20题--相似三角形的实际应用(中考典型题例)
九年级数学相似三角形典型例题

九年级数学相似三角形典型例题一、利用相似三角形的判定定理证明相似例1:已知:在△ABC和△DEF中,∠A = ∠D = 60°,AB = 4,AC = 8,DE = 2,DF = 4。
求证:△ABC∽△DEF。
解析:1. 我们看相似三角形的判定定理。
对于两个三角形,如果它们的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
2. 在本题中:计算公式,公式。
并且已知∠A = ∠D = 60°。
因为公式且∠A = ∠D,所以根据相似三角形判定定理中的“两边对应成比例且夹角相等的两个三角形相似”,可以得出△ABC∽△DEF。
二、相似三角形性质的应用(求边长)例2:已知△ABC∽△A'B'C',相似比为公式,若AB = 6,则A'B'的长为多少?解析:1. 因为相似三角形对应边成比例。
设A'B' = 公式。
已知相似比公式。
2. 又已知公式,AB = 6,所以公式。
通过交叉相乘可得:公式。
即公式,解得公式,所以A'B'的长为9。
三、利用相似三角形解决实际问题(测量高度)例3:在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,求这棵大树的高度。
解析:1. 因为在同一时刻,太阳光下不同物体的高度和影长成正比。
设大树的高度为公式米。
可以得到两个相似三角形,一个是由小强及其影子构成,另一个是由大树及其影子构成。
2. 根据相似三角形的性质,对应边成比例。
则公式。
交叉相乘可得:公式。
计算得公式,解得公式米。
所以这棵大树的高度是9.6米。
初三相似三角形典型例题

初三相似三角形典型例题哎呀,初三的相似三角形,那可真是让人又爱又恨呐!就说有这么一道题,老师在黑板上画得那叫一个起劲。
题目是这样的:在三角形ABC 中,DE 平行于BC,AD = 3,BD = 2,AE = 4,求CE 的长。
我当时就蒙圈了,这咋整啊?心里直犯嘀咕:“这相似三角形也太难了吧!” 旁边的同桌小明倒是一脸镇定,还偷偷跟我说:“别慌,这题不难。
” 哼,他倒是轻松!老师开始讲解啦,“同学们,你们看,因为DE 平行于BC,所以三角形ADE 和三角形ABC 相似,这能理解吧?” 我心里想:“这能理解啥呀?” 但又不敢说出来。
老师接着说:“那相似三角形对应边成比例,AD 比AB 就等于AE 比AC 呀!” 我还是有点迷糊,就问老师:“老师,那AB 是多少呀?” 老师笑着说:“AB 不就是AD + BD 嘛,就是3 + 2 = 5 呀!” 我这才恍然大悟,“哎呀,我咋没想到呢!”然后我们就可以算出AC 的长是20 / 3 ,那CE 不就是AC - AE 嘛,也就是20 / 3 - 4 = 8 / 3 。
还有一道题也挺有意思的。
有两个三角形,一个三角形的三条边分别是3、4、5,另一个三角形的三条边分别是6、8、10,问这两个三角形是不是相似三角形。
我一开始还在那琢磨,这得怎么算呀?后来一想,这不是很明显嘛!第一个三角形三边之比是3 : 4 : 5,第二个三角形三边之比是6 : 8 : 10,约分一下不就是3 : 4 : 5 嘛!这两个三角形当然相似啦!我当时就特别高兴,心想:“嘿嘿,这道题可难不倒我!”相似三角形的题目有时候就像个迷宫,一不小心就会迷路。
但只要我们找到了关键的线索,就像找到了打开迷宫大门的钥匙,一下子就能走出来啦!我觉得呀,相似三角形虽然有时候让人头疼,但只要多做练习,多思考,就一定能把它拿下!。
初三数学相似三角形经典题(含答案)

相似三角形经典习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,若是2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 以下命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似.(3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,而且点D 、点E 和ABC ∆的一个极点组成的小三角形与ABC ∆相似.尽可能多地画出知足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地址,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,假设5.1=AC m ,小明的眼睛离地面的高度为,请你帮忙小明计算一下楼房的高度(精准到).例8 格点图中的两个三角形是不是是相似三角形,说明理由.例9 依照以下各组条件,判定ABC ∆和C B A '''∆是不是相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A .(2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,以下每一个图形中,存不存在相似的三角形,若是存在,把它们用字母表示出来,并简要说明识别的依照.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长别离为五、1二、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,教师让同窗们到操场上测量旗杆的高度,然后回来交流各自的测量方式.小芳的测量方式是:拿一根高米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为米,如此即可明白旗杆的高.你以为这种测量方式是不是可行?请说明理由.例14.如图,为了估算河的宽度,咱们能够在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确信BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),而且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)若是有一个正方形的边在AB 上,另外两个极点别离在AC ,BC 上,求那个正方形的面积.。
九年级数学相似三角形的应用3

5 b
MH CD
BH BD
MH c
3 a
B
c
H D
c c MH + MH =1 a + b =1 3 5 1 1 1 + = MH= a b c
b 5
BH BH BD 20
1.两根电线杆
(1)现测得两杆相距15米,问身高为1.8米的人能否不弯腰不低 头地通过两钢索交叉点下方? (2)当两杆相距20米时,这个人能否通过? (3)设钢索的交点为M﹐画MH⊥BD于H ,若AB=a,CD=b, MH=c,写出a,b,c之间的关系式. (4)如图,将上题条件改为AB∥CD∥MH ,写出(3)中的 a﹑b﹑c的关系式. (5)连结AC ,延长HM交AC于F ,写出FH与a﹑b的关系式.
C
1.2m
B
2.7m
D
2.测量树高
(1) 小明测得长为1米的竹竿影长为0.9米,同时,小李测 得一棵树的影长为5.4米,请计算小明测量这棵树的高; (2)同时小王在测另一棵树时,发现树影的一部分在地面上, 而另一部分在墙上,他测得地面上的影长为2.7米,留在墙上 部分的影长为1.2米.请计算小王测量的这棵树的高.
A F C
a c
B H
M
b
D
1
a
+
1
b
=
1 c
1.两根电线杆
(1)现测得两杆相距15米,问身高为1.8米的人能否不弯腰不 低头地通过两钢索交叉点下方? (2)当两杆相距20米时,这个人能否通过? (3)设钢索的交点为M﹐画MH⊥BD于H ,若AB=a,CD=b, MH=c,写出a,b,c之间的关系式. (4)如图,将上题条件改为AB∥CD∥MH ,写出(3)中的 a﹑b﹑c的关系式. (5)连结AC ,延长HM交AC于F ,写出FH与a﹑b的关系式.
相似三角形典型例题30道

相似三角形典型例题30道1: 在△ABC中,DE是平行于BC的线段,且AD/DB = 2/3。
求DE/BC的比值。
2: 已知△PQR与△XYZ相似,PQ = 6,XY = 9,求QR 与YZ的比值。
3: 在△ABC中,D、E分别是AB、AC上的点,且DE平行于BC,已知AD = 3,DB = 6,求AE与EC的比值。
4: 已知两个相似三角形的面积比为4:9,求它们对应边的比。
5: 在△XYZ中,MN是平行于XY的线段,且XM = 4,MY = 6,求MN/XY的比值。
6: 在△ABC中,AD是BC的中线,且AE是AB的延长线,若AE与BC相交于点F,求AF与FB的比值。
7: 在△DEF中,GH平行于EF,已知DE = 8,DF = 10,求GH/EF的比值。
8: 在一个相似三角形中,若大三角形的周长是36,小三角形的周长是24,求它们的面积比。
9: 在△JKL中,MN平行于JK,若JM = 3,MK = 5,求MN/JK的比值。
10: 如果两个相似三角形的对应边长分别为5和15,求它们的面积比。
11: 在△ABC中,AD是BC的中线,且DE平行于BC,已知AD = 4,BC = 8,求DE的长度。
12: 已知相似三角形的对应边长比为1:4,求它们的周长比。
13: 在△PQR中,S是PQ的中点,若ST平行于QR,求PS与PQ的比值。
14: 在相似三角形中,若小三角形的每条边长为5,大三角形的对应边长为15,求它们的面积比。
15: 在一个三角形中,若一条边的延长线与另一边的平行线相交,则形成的两小三角形与原三角形相似,求相似比。
16: 在△XYZ中,若XY = 10,XZ = 15,YZ = 12,求△XYZ的周长。
17: 已知△ABC与△DEF相似,若AB = 4,DE = 8,求AC与DF的比值。
18: 在△GHI中,JK平行于GH,若GJ = 5,GH = 20,求JK的长度。
19: 在相似三角形中,若一个三角形的面积是36,另一个三角形的面积是144,求其对应边的比。
相似三角形中考试题汇编含答案

E 图5相似三角形填空题1、(2008XXXX )如图,D E ,两点分别在ABC △的边AB AC ,上,DE 与BC 不平行,当满足条件(写出一个即可)时,ADE ACB △∽△.2、(2008XX 市)如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是.3、 (2008XX 市)如图5,平行四边形ABCD 中,E AE 交BD 于点F ,如果23BE BC =, 那么BFFD=. 4、(2008XX 市)在比例尺为1︰2000的地图上测得AB 两地间的图上距离为5cm ,则AB 两地间的实际距离为m .5、(2008年XX 市)在Rt △ABC 中,∠C 为直角,CD ⊥ABBC=3,AB=5,写出其中的一对相似三角形是 和;并写出它的面积比.6、(2008年XX 省XX 市)已知∠A =40°,则∠A 的余角等于=________度. 7、(08XXXX )如图,点1234A A A A ,,,在射线OA 上,点123B B B ,,在射线OB 上,且112233A B A B A B ∥∥,213243A B A B A B ∥∥.若212A B B △,323A B B △的面积分别为1,4,则图中三个阴影三角形面积之和 为.8、(2008年荆州)两个相似三角形周长的比为2:3,则其对应的面积比为___________.D B(第16题图)1 2 3 4图3 (第12题)A BCE D 9、(2008年庆阳市) 两个相似三角形的面积比S 1:S 2与它们对应高之比h 1:h 2之间的关系为.10、(2008年庆阳市) 如图8,D 、E 分别是ABC △的边AB 、AC 上的点,则使AED △∽ABC △的条件是.11、(2008年•XX 市)如图4,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED=1,BD=4,那么AB=12、(2008年XX 省XX 市)12.如图,在ABC △中,D E ,分别是AB AC,的中点,若5DE ,则BC 的长是.13、(2008年XXXX 市)如图3,要测量A 、B 两点间距离,在O 点打桩,取OA 的中点 C ,OB 的中点D ,测得CD =30米,则AB =______米.14、(2008XX 建设兵团)如图,一束光线从y 轴上点A (0,1)发出,经过x 轴上点C 反射后,经过点B (6,2),则光线从A 点到B 点经过的路线的长度为.(精确到0.01)15、如图,ABC △中,AB AC >,D E ,两点分别在边AC AB ,上,且DE 与BC 不平行.请填上一个..你认为合适的条件:,使ADE ABC △∽△.(不再添加其他的字母和线段;只填一个条件,多填不给分!)16、(2008XX )如图5,若△ABC ∽△DEF ,则∠D 的度数为_____________..17、(2008XX 市)如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是.18、 (2008XX 市)如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果23BE BC =,那么BFFD=. 一、选择题 1、(2008XX 襄樊)如图1,已知AD 与VC 相交于点O,AB//CD,如果∠B=40°, ∠D=30°,则∠AOC 的大小为( )A.60°B.70°C.80°D.120°2、(2008XX 市) 如图,已知D 、E 分别是ABC ∆的AB 、AC 边上的点,,DE BC //且1ADE DBCE S S :=:8,四边形 那么:AE AC 等于( )EAFAB C D O 图1 B A C D EB 第18题图A BC D E F A .1:9 B .1:3 C .1:8 D .1:23、(2008 )如图G 是❒ABC 的重心,直线L 过A 点与BC 平行。
初三数学相似三角形典例及练习题含答案

初三数学相似三角形典例及练习题含答案典例典例1已知三角形ABC中,∠B=90°,AC=6cm,BD垂直AC于D点,BD=3cm,求BC的长度。
解析:根据勾股定理可得:BC^2 = AB^2 + AC^2 = BD^2 + AD^2 + AC^2因为∆ABC与∆ABD相似,所以可以得到:\frac{AD}{AB}=\frac{AB}{AC}即:AD = \frac{AB^2}{AC}将公式代入原式中,得到:BC^2 = BD^2 + \frac{AB^4}{AC^2} + AC^2因为AC=6,BD=3,所以代入可得:BC^2 = 3^2 + \frac{AB^4}{6^2} + 6^2化简得:BC^2 = AB^4 \cdot \frac{1}{36} + 45AB^4 = 36(BC^2 - 45)因此,我们可以得到:AB = \sqrt[4]{36(BC^2 - 45)}典例2已知两个三角形ABC和DEF,且它们相似,已知AC=20cm,EF=12cm,AB=15cm,计算DE的长度。
解析:由于两个三角形相似,所以可以得到:\frac{AB}{DE}=\frac{AC}{EF}将已知条件带入即可得到:\frac{15}{DE}=\frac{20}{12}解得:DE = \frac{36}{4} = 9因此,DE的长度为9cm。
典例3已知三角形ABC和DEF相似,且AB=5cm,DE=2.5cm,BC=6cm,计算EF的长度。
解析:由于两个三角形相似,所以可以得到:\frac{AB}{DE}=\frac{BC}{EF}将已知条件带入即可得到:\frac{5}{2.5}=\frac{6}{EF}解得:EF = 12因此,EF的长度为12cm。
练习题练习题1已知三角形ABC中,∠B=90°,AB=3cm,AC=4cm,D、E、F分别是BC、AC、AB上的点,且∆DEF与∆ABC相似。
初三数学相似三角形典型例题(含答案)

初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。
2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。
3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。
4. 能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。
本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。
相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。
(二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。
把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
2. 比例性质: ①基本性质:a b cdad bc =⇔= ②合比性质:±±a b c d a b b c d d=⇒= ③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()03. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。
则,,,…AB BC DE EF AB AC DE DF BC AC EFDF=== ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
果精确到0.1米)。
相似三角形的实际应用----中考典型题例
【典型例题】周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时, 他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B, 使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆 DE,使得点E与点C、A共线. 已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所 示.请根据相关测量信息,求河宽AB.
相似三角形的实际应用----中考典型题例
【典型例题】周末,小凯和同学带着皮尺,去测量杨大爷家露台遮阳篷的宽度。如图,
小凯在楼前面的地面上选择了一条直线EF,通过在直线EF上选点观测,发现当他位于 N点时,他的视线从M点通过露台D点正好落在遮阳篷A点处;当他位于N'点时,视线 从M'点通过露台D点正好落在遮阳篷B点处。这样观测到的两个点A、B间的距离即为 遮阳篷的宽。已知AB∥CD∥EF,点C在AG上,AG、DE、MN、M'N'均垂直于EF, MN=M'N',露台的宽CD=GE。测得GE=5米,EN=12.3米,NN'=6.2.请你根据以上信 息,求出遮阳篷的宽AB是多少米?(结果精确到0.01米)
相似三角形的实际应用----中考典型题例
【典型例题】某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致 宽度,两人在确保无安全隐患的情况下,现在河岸边选择了一点B(点B与河对岸岸 边上的一棵树的底部点D所确定的直线垂直于河岸). ①小明在B点面向树的方向站好,使视线通过帽檐正好落在树的底部点D处,如图所 示,这时小亮测的小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲 下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过 帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离 CB=1.2米。根据以上测量过程及测量数据,请你求出河宽BD是多少米?
(5)常见类型:利用标杆构造三点共线求现实物理量;利用光的反射定律求
物体的高度;利用影子的长度计算建筑物的高度,同一时刻,物高与影长成
正比,有
身高 影长
=
建 建筑 筑物 物的 的高 影度 长。
相似三角形的实际应用----中考典型题例
【典型例题】一天,数学课外活动小组的同学们,带着
皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来 评估这些坑道对河道的影响,如图是同学们选择(确保测 量过程中无安全隐患)的测量对象,测量方案如下: ①.先测出沙坑坑沿的圆周长34.54米; ②.甲同学直立于沙坑坑沿的圆周所在的平面上,经过适当 调整自己所处的位置,当他位于B时恰好他的视线经过沙 坑坑沿圆周上一点A看到坑底S(甲同学的视线起点C与点A, 点S三点共线),经测量:AB=1.2米,BC=1.6米。根据以
相似三角形的实际应用----中考典型题例
【典型例题】一天晚上,李明和张龙利 用灯光下的影子长来测量一路灯D的高度. 如图,当李明走到点A处时,张龙测得李 明直立向高AM与其影子长AE正好相等; 接着李明沿AC方向继续向前走,走到点 B处时,李明直立时身高BN的影子恰好 是线段AB,并测得AB=1.25m.已知李明 直立时的身高为1.75m,求路灯的高度 CD的长.(精确到0.1m)
相似三角形的实际应ቤተ መጻሕፍቲ ባይዱ----中考典型题例
【典型例题】晚饭后,小聪和小军在社区广场散步,
小聪问小军:“你有多高?”小军一时语塞.小聪思 考片刻,提议用广场照明灯下的影长及地砖长来测量 小军的身高.于是,两人在灯下沿直线NQ移动,如 图,当小聪正好站在广场的A点(距N点5块地砖长) 时,其影长AD恰好为1块地砖长;当小军正好站在广 场的B点(距N点9块地砖长)时,其影长BF恰好为2 块地砖长.已知广场地面由边长为0.8米的正方形地砖 铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ, BE⊥NQ.请你根据以上信息,求出小军身高BE的 长.(结果精确到0.01米)
相似三角形的实际应用
----中考典型题例汇集
相似三角形的实际应用----中考典型题例
【解法简析】
(1)审题:通读题干,结合图形,在图中找出与题干相吻合的已知条件,弄
明白哪些是已知量,哪些是未知量;
(2)将实际问题转化为相似三角形问题;
(3)找出相似三角形;
(4)根据相似三角形的性质,表示出相应的量,并求解。
相似三角形的实际应用----中考典型题例
【典型例题】某市在一道路拓宽改造过程中,发现原来道路两边的路灯除照亮路面的 圆的面积不能满足需要外,亮度效果足以满足拓宽后的设计标准,因此,经设计人员 研究,只要将路灯的灯杆增加一定的高度,使其照亮路面圆的面积为原来的2倍即可。 已知原来路灯灯高为7.5米,请你求出原灯杆至少再增加多少米,才能符合拓宽后的设 计要求?(结果精确到0.1米)
本节课你的收获是什么?
相似三角形的实际应用----中考典型题例
【典型例题】小明想利用太阳光测量楼高.他带着皮尺
来到一栋楼下,发现对面墙上有这栋楼的影子,针对这 种情况,他设计了一种测量方案,具体测量情况如下:
如示意图,小明边移动边观察,发现站到点E处时, 可以使自己落在墙上的影子与这栋楼落在墙上的影子重 叠,且高度恰好相同.此时,测得小明落在墙上的影子 高度CD=1.2m ,CE=0.8m,CA=30m.(点A、E、C在同一 直线上).已知小明的身高EF是1.7m,请你帮小明求出楼 高AB(结果精确到0.1m)