火力发电厂电气部分设计
4×300MW火力发电厂电气部分初步设计

4×300MW火力发电厂电气部分初步设计4×300MW火力发电厂电气部分初步设计摘要随着我国经济发展,对电的需求也越来越大。
电作为我国经济发展最重要的一种能源,主要是可以方便、高效地转换成其它能源形式。
电力工业作为一种先进的生产力,是国民经济发展中最重要的基础能源产业。
而火力发电是电力工业发展中的主力军,截止2022年底,火电发电量达到48405万千瓦,越占总容量77.82%。
由此可见,火力电能在我国这个发展中国家的国民经济中的重要性。
该设计主要从理论上在电气主接线设计、短路电流计算、电气设备的选择、配电装置的布局、防雷设计、发电机、变压器和母线的继电保护等方面做详尽的论述,并与火力发电厂现行运行情况比较,同时,在保证设计可靠性的前提下,还要兼顾经济性和灵活性,通过计算论证火电厂实际设计的合理性与经济性。
采用软件绘制了大量电气图和查阅相关书籍,进一步完善了设计。
近几年随着我国工业的高速发展,我国电力工业超常规发展,每年装机容量超过6000万千瓦,30万千瓦、60万千瓦亚临界火电机组成为我国电网的主力机组,百万千瓦的超超临界火电机组已经在建。
目前,我国30万千瓦、60万千瓦的火力发电机组,70万千瓦的水力发电机组,在国际招标中标成功率大于90%以上。
这几年电力工业之所以能飞速发展,其重要原因是,为中国电力市场提供的火力发电设备主要立足于国内生产。
这一观点得到国内各发电公司以及电厂老总们的认同。
今天电气制造企业的国内用户率已达到75%以上。
火力发电是现在电力发展的主力军,在现在提出和谐社会,循环经济的环境中,我们在提高火电技术的方向上要着重考虑电力对环境的影响,对不可再生能源的影响,虽然现在在我国已有部分核电机组,但火电仍占领电力的大部分市场,近年电力发展滞后经济发展,全国上了许多火电厂,但火电技术必须不断提高发展,才能适应和谐社会的要求。
目前,我国的电力工业已经进入“大电网”、“大机组”、“超高压,交直流输电”、“电网调度自动化”、“状态检修”等新技术发展新阶段,一些世界水平的先进技术,已在我国电力系统得到了广泛的应用。
2×350MW火力发电厂电气部分设计

辽宁工业大学发电厂电气部分课程设计(论文)题目:2×350MW火力发电厂电气部分设计(2)院(系):专业班级:学号:学生姓名:指导教师:起止时间:课程设计(论文)任务及评语院(系):教研室:注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘要电能是经济发展最重要的一种能源,可以方便、高效地转换成其它能源形式。
当今,火力发电在我国乃至全世界范围,其装机容量占总装机容量的70%左右,发电量占总发电量的80%左右。
由此可见,电能在我国这个发展中国家的国民经济中担任着主力军的作用。
设计中将主要从理论上在电气主接线设计,短路电流计算,电气设备的选择,配电装置的布局,防雷设计,发电机、变压器和母线的继电保护等方面做详尽的论述,并与五彩湾发电厂现行运行情况比较,同时,在保证设计安全的前提下,还要兼顾可靠性、经济性和灵活性,通过计算论证该火电厂实际设计的合理性与经济性。
在计算和论证的过程中,结合电气工程手册规范,采用CAD软件绘制了大量电气图,进一步完善了设计。
在我国这个发展中国家的国民经济中担任着主力军的作用的是电能。
由此可见,电能是经济发展最重要的一种能源,可以方便、高效地转换成其它能源形式。
当今,有许多新兴的发电形式如:火力发电、潮汐能、风能、太阳能等的发电形式。
但火力发电是我国乃至全世界范围内最主要的发电形式。
设计中将主要从理论上在电气主接线设计,短路电流计算,电气设备的选择,变压器和电压互感器,电流互感器等方面做详尽的论述,在保证设计安全的前提下,还要兼顾可靠性、经济性和灵活性,通过计算论证该火电厂实际设计的合理性与经济性。
关键词:主接线设计、短路电流、电气设备选择目录第1章绪论 (1)第2章电气主接线的选择 (2)2.1可选方案的确定 (2)2.2可选方案的分析 (3)2.3最优方案的确定 (6)第3章主变压器选择 (7)3.1概述 (7)3.2主变压器的选择 (7)3.2.1 变压器相数的选择 (7)3.2.2 变压器绕组数于结构的选择 (7)3.2.3 变压器绕组联结组号的选择 (8)3.2.4 变压器调压方式的选择 (8)3.2.5 变压器冷却方式的选择 (8)第4章厂用电接线及设计 (9)4.1概述 (9)4.1.1 厂用效率 (9)4.2厂用电接线的设计原则和接线形式 (9)4.2.1 对厂用电接线的要求 (9)4.2.2 厂用电接线的设计原则 (10)4.2.3 厂用电的电压等级 (10)4.2.4 厂用电源及其引接 (10)4.2.5 厂用电接线形式 (12)4.3厂用变压器的选择 (12)4.3.1 额定电压 (12)4.3.2 工作变压器的台数和型号 (13)4.3.3 变压器的阻抗 (13)4.3.4 变压器的容量 (13)第5章短路电流的计算 (14)5.1概述 (14)5.1.1 短路电流计算的一般规定 (14)5.1.2 短路电流计算的目的 (14)5.1.3 短路电流计算的方法 (14)5.2短路电流计算 (14)5.3短路电流计算结果表 (19)第6章电气设备的选择 (19)6.1概述 (19)6.2断路器的选择 (19)6.2.1 断路器的功能 (19)6.2.2 断路器的选择 (20)6.2.3 断路器的校验 (20)6.3隔离开关的选择 (20)6.3.1 隔离开关的主要用途 (20)6.3.2 隔离开关的种类 (20)6.4电流互感器的选择 (21)6.4.1 电流互感器的配置原则 (21)6.4.2 电流互感器的选择 (21)6.5电压互感器的选择 (23)6.5.1 电压互感器的分类 (23)6.5.2 电压互感器的配置原则 (23)6.5.3 电压互感器的选择 (23)第7章课程设计内容总结 (24)参考文献 (25)第1章绪论随着科学技术的进步,越来越多的发电形式相继出现,如:风能、潮汐能、太阳能、核能等。
电力工程设计手册 24 火力发电厂电气一次部分

电力工程设计手册 24 火力发电厂电气一次部分一、概述本手册《电力工程设计手册 24 火力发电厂电气一次部分》是一本详细介绍火力发电厂电气一次部分设计的综合性手册。
本手册旨在为电气设计师提供有关火力发电厂电气一次部分的设计原则、方法、规范和标准,以便他们能够更好地完成火力发电厂电气一次部分的设计工作。
二、设计原则1. 安全性:电气一次部分的设计必须遵循安全原则,确保电厂的安全运行。
2. 经济性:在满足安全性的前提下,应尽可能降低电气一次部分的设计成本。
3. 可靠性:应采用高质量的电气设备,确保电厂电气一次部分的稳定运行。
4. 可维护性:应设计易于维护和检修的电气系统,以降低维护成本。
三、设计内容1. 电源系统:包括电源的选择、电源系统的配置和电源系统的保护。
2. 配电系统:包括配电线路的选择、配电设备的配置和配电系统的保护。
3. 变压器:包括变压器类型、容量、台数的选择,以及变压器的安装位置和保护。
4. 高压开关设备:包括高压开关柜的类型、规格、配置,以及高压开关设备的保护和控制。
5. 低压开关设备:包括低压配电柜的类型、规格、配置,以及低压开关设备的控制和保护。
6. 电缆和母线:包括电缆的选择、敷设方式和母线的配置。
7. 防雷和接地:包括防雷系统的设计、接地系统的配置和接地电阻的测量。
四、设计方法1. 计算和校核:根据火力发电厂的需求和规范,进行电气一次部分的计算和校核,确保设计的合理性和可行性。
2. 图纸和说明:根据设计内容,绘制相应的图纸,并编写相应的设计说明,以确保其他专业人员能够理解设计意图。
3. 设备选型:根据设计要求,选择合适的电气设备,并进行成本效益分析,以确保选择的设备既满足设计要求,又具有经济性。
五、设计规范和标准1.《电力工程设计规范》:这是电气一次部分设计的基本规范,规定了电气一次部分的设计原则、方法、规范和标准。
2.《电气装置安装工程设计规范》:这是电气一次部分设计的具体规范,规定了电气一次部分的具体设计和安装要求。
火力发电厂电气部分设计论文

火力发电厂电气部分设计论文摘要:本文主要探讨火力发电厂电气部分的设计,包括电气主接线设计、发电机与变压器的连接形式选择、发电厂厂用电设计、主变压器、启动/备用变压器和高压厂用变压器的容量计算、台数和型号的选择,以及短路电流计算和部分高压电气设备的选择与校验。
论文旨在通过优化设计,提高发电厂电气系统的可靠性和经济性。
一、引言火力发电厂是电力工业的重要组成部分,其运行效率直接影响到电力供应的安全与稳定。
在火力发电厂的总体设计中,电气部分的设计至关重要。
本文将重点讨论火力发电厂电气部分的设计方案和关键技术问题。
二、火力发电厂电气部分设计的主要内容1.电气主接线设计电气主接线是火力发电厂的重要组成部分,其主要功能是保障电能输送的稳定性和安全性。
在进行主接线设计时,应考虑以下因素:(1)可靠性:应能满足正常运行时的安全可靠供电,并能在事故情况下尽量减少停电时间;(2)灵活性:应能适应各种运行方式,并便于切换操作;(3)经济性:应考虑建设成本和运行维护费用;(4)扩展性:应考虑未来负荷增长的需要,方便进行扩建。
2.发电机与变压器的连接形式选择发电机与变压器的连接形式主要有直接连接和通过断路器连接两种。
直接连接适用于容量较小、电压较低的发电机组,此种方式下发电机与变压器直接相连,结构简单、维护方便。
对于大容量、高电压的发电机组,采用断路器连接更为合适,因为这种方式可以通过断路器实现发电机的快速启动和停机,提高系统的稳定性。
3.发电厂厂用电设计厂用电系统是火力发电厂的重要组成部分,其设计的合理与否直接影响到发电厂的运行效率。
在进行厂用电设计时,应考虑以下因素:(1)供电可靠性:应保证重要负荷的供电不中断或少中断;(2)用电安全性:应保证人身和设备的安全;(3)节能环保:应采取措施降低能耗和减少对环境的影响;(4)可扩展性:应考虑未来发展的需要,方便进行扩建。
4.主变压器、启动/备用变压器和高压厂用变压器的容量计算、台数和型号的选择主变压器是火力发电厂的核心设备,其容量和台数的选择需根据发电厂的总体规划、用电负荷、运行方式等因素综合考虑。
火力发电厂电气部分设计

火力发电厂电气部分设计随着社会经济的发展和人民生活水平的提高,电力需求持续增长,火力发电厂作为重要的能源供应基地,其建设和运营至关重要。
火力发电厂的电气部分设计是整个发电厂的重要组成部分,直接关系到电厂的安全、稳定和高效运行。
本文将深入探讨火力发电厂电气部分设计的关键要素和优化策略。
电气设备选型在火力发电厂中,需要选择合适的电气设备以满足不同的运行需求,包括主变压器、电动机、照明设备等。
选型过程中应考虑设备的可靠性、效率、环保性能及维护成本等方面的因素。
对于主变压器,应重点考虑其容量、阻抗和冷却方式;对于电动机,应考虑其功率、电压、转速等参数;对于照明设备,应考虑其照度、均匀性、能效等指标。
火力发电厂的电路设计应充分考虑各种电气设备的型号、数量、额定电流、电压等参数。
根据这些参数,合理设计母线、开关、保护装置等电路元件。
在电路设计过程中,应注意优化电路布局,减少线路损耗,提高电路的可靠性。
还需考虑电路的散热问题,防止因过热导致设备损坏或火灾事故。
火力发电厂防雷设计的目的是减少自然灾害对电气设备的影响。
设计过程中应充分考虑电厂的建筑结构和设备特点,合理设置接地装置和防雷设备。
对于关键设备,如主变压器、电动机等,应采取多重防雷措施,提高其防雷水平。
同时,应定期检查防雷设施的运行状况,确保其在关键时刻能够发挥作用。
制定严格的安全管理制度是保证火力发电厂电气安全的关键。
应加强对员工的电气安全培训,提高员工的电气安全意识和操作技能。
定期对电气设备进行安全检查和维护,确保其处于良好的工作状态。
同时,应火灾隐患的排查和治理,防止因电气设备故障或人为操作失误导致火灾事故的发生。
以某火力发电厂为例,该电厂的电气部分设计具有一定的特点。
主变压器选用具有高效率、低能耗、低噪音的环保型设备;电动机采用高效电机,以降低能耗;照明设备选择LED灯具,以提高能效。
在电路设计方面,该电厂采用分段母线设计,以提高电路的灵活性和可靠性。
火力发电厂电气一次的部分设计

火力发电厂电气一次的部分设计摘要:在火力发电厂建设阶段,一次设计关系主线电气设备和线路设计的选择,合理设计有助于发电厂的顺利建设。
一次设计包含内容较多,因此需要统筹考虑,才能保证设计的合理性,下文对于火力发电厂的电气一次设计内容展开探讨,以供参考。
关键词:火力发电厂;电气一次;设计引言:社会发展对于电能需求品质和数量日益提升,促使火力发电厂建设进程不断加快.发电厂中电气一次设计,需要人员对于主接线设备和其他设备合理选择,并对中心配电室短路电流、负荷电流合理设计,选择保护装置,利用接地技术,才能保证设计合理性,为电力能源的高质量供应奠定基础。
一、选择主接线设备在发电厂的电气一次设计当中,主接线位置电气设备选择十分重要,可使用架空线路、电缆线路进行引进。
为预防设备受到雷击,导致入侵电波损坏设备,可选择避雷装置,安装在线路入口处。
设计中心配电室,需按照具体情况对于互感器、进(出)线柜、计量柜和避雷器柜合理选择。
运用抽屉柜能够为检修和维护提供更多便利,且无须增设隔离开关。
在进线柜和出线柜的主要开关处,设计断路器,这样设备稳定工作时,能够将负荷电流接通,并且电路存在短路故障时,还可切断此类电流[1]。
二、计算配电室负荷所谓电力负荷也可叫做电力负载,通过负荷值大小能够判断出电力设备功率大小。
在中心配电室的负荷计算过程,合理选择计算方法能够为供电设计顺利进行提供依据。
且负荷计算结果准确性,也关系着设备选择、导线选择合理性与经济性。
通常而言,复合计算应该利用二项是系数和系数法,其中系数法属于国际通用计算方法。
在计算过程,应重点关注无功功率补偿值确认,鉴于火力发电厂内部存在大量的感性负载,诸如电动机和电弧炉等,故此,极易导致设备的功率因数下降。
若功率因数值和实际求不相符,为了将发电设备功能充分发挥,使其保持良好运行状态,并将自然功率因数提升,此时,可借助人工补偿法补偿无功功率。
并对低压侧的无功功率值进行计算,得出补偿功率值。
100MW火力发电厂电气一次部分设计

第三章火力发电厂的主要设备一、发电机发电机是电厂的主要设备之一,它同锅炉和汽轮机称为火力发电厂的三大主机,目前电力系统中的电能几乎都是由同步发电机发出的。
根据电力系统的设计规程,在125MW以下发电机采用发电机中性点不接地方式,本厂选用发电机型号为QFN—100—2及参数如下:型号含义:2-----------------2极100-------额定容量N------------氢内冷F-------------发电机Q------------汽轮机P e =100MW;U e=10.5;I e=6475A;cosϕ=0.85;X d〞=0.183S30=P30/ cosϕ= P e/ cosϕ=100000KV A/0.85=117647.059 KV A二、电力变压器的选择电力变压器是电力系统中配置电能的主要设备。
电力变压器利用电磁感应原理,可以把一种电压等级的交流电能方便的变换成同频率的另一种电压等级的交流电能,经输配电线路将电厂和变电所的变压器连接在一起,构成电力网。
在满足技术要求的前提下,优先采用较低的电厂,以获得较高的经济效益。
由设计规程知:按发电机容量、电压决定高压厂用电压,发电机容量在100~300MW,厂用高压电压宜采用6 KV,因此本厂高压厂用电压等级6 KV。
ⅱ、厂用变压器容量确定由设计任务书中发电机参数可知,高压厂用变压器高压绕组电压为10.5KV,而由ⅰ知,高压厂用变压器低压绕组电压为6 KV,故高压厂用变压器应选双绕组变压器。
ⅲ、厂用负荷容量的计算,由设计规程知:给水泵、循环水泵、射水泵的换算系数为K=1;其它低压动力换算系数为K=0.85;其它高压电机的换算系数为K=0.8。
厂用高压负荷按下式计算:S g=K∑PK——为换算系数或需要系数∑P——电动机计算容量之和S g =3200+1250+100+(180+4752+5502+475×2+826.667+570+210) ×0.8=?KV A低压厂用计算负荷:S d=(750+750)/0.85=? KV A厂用变压器选择原那么:(1)高压厂用工作变压器容量应按高压电动机计算负荷的110℅与低压厂用电计算负荷之和选择,低压厂用工作变压器的容量留有10℅左右的裕度;(2)高压厂用备用变压器或起动变压器应与最大一台〔组〕高压厂用工作变压器的容量相同。
毕业设计600MW火力发电厂电气部分设计

600MW火力发电厂电气部分设计学生指导老师:600MW substation electric one design ofequipmentStudents: Counselor:摘要发电厂是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济。
本文为600MW火力发电厂电气部分设计,通过对任务书上所给系统与线路及我市的50万千瓦电力缺口,并从我市负荷增长方面阐明了建厂的必要性,然后通过对拟建火力发电厂的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济及可靠性方面考虑,确定了35kV,220kV以及厂用电的主接线,然后又通过负荷计算及供电范围确定了主变压器台数,容量及型号,同时也确定了厂用变压器的容量及型号,最后,根据最大持续工作电流及短路计算的计算结果,对高压熔断器,隔离开关,母线,绝缘子和穿墙套管,电压互感器,电流互感器进行了选型,从而完成了600MW火力发电厂电气部分设计。
关键词:火力发电厂变压器主接线AbstractsThis text, according to the parameters of all system , circuit and load given on task book at first, analyse the load development trend. Increase from load respect expound necessity that build a station , then through build generalization of transformer substation and qualify for the next round of competitions direction is it consider to come planning, and through an analysisof load materials, safe, the economy and dependability are considered, confirm 110kV , 35kV , 10kV and is it spend main wiring of cable to stand, calculate and supply power range not to confirm main voltage transformer platform count through load, capacity and type , the capacity and type which use the voltage transformer that confirmed standing at the same time , finally, according to heavy lasting job electric current short out the result of calculation of calculating most, to the high-pressure fuse box , isolate the switch , the bus bar, insulator and wall bushing, voltage mutual inductor, the mutual inductor of electric current has carried on the selecting type, thus finished the electric design of a part of 110kV. Keyword: Transformer substation Voltage transformer Wiring目录摘要 (2)概述 (6)第一章电气主接线 (8)1.135kv电气主接线 (9)1.2220kv电气主接线 (10)1.36kv厂用电气主接线 (12)第二章负荷计算及变压器选择 (15)2.1 负荷计算 (15)2.2 主变台数、容量和型式的确定 (16)2.3 站用变台数、容量和型式的确定 (18)第三章最大持续工作电流及短路电流的计算 (19)3.1 各回路最大持续工作电流 (19)3.2 短路电流计算点的确定和短路电流计算结果 (20)第四章主要电气设备选择 (21)4.1 高压断路器的选择 (23)4.2 隔离开关的选择 (24)4.3 母线的选择 (25)4.4 绝缘子和穿墙套管的选择 (26)4.5 电流互感器的选择 (26)4.6电压互感器的选择 (28)4.7各主要电气设备选择结果一览表 (31)附录I设计计算书 (32)附录II电气主接线图 (39)10kv配电装置配电图 (41)参考文献 (43)概述1、待设计变电所地位及作用按照先行的原则,依据远期负荷发展,决定在本区兴建1中型110kV变电所。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要本次设计主要为火力发电厂电气部分设计,包括了火力发电厂的电气主接线的设计、短路电流的计算和主要电气设备的选型。
根据原始资料分析,主要有 110kV、220kV 两个电压等级。
综合运用电气主接线设计的原则要求并依照实际情况设计出火力发电厂的电气主接线图,共提出两种可行方案:双母线接线、单母线分段接线,对所选方案进行综合分析比较,确定了 110kV 为双母线接线、220kV 为双母线接线。
两电压等级用双绕组变压器和三绕组变压器。
变进行联络的最优方和案,随后又进行了主变压器及厂用高压变压器台数及容量的选择,并利用电力网络等值电抗图,应用运算曲线求各时刻短路点的短路电流, 对全厂高压断路器、隔离开关、电流和电压互感器进行选择,并且对所选的电器进行了热稳与动稳校验。
本设计的基本指导思想及理论来源于大量的相关资料,并通过对比进行了优化配置。
所以,本设计涉及了大量电气工程中的多个方面,可以扩大电力系统中知识领域。
关键词电气主接线、短路电流、设备选型第一章绪论引言发电厂的设计需要考虑诸多复杂的条件因素,本设计是一种简单的整体设计,严格依照设计步骤,即对原始资料分析、主接线方案的拟定与选择、短路电流计算和主要电气选择、绘制电气主接线图、编制工程预算,其中工程预算在本设计中仅作估计处理,不作严格计算,而短路电流的计算是基于变压器,发电机的选择之上且影响到后面电气设备的选择,起着承前启后的作用。
设计工作是工程建设的关键环节,是工程建设的灵魂。
做好设计工作,对工程建设的工期、质量、投资费用和建成投产后的运行安全可靠性和生产的综合经济效益,起着决定性的作用。
它是一门涉及科学、技术、经济和方针政策等各方面的综合性的应用技术科学。
设计工作的基本任务是,在工程建设中贯彻国家的基本建设方针和技术经济政策,做出切合实际、安全适用、技术先进、综合经济效益好的设计,有效地为电力建设服务。
因此做好设计工作对工程的建设的工期、质量、投资费用和建成投产后的运行安全可靠性和生产的综合经济效益,起着决定性的作用。
本设计的目的是使树立工程观点,加强基本理论的理解和工程设计基本技能的训练,了解现代大型发电厂的电能生产过程及其特点,掌握发电厂电气主系统的设计方法,并在分析、计算和解决实际工程能力等方面得到训练,为今后从事电气设计、运行管理和科研工作,奠定必要的理论基础。
本设计是对2×100+2×200MW总装机容量为600MW的凝汽式区域性火电厂进行电气一次部分及其厂用电高压部分的设计,它主要包括了四大部分,分别为电气主接线的选择、短路电流的计算、电气设备的选择、配电装置的选择。
其中详细描述了主接线的选择、短路电流的计算和电气设备的选择,从不同的短路情况进行分析和计算,对不同的短路参数来进行不同种类设备的选择,并对设计进行了理论分析。
1.1原始资料1.1.1 厂址概况厂址位于新建的大型煤矿内,是一个坑口电站,所用燃料又煤矿直接供给。
电厂生产的电能用110kV电压等级8回线向4各较大的负荷供电,其综合最大负荷为200 MW;另外,220kV电压等级有4回与电力系统的联络线。
厂地地质条件较好,地势较为平坦,属于5级地震区,冻土层深1.5米,最大风速20米/秒,年平均气温+5℃,最高气温+38℃,最低气温-20℃。
1.1.2 机组参数锅炉:2×HG----410/100;2×HG----670/140-1汽轮机:2×N100-90;2×N200-130/535发电机:2×TQN-100-2;2×QFQS-200-21.1.3 电力系统接线图1.1.4 负荷资料110kV电压等级综合最大负荷为200 MW第二章发电厂电气主接线方案的确定2.主接线方案的选择2.1主接线设计的基本要求电气主接线是电力系统的主要部分之一,它表明了发电机、变压器、输电线、断路器和隔离开关等电气设备的数量,并指出怎样去连接这些电气设备,并与电力系统相连接,进而完成发电、变电、输电和配电任务。
主接线的确定与电力系统的安全、稳定、灵活和经济地运行,以及对电厂和变电所的电气设备选择、配电装置的布置、继电保护及控制方式的确定都有密切的联系。
由于发电、变电和输配电是同时完成的,所以主接线的设计好坏对发电厂、变电所和负荷的正常运行都有影响。
因此主接线的设计必须满足以下条件:(1)保证必要的供电可靠性和电能质量安全可靠是电力生产的首要任务,保证供电的可靠性和电能质量是对主接线最基本的要求,包括:①应考虑在长期运行中所积累的经验,并在设计中有所遵循。
②各个元件可靠地综合在一起就是主接线地可靠性。
因此,在设计时要同时考虑一次设备和二次设备的故障率及其对供电可靠性的影响。
③评价可靠性时,应具体问题具体分析,不能脱离发电厂在系统中所处的地位。
(2)具有一定的灵活性和方便性。
①主接线应该能适应各种运行状态,并能灵活地进行运行方式的转换,即:②在正常运行时安全可靠地供电。
在系统故障或设备检修及其故障时,也能适应调度的要求,并能灵活、简便、迅速地倒换运行方式,使停电时间最短,影响范围最小。
(3)具有经济性在满足技术要求地前提下,做到经济合理:①投资少:主接线满足简单清晰,节省断路器和隔离开关等一次设备,并使二次设备不过于复杂。
②占地面积小:电气主接线设计时要为配电装置地布置创造条件。
③电能损耗小:经济合理地选择主变压器地形式。
容量和台数,避免多次变压而增加地电能损耗。
(4)具有发展和扩建地可能性随着建设事业地高速发展,往往需要对已投产地发电厂或变电所进行扩建,所以在设计主接线时应留有发展地余地,不仅要考虑最终接线地实现,而且还要兼顾到分期过渡接线地可能和施工的方便。
2.1.1对原始资料的分析该电厂火电厂,其容量为2×100+2×200=600MW,最大机组容量为200MW,即具有中型容量的规模、大型机组的特点。
该厂又为火电厂,在电力系统中将主要承担基荷,从而该厂主接线的设计必须着重考虑其可靠性和灵活性。
该厂在未来电力系统中作用和地位是至关重要的。
从负荷特点及电压等级来看,它具有110kV、220kV两级电压和一级电压负荷。
220 kV与系统又4回线路,呈强联系形式并接受本厂剩余功率;110 kV电压等级出线回路为8回,供给重要负荷。
2.1.2、各电压等级接线形式的拟定根据对原始资料的分析,现将各电压等级可能采用的较佳方案列出。
进而,以优化组合方式,组成最佳可比方案。
(1) 110KV电压等级:出线为8回架空线路,I级负荷,最大输送100MW,为实现不停电检修出线断路器,可采用单母线分段带旁路或双母线接线形式。
(2) 220KV电压等级:出线为4回架空线路,承担一级负荷,最大输送200MW,为使其检修出线断路器时不停电,可采用双母线带旁路或双母线分段带旁路或采用可靠性更高的一台半接线形式,以保证供电的可靠性和灵活性。
两台200MW 发电机组都采用单元接线形式接在220KV电压母线上。
都采用单元接线形式,故接220KV侧母线的发电机的出线端不需接断路器。
2.1.3、主接线方案的拟定拟定两种方案:方案一:220KV侧采用双母带旁路接线,110KV侧采用双母带旁路接线。
方案二:220KV侧采用双母带旁路接线,110KV侧采用单母分段接线。
2.1.4、主接线方案的比较与选择现对这两个方案进行综合比较如表2.1方案项目方案一方案二可靠性1)220KV采用双母带旁路接线,110KV采用双母带旁路接线,可靠性较高1)220KV采用双母带旁路,可靠性高2) 110KV侧采用单母分段,对于出线回路数多带一级负荷来说,可靠性低;灵活性1)各电压级接线方式灵活性都好;2)220KV电压级接线易于扩建。
3)110KV电压级用联络变压器连接,灵活性好1) 220KV电压级接线方式灵活性好2)采用单母线分段接线,进出线不多时有足够多的灵活性经济性1)无论是110KV,220KV设备都比较多,投资较大,经济性差;1)110KV设备相对少,投资较小;2)220KV设备都比较多,投资较大,经济性差,;方案一方案二本设计主要考虑主接线的可靠性和灵活性,经济性只做参考,所以通过比较,现确定第一方案为设计最终方案。
第三章主变压器的选择3.1变压器的选择3.1.1发电机型号的确定根据设计书的要求选用的发电机容量为200MW,选择发出的电压为18KV,所以选择发电机型号为QFS-300-2。
具体参数如表2.2表2.2 所选发电机组的型号与参数发电机型号额定电压(KV)额定功率(MW)额定电流(A)功率因数次暂态电抗(%)效率(%)G-1、G-2 QFS-300-2 18 300 11320 0.8516.7 98.653.1.2 主变及厂用高压变的选择因主接线中采用发电机变压器的单元接线,一般规定厂用高压变的容量为发电机额定容量的10%;而主变的容量是把发电机所能发出的最大功率(扣除厂用负荷外)传递到母线侧,并留有10%的裕度。
1 .主变压器台数的确定确定主变压器台数的因素很多,主要取决于该电厂在系统中的重要性并结合电厂本身的装机台数。
为减少主变压器台数,可考虑采用扩大单元接线。
一般装机一至三台的小型非骨干电厂以确定一台主变压器为宜,装机四台及以上的小型电厂可考虑确定两台主变压器以满足运行的可靠性和灵活性。
2. 主变压器的容量确定1)发电机—变压器单元接线中的主变容量应按发电机额定容量扣除本机组厂用电后,留有 10%的裕度来确定。
主变容量一般按变电所建成后 5~10 年的规划负荷来进行选择,并适当考虑远期 10~20 年的负荷发展。
2)高、中压电网的联络变压器应按两级电网正常与检修状态下可能出现的最大功率交换确定容量,其容量一般不应低于接在两种电压母线上最大一台机组的容量。
3. 变压器型式的选择与计算1)单相变压器的使用条件一般用三相变压器,单相变压器应用于 500KV 及以上的发电厂、变电站中。
2)三绕组普通变压器和三绕组自耦变压器的使用条件使用三绕组变压器比使用两台双绕组变压器经济。
使用自耦变压器不经济,且自耦变压器只能用于高、中压中性点都有效接地的电网,故其只能用于 220KV 及以上的发电厂和变电站。
4主变压器的选择1)与两台200MW 机组相连的主变压器容量和型式一样,其每台的容量:()()MVA P S N N 29.243%6185.0200%110%61cos %110=-⨯⨯=-⨯⨯=φ,选择等级240MVA 的三相双绕组升压变压器,具体型号选择SFP7-240000/220,其参数见表2.3。
2)联络变压器的选择根据联络变压器容量的确定原则可知,联络变压器的总容量为200/0.85=235.29MVA , 选择标准容量为360MVA 的变压器即容量为360MVA 的三相三绕组降压变压器,具体型号选择SFP7-360000/220。