信息.你能确定小明在7:00时看到的里程碑上的数是多少吗?【解析】设小明在7:00时看到的两位数的十位数字是x ,则个位数字是7x -,根据题意可列方程:()()()()10071071071007x x x x x x x x +---+=-+-+-⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦,解得1x =,所以76x -=.【答案】小明在7:00时看到的两位数是16.模块二:日历问题(1)、在日历问题中,横行相邻两数相差1,竖列相邻两数相差7.(2)、日历中一个竖列上相邻3个数的和的最小值时24,最大值时72,且这个和一定是3的倍数. (3)、一年中,每月的天数是有规律的,一、三、五、七、八、十、十二这七个月每月都是31天,四、六、九、十一这四个月每月都是30天,二月平年28天,闰年29天,所以,日历表中日期的取值是有范围的.【例5】 下表是2011年12月的日历表,请解答问题:在表中用形如下图的平行四边形框框出4个数,(1)若框出的4个数的和为74,请你通过列方程的办法,求出它分别是哪4天? (2)框出的4个数的和可能是26吗?为什么?【解析】(1)设第一个数是x ,则根据平行四边形框框出4个数得其他3天可分别表示为1x +,6x +,7x +.根据题意可列方程:()()()16774x x x x ++++++=,解得15x =; 所以它分别是:15,16,21,22;(2)设第一个数为x ,则41426x +=,3x =,本月3号是周六,由平行四边形框框出4个数, 得出结论:无法构成平行四边形.【答案】(1)15,16,21,22;(2)无法构成平行四边形.【例6】 如图,框内的四个数字的和为28,请通过平移长方形框的方法,使框内的数字之和为68,这样的长方形的位置有几个?能否使框内的四个数字之和为49?若能,请找出这样的位置;若不能,请说明理由.【解析】(1)设四个数字是a ,1a +,7a +,8a +,根据题意可列方程:17868a a a a ++++++=,解得13a =.则平移后的四个数是13、14、20、21.(2)设四个数字是x ,1x +,7x +,8x +,则41649x +=,334x =.不合题意,舍去. 【答案】平移后的四个数是13、14、20、21,这样的长方形的位置只有1个;不存在能使四个数字的和为49的长方形.【例7】 把2012个正整数1,2,3,4,…,2012按如图方式排列成一个表.(1)用如图方式框住表中任意4个数,记左上角的一个数为x ,则另三个数用含x 的式子表示出来,从小到大依次是________________.(2)由(1)中能否框住这样的4个数,它们的和会等于244吗?若能,则求出x 的值;若不能,则说明理由.【解析】(1)∵记左上角的一个数为x ,∴另三个数用含x 的式子表示为:8x +,16x +,24x +.(2)不能.假设能够框住这样的4个数,则:()()()81624244x x x x ++++++=,解得49x =. ∵49是第七行最后一个数,∴不可以用如图方式框住.【答案】(1)8x +,16x +,24x +;(2)不能.模块三:和差倍分问题和、差、倍问题关键要分清是几倍多几和几倍少几.(1)当较大量是较小量的几倍多几时,=⨯较大量较小量倍数+多余量; (2)当较大量是较小量的几倍少几时,=⨯较大量较小量倍数-所少量.【例8】 一部拖拉机耕一片地,第一天耕了这片地的23;第二天耕了剩下部分的13,还剩下42公顷没耕完,则这片地共有多少公顷?【解析】设这片地共有x 公顷,第一天耕了这片地的23,则耕地23x 公顷,第二天耕了剩下部分的13,则第二天耕地1211339x x ⎛⎫⨯-= ⎪⎝⎭(公顷),根据题意可列方程:214239x x x --=,解得189x =.【答案】189.【例9】 牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有100只吧!”牧羊人答道:“如果这群羊增加一倍,再加上原来这群羊的一半,又加上原来这群羊一半的一半,连你这只羊也算进去,才刚好凑满100只.”问牧羊人的这群羊共有多少只?【解析】设这群羊共有x 只,根据题意可列方程:112110024x x x +++=,解得36x =. 【答案】36【例10】 有粗细不同的两支蜡烛,细蜡烛之长时粗蜡烛之长的2倍,细蜡烛点完需1小时,粗蜡烛点完需2小时,有一次停电,将这样的两支未使用过的蜡烛同时点燃,来电时,发现两支蜡烛所剩的长度一样,问停电的时间有多长?【解析】设停电时间为x 小时,粗蜡烛长l 米,则细蜡烛长2l 米,那么细蜡烛每小时点燃2l 米,粗蜡烛没小时点燃2l 米,根据题意可列方程:222l l l x l x -⋅=-,解得23x =【答案】停电时间为23小时【例11】 2006年我市在全国率先成为大面积实施“三免一补”的州市,据悉,2010年我市筹措农村义务教育经费与“三免一补”专项资金3.6亿元【由中央、省、市、县(区)四级共同投入,其中,中央投入的资金约2.98亿元,市级投入的资金分别是县(区)级、省级投入资金的1.5倍、18倍】,且2010年此项资金比2009年增加1.69亿元.(1)2009年我市筹措农村义务教育经费与“三免一补”专项资金多少亿元?(2)2010年省、市、县(区)各级投入的农村义务教育经费与“三免一补”专项资金各多少亿元? (3)如果按2009-2010年筹措此项资金的年平均增长率计算,预计2011年,我市大约需要筹措农村义务教育经费与“三免一补”专项资金多少亿元(结果保留一位小数)?【解析】(1)3.61 1.69 1.91-=(亿元).(2)设市级投入x 亿元,则县级投入23x 亿元,省级投入118x 亿元,由题意得:212.98 3.6318x x ++=,解得0.36x =.所以20.243x =(亿元),10.0218x =(亿元).(3) 1.693.61 6.81.91⎛⎫⨯+≈ ⎪⎝⎭(亿元). 【答案】(1)1.91亿元;(2)省、市、县分别投入0.02亿元、0.36亿元、0.24亿元;(3)6.8亿元.模块四:行程问题一、 行程问题路程=速度×时间 相遇路程=速度和×相遇时间 追及路程=速度差×追及时间二、 流水行船问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度水流速度=12×(顺流速度-逆流速度) 三、 火车过桥问题火车过桥问题是一种特殊的行程问题,需要注意从车头至桥起,到车尾离桥止,火车所行距离等于桥长加上车长,列车过桥问题的基本数量关系为:车速×过桥时间=车长+桥长.【例12】 有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙背向而行.甲每分钟走40米,乙每分钟走38米,丙每分钟走36米.出发后,甲和乙相遇后3分钟和丙相遇,求花圃的周长.【解析】设甲、乙相遇时间为t 分钟,则甲、丙相遇时间为()3t +分钟,根据题意,由相遇路程相等可列方程()()383634036t -=⨯+【答案】8892米【例13】 某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开车时间迟到15分钟,现在此人打算在火车开车前10分钟到达火车站,则此人此时骑摩托车的速度应为多少?【解析】设此人从家里出发到火车开车的时间为x 小时,根据题意可列方程:151530()18()6060x x -=+,解得1x =,此人打算在火车开车前10分钟到达,骑摩托车的速度应为1530(1)602710160⨯-=-(千米/时) 【答案】27【例14】 甲、乙两车同时从A ,B 两地出发,相向而行,在A ,B 两地之间不断往返行驶.甲车到达B 地后,在B 地停留了2个小时,然后返回A 地;乙车到达A 地后,马上返回B 地;两车在返回的途中又相遇了,相遇的地点距离B 地288千米.已知甲车的速度是每小时60千米,乙车的速度是每小时40千米.请问:A ,B 两地相距多少千米?【解析】设A 、B 两地相距x 千米,根据题意可列方程:228828824060x x -+-=,解得420x = 【答案】420千米【例15】 某人骑自行车从A 地先以每小时12千米的速度下坡后,再以每小时9千米的速度走平路到B 地,共用了55分钟.回来时,他以每小时8千米的速度通过平路后,再以每小时4千米的速度上坡,从B 地到A 地共用112小时,问A 、B 两地相距多少千米?【解析】间接设未知数,设从A 地到B 地共用x 小时,根据题意可列方程:5531293438602t t t t ⎛⎫⎛⎫+-⨯=⨯+-⨯ ⎪ ⎪⎝⎭⎝⎭,解得14t =,所以A 、B 两地相距55129960t t ⎛⎫+-⨯= ⎪⎝⎭(千米)【答案】9千米【例16】 一人步行从甲地去乙地,第一天行若干千米,自第二天起,每一天都比前一天多走同样的路程,这样10天可以到达乙地;如果每天都以第一天所行的相同路程步行,用15天才能到达乙地;如果每天都以第一种走法的最后一天所行的路程步行到乙地,需要几天?【解析】设a 是第一次第一天走的路程,b 是第二天起每天多走的路程,x 是所求的天数.则根据题意可列方程:1523456789a a a b a b a b a b a b a b a b a b a b =++++++++++++++++++()()()()()()()()(), 解得9a b =.又()159a x a b =+,解得7.5x =.【答案】7.5天【例17】 一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港航行需3小时,水流速度增加后,从乙港返回甲港需航行多少小时?【解析】设小船在静水中的速度为a ,原来的水速为b ,则2()3(2)a b a b -=-,解得4a b =,故所求时间为2()1(2)a b a b -=+(小时).【答案】1【例18】 一个人乘木筏在河面顺流而下,漂到一座桥下时此人想锻炼一下身体,便跳入水中逆水游泳,10分钟后转身追赶木筏,终于在离桥1500米远的地方追上木筏,假设水流速度及此人游泳的速度都一直不变,那么水流速度为多少?【解析】因为向上游了10分钟,所以返回追赶也要10分钟(流水中的相遇时间与追及时间都与水流速度无关),即水流20分钟的路程为1500米,水流速度为11.5 4.53÷=(千米∕时).【答案】水流速度为4.5千米/时【例19】 一小船由A 港到B 港顺流需行6小时,由B 港到A 港逆流需行8小时,一天,小船从早晨6点由A 港出发顺流行至B 港时,发现一救生圈在途中掉落在水中,立即返回,1小时后找到救生圈.问: (1)若小船按水流速度由A 港漂流到B 港需多少小时? (2)救生圈是何时掉入水中的?【解析】(1)设小船在静水中的速度为a ,水流速度为b ,则6()8()a b a b +=-,解得7a b =,故小船按水流速度由A 港漂流到B 港所需时间为6()48a b b+=(小时); (2)设小船行驶x 小时后,救生圈掉入水中,则(61)()1(6)()x b a b x a b -++-⨯=-+,将7a b =代入上式,得到5x =,故救生圈是上午11点掉入水中的【答案】48;5模块五:工程问题工作总量=工作时间×工作效率 各部分工作量之和=1【例20】 有甲、乙、丙三个水管,独开甲管5小时可以注满一池水;甲、乙两管齐开,2小时可注满一池水;甲、丙两管齐开,3小时注满一池水.现把三管一齐开,过了一段时间后甲管因故障停开,停开后2小时水池注满.问三管齐开了多少小时?【解析】由题意知,甲管注水效率为15,甲、乙两管的注水效率之和为12,甲、丙两管的注水效率之和为13,设三管齐开了x 小时,根据题意可列方程:()1112215235x x ⎛⎫++-+= ⎪⎝⎭,解得419x =【答案】419小时【例21】 检修一住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天.前7天由甲、乙两人合作,但乙中途离开了一段时间,后2天由乙、丙两人合作完成,问乙中途离开了几天?【解析】设乙中途离开了x 天,根据题意可列方程()1111772114181812x ⎛⎫⨯+-+⨯+= ⎪⎝⎭,解得3x = 【答案】乙中途离开了3天【例22】 某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费. (1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱为什么?【解析】(1)设该中学库存x 套桌凳,根据题意可列方程:201624x x-=,解得960x =. (2)方案①所需费用:()9608010540016⨯+=(元); 方案②所需费用:()96012010520024⨯+=(元); 方案③所需费用:()960801201050401624⨯++=+(元). 综上,方案③最省钱.【答案】(1)960套;(2)方案③最省钱.模块六:商品销售问题在现实生活中,购买商品和销售商品时,经常会遇到进价、标价、售价、打折等概念,在了解这些基本概念的基础上,还必须掌握以下几个等量关系:()=1+⨯标价进价利润率利润=售价-进价 =100%⨯利润利润率进价利润=进价×利润率实际售价=标价×打折率【例23】 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,求经销这种商品原来的利润率.【解析】设经销这种商品原来的利润率为x ,原进价为a ,根据题意可列方程:(1)(1 6.4%)(18%)a x a x +=-++,解得17%x =.【答案】17%【例24】 某商品月末的进货价为比月初的进货价降了8%,而销售价不变,这样,利润率月末比月初高10%,问月初的利润率是多少?【解析】设月初进货价为a 元,月初利润率为x ,则月初的销售价为()1a x +元,月末进货价为()18%a -元,销售价为()()18%110%a x -++⎡⎤⎣⎦元,根据月初销售价与月末销售价相等可列方程:()()()118%110%a x a x +=-++⎡⎤⎣⎦,解得0.15x =.【答案】15%【例25】 某公司生产一种饮料是由A ,B 两种原料液按一定比例配制而成,其中A 原料液的成本价为15元/千克,B 原料液的成本价为10元/千克,按现行价格销售每千克获得70%的利润率.由于市场竞争,物价上涨,A 原料液上涨20%,B 原料液上涨10%,配制后的总成本增加了12%,公司为了拓展市场,打算再投入现总成本的25%做广告宣传,如果要保证每千克利润不变,则此时这种饮料的利润率是多少?【解析】原料液A 的成本价为15元/千克,原料液B 的成本价为10元/千克,涨价后,原A 价格上涨20%,变为18元;B 上涨10%,变为11元,总成本上涨12%, 设每100千克成品中,二原料比例A 占x 千克,B 占(100-x )千克,则涨价前每100千克成本为()1510100x x +-,涨价后每100千克成本为()1811100x x +-, 根据题意可列方程:()()()18111001510100112%x x x x +-=+-⨯+⎡⎤⎣⎦,解得1007x =,所以6001007x -=即二者的比例是::1:6A B =,则涨价前每千克的成本为156075777+=(元),销售价为127.57元,利润为7.5元.原料涨价后,每千克成本变为12元,成本的25%为3元,保证利润为7.5元, 则利润率为:()7.512350%÷+=.【答案】50%.模块七:方案决策问题在实际生活中,做一件事情往往会有多种选择,这就需要从几种方案中,选择最佳方案,如网络的使用,到不同旅行社购票等,一般都要运用方程解答,把每一种方案的结果先算出来,进行比较后得出最佳方案.【例26】 某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:=100%⨯投资收益投资收益率实际投资额)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?【解析】(1)设商铺标价为x 万元,则按方案一购买,则获投资收益()120%110%50.7x x x -+⋅⨯=,投资收益率为0.7100%70%x x⨯= 按方案二购买,则获投资收益()()120%0.8510%110%30.62x x x -+⋅⨯-⨯=, 投资收益率为0.62100%72.9%0.85x x⨯≈. 所以投资者选择方案二获得的投资收益率高.(2)由题意得,0.70.625x x -=,解得62.5x =,所以甲投资了62.5万元,乙投资了53.125万元【答案】略【例27】 有一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天王老师到达道口时,发现由于拥挤,每分钟只能有3人通过道口,此时,自己前面还有36个人等待通过,通过道口后,还需7分钟到达学校.(1)若绕道而行,要15分钟到达学校。

相关文档
最新文档