高斯小学奥数五年级上册含答案_逻辑推理二

合集下载

高斯小学奥数五年级上册含答案_整除问题进阶

高斯小学奥数五年级上册含答案_整除问题进阶

第二讲整除问题进阶例题1. 答案:120087详解:能被9和11整除可以看作是能被99整除,可以两位截断求数段和,那么有□2 0 O是99的倍数,只能是99 •两个空中先后要填1和7.例题2. 答案:123483789详解:设这个九位数为1234ab789,两位截断求和1 23 b7 89 160 ba是99 的倍数,只能是198 .所以a=8, b=3.例题3.答案:6详解:利用7的整除特性,口89 59 □30能被7整除,只能填6.例题4.答案:5详解:555555、999999能被13整除,前面依次去掉555555,后面一次去掉999999后仍然是13的倍数.所以只需要满足13|兀帀就可以了.空格中要填5.例题5. 答案:768768详解:形如abcabc一定能被7整除,可以考虑由两个相同的三位数来组成这个六位数,三位数由6、7、8组成.又可知这个六位数一定能被3整除,所以只要保证后三位能被8整除就可以了.答案不唯一.例题6. 答案:20999详解:利用数字谜,从后往前逐位确定.313913 232323239 f39 f 739626269 999 99999999练习1. 答案:6237简答:两位截断后的和是99 .练习2. 答案:12327678简答:两位截断后的和是198.练习3.答案:5712 或5782简答:利用7的整除特性,右2与5的差是7的倍数,空格中可以填1或8.练习4. 答案:0简答:前面依次去掉111111,后面依次去掉333333,最后剩下匚•它是13的倍数, 那么空格中只能填0.作业1.答案:7 的倍数有7315, 58674, 360360; 13 的倍数有325702, 360360简答:牢记7和13的判断方法.作业2.答案:6336简答:这个四位数是99的倍数,两位截断后求和即可.作业3. 答案:2758简答:应用三位截断法,可知和6能被7整除,框中填5满足条件.作业4.答案:9简答:应用三位截断,可知8C 能被7和13整除,即8C 是91的倍数,框中填9 满足条件.作业5.答案:3简答:应用三位截断,可知口3能被7整除,框中填3满足条件.第二讲整除问题进阶厂我只能填在中同、怎样才能保证是11的倍数呢7 /"我翌填在白位和、个位上+怎么填才好呢?墨莫和小高在黑板前玩一个填三位数的游戏.如果填岀的三位数是H的倍数,那么小高就ST, 如果不是11的倍数则墨莫嬴.观察小高和墨英的话,逆冇必胜的策略上次课我们学习了一些比较常用的整除判断方法,如利用末位数字判断、利用数字和判断等•现在我们再来学习一些新的判断方法.一、截断作和六位数L_l2003LJ能冋时被9和11整除.这个六位数是多少?皿U 能被99整除的数的特征:从个位开始每两位一截,得到的所有两位数(最前面的可以是一位【分析】能同时被9和11整除,说明这个六位数能被99整除.想一想,99的整除特性是什么?四位数23 能同时被9和11整除,这个四位数是多少?【分析】这个九位数是99的倍数,说明两位截断以后,各段之和是99的倍数.这个99的倍数可能是多少呢?已知八位数123口口678能被99整除,这个八位数是多少?、截断作差阿呆写了一个两位数59,阿瓜写了一个两位数89,他们让小咼写一个一位数放在59与89之间辩需一金右佶豹kal I PQ估徂仪金右佶貓■台次朮7敕阵洁白•小直官的貓■具虫/卜:【分析】根据能被7整除的数的特征:末三位组成的数与末三位以前的数组成的数之差能被7整除,我们可以由此将问题简化.四位数5^[2能被7整除,那么这个四位数可能是多少?接下来我们处理一些较复杂的问题.25个5 25个9变得简短一些.因为 1001是13的倍数,而555555、999999分别是555、999与1001的乘 积,说明它们都是13的倍数.那我们是不是可以去掉这个 51位数上的一些5和9,并仍然 保证它能被13整除?已知多位数[1L 1 {33L 3能被13整除,那么中间方格内的数字是多少?2010 个 12010 个 3【分析】能被6, 7, 8整除的数有什么特点呢?最难把握的在于这个六位数能被 7整除, 我们应该怎样安排数字才能使得它的前三位与后三位的差能被 7整除呢?题目只要求我们 写出一个满足要求的六位数,所以只需要找出一种特殊情况即可.【分析】在本题中,55L 35^992L39能被13整除.这个数的位数太多,我们可以想办法使它用数字6, 7, 8各两个,要组成能同时被6, 7, 8整除的六位数.请写出一个满足要求的六位数.【分析】我们没有学过能被23整除的数的特征,而且23也不能拆分成两个特殊数的乘积,因此不可能根据整除特征来考虑•我们尝试从整除的定义来入手,这个五位数能被23整除,就是说它能写成23与另一个数的乘积•接下来,大家想到该怎么办了吗?枚举法和尝试法在解决数论问题时经常使用.当看到一个问题很难下手时,不妨先从简单情形出发试一试,也许能找出规律和思路.胡适(学者,诗人,1946〜1948年任北京大学校长),在他的作品《尝试集》的序言中写到:“尝试成功自古无,放翁这话未必是.我今为下一转语,自古成功在尝试”这首诗中第一句为陆游所说,但他所说的尝试只是简单的浅尝辄止,当然不能成功.而最后一句则是胡适对第一句的改编:如果尝试是大胆的,深入的,那么一定能够成功.我们在解决某些数学问题时,需要的正是胡适所说的这种尝试.作业i1. 在7315, 58674, 325702 , 96723 , 360360中,7的倍数有哪些?13的倍数有哪些?2. 四位数33 能同时被9和11整除,这个四位数是多少?3. 四位数2^8能被7整除,那么这个四位数是多少?4. 已知多位数81口154258切2l§8 (2012个258)能同时被7和13整除,方格内的数字是2012 个258多少?5. 已知多位数[1L 1 03L 3能被7整除,那么中间方格内的数字是多少?2011 个1 2011 个3。

高斯小学奥数五年级上册含答案_比较与估算

高斯小学奥数五年级上册含答案_比较与估算

第二十六讲比较与估算- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在前面的章节中,同学们已经对分数的计算有了一定的认识,也学习了很多比较分数大小的方法.今天我们将继续研究一些较复杂的分数比较大小和估算的问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.现有7个数,其中5个是3.14&&、137、11637、3.15&&、373273.如果按照从小到大排列的第三个数是11637,那么位于最中间的数是多少? 「分析」这是一个比较多个数大小关系的推理题,虽然其中有着两个数未知,但是我们还应该先比较已知数之间的大小关系,再利用其他条件来推理出题目的结果.练习1. 有8个数,0.51&&、23、59、0.51&、2447、1325是其中的6个.如果按从小到大的顺序排列时,第4个数是0.51&.那么按从大到小排列时,第4个数是哪一个数?例题2. 在不等式25334<<□的方框中填入一个自然数,使得不等式成立. 「分析」分子相同,分母大的分数小.但分子不一样怎么比较大小呢?练习2 在不等式257<□的方框中填入一个自然数,使得不等式成立.那么方框中最大可以填多少?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - -在算式的估算中,有一种方法比较常用,就是用非常接近的数来替换原来的数,这样可以得到一个和真实答案非常接近的近似值,但一定要注意近似值与真实值之间的误差是否符合题意.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题3.算式33.33333.333⨯计算结果的整数部分是多少?「分析」本题需要计算两个较复杂的数相乘,但是不要求计算出最后结果,只要求出结果的整数部分就可以了.我们可以从以下两个方面考虑:(1)估算结果的大致情况,推出整数部分.(2)计算出准确结果,确定整数部分.那大家想一想应该怎么办?练习3.算式66.66666.666⨯计算结果的整数部分是多少?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -算式的缩放是估算问题中经常用到的方法.缩放的方法有很多.在放缩的时候要注意不可将范围放缩得过大,这样将无法起到放缩本来应该有的作用.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.算式222211121320++++L计算结果的整数部分是多少?「分析」本题显然不能硬算,不然太麻烦.如果能将该算式稍加变形,使它不仅变得好算,还能确定大小范围,那就可以求出它的整数部分是多少了.练习4.算式333320212229++++L计算结果的整数部分是多少?例题5.求出9999999999999999 10100100010000000000++++L的计算结果的整数部分.「分析」同例题4,需要对算式稍作变形,加以放缩来确定大小范围,进而求出整数部分.例题6.(1)两个小数的整数部分分别是4和5,那么这两个小数乘积的整数部分共有多少种可能的取值?(2)将两个小数四舍五入到个位后,所得到的数值分别是7和9.将这两个小数的乘积四舍五入到个位后共有多少种可能的取值?「分析」注意到题目中的两个小数分别有一个连续的取值范围,那么乘积也一定有一个连续的取值范围.等号与不等号的历史一、等号,不等号为了表示等量关系,用“=”表示“相等”,这是大家最熟悉的一个符号了.说来话长,在15、16世纪的数学书中,还用单词代表两个量的相等关系.例如在当时一些公式里,常常写着aequ或aequaliter这种单词,其含义是“相等”的意思.1557年,英国数学家列科尔德,在其论文《智慧的磨刀石》中说:“为了避免枯燥地重复isaequalleto(等于)这个单词,我认真地比较了许多的图形和记号,觉得世界上再也没有比两条平行而又等长的线段,意义更相同了.”于是,列科尔德有创见性地用两条平行且相等的线段“=”表示“相等”,“=”叫做等号.用“=”替换了单词表示相等是数学上的一个进步.由于受当时历史条件的限制,列科尔德发明的等号,并没有马上为大家所采用.历史上也有人用其它符号表示过相等.例如数学家笛卡儿在1637年出版的《几何学》一书中,曾用“∞”表示过“相等”.直到17世纪,德国的数学家莱布尼兹,在各种场合下大力倡导使用“=”,由于他在数学界颇负盛名,等号渐渐被世人所公认.顺便提一下,“≠”是表示“不相等”关系的符号,叫做不等号.“≠”和“=”的意义相反,在数学里也是经常用到的,例如a+1≠a+5.二、大于号,小于号现实世界中的同类量,如长度与长度,时间与时间之间,有相等关系,也有不等关系.我们知道,相等关系可以用“=”表示,不等关系用什么符号来表示呢?为了寻求一套表示“大于”或“小于”的符号,数学家们绞尽了脑汁.1629年,法国数学家日腊尔,在他的《代数教程》中,用象征的符号“ff”表示“大于”,用符号“§”表示“小于”.例如,A大于B记作:“A ff B”,A小于B记作“A§B”.1631年,英国数学家哈里奥特,首先创用符号“>”表示“大于”,“<”表示“小于”,这就是现在通用的大于号和小于号.例如5>3,-2<0,a>b,m<n.与哈里奥特同时代的数学家们也创造了一些表示大小关系的符号.例如,1631年,数学家奥乌列德曾采用“”代表“大于”;用“”代表“小于”.1634年,法国数学家厄里贡在他写的《数学教程》里,引用了很不简便的符号,表示不等关系,例如:a >b用符号“a3|2b”表示;b<a用符号“b2|3a”表示.因为这些不等号书写起来十分繁琐,很快就被淘汰了.只有哈里奥特创用的“>”和“<”一直广为使用.作业1. 下面的分数中,最大的是哪个?311,29,625作业2. 下面三个算式的结果中,最大的是哪个?最小的是哪个?111129A =+,111327B =+,111426C =+.作业3. 算式22221351113151723++++L 的整数部分是多少?作业4. 6.66669.9999⨯的整数部分是多少?作业5. 小高将算式的两个乘数都四舍五入后得到8972⨯=,那么原算式结果的整数部分有多少种可能?第二十六讲 比较与估算例题1. 答案:373273详解:我们把所有的数化为小数后比较:3.14 3.1414=&&L ,13 3.14287=L ,116 3.135137=L ,3.15 3.1515=&&L ,373 3.1355273=L .经比较,有1163713 3.143 3.15372737<<<<&&&&.注意到11637是7个数中从小到大排列的第3个,说明另两个没有写出的数比11637小,为最小的两个数.那么可知7个数中位于中间的数是373273.例题2. 答案:7 详解:通分子,30303045640<<⨯,所以45640>⨯>,只能填7.例题3. 答案:1111 详解:我们发现33.33333比较接近33.3&,而133.3333=&.因此我们可以尝试利用33.3&估算结果,再把小数化成分数计算:1110010010000133.3333333.3333333331111333399⨯≈⨯=⨯==.因此33.3333333.33333⨯计算结果的整数部分是1111.例题4. 答案:1 详解:122221101051112132010⨯>++++>⨯L ,结果介于1~2之间,所以整数部分是1.例题5. 答案:9详解:通过放缩可得:99999999999999999110101010010001000000000010⨯>++++>⨯L ,所以结果介于9到10之间,整数部分是9.例题6. 答案:(1)10;(2)17详解:(1)设两个小数分别为a 和b ,由于两个小数四舍五入到个位后所得到的数值分别是4和5,所以考虑到小数点的情况,可得45a ≤<,56b ≤<.因此,我们得到4520a b ⨯≥⨯=,5630a b ⨯<⨯=.所以两个小数乘积的整数可取20到29之间的任何整数值,一共有10种可能的取值.(2)设两个小数分别为a 和b ,由于两个小数四舍五入到个位后所得到的数值分别是7和9,所以考虑到小数点的情况,可得6.57.5a ≤<,8.59.5b ≤<.因此,我们得到6.58.555.25a b ⨯≥⨯=,9.57.571.25a b ⨯<⨯=.所以两个小数乘积的整数可取55到71之间的任何整数值,一共有17种可能的取值.练习1.答案:0.51&&简答:已知的六个数从小到大的顺序是2447、0.51&、0.51&&、1325、59、23.说明另外两个不知道的数一定是最小的和第二小的,由此可知第四大的数是0.51&&.练习2.答案:17简答:通分子,得1010352<⨯,方框中最大可填17.练习3.答案:4444简答:20066.66666.66666.6664444.43⨯≈⨯=,所以整数部分是4444.练习4.答案:1简答:303333331010 1.529292021222920=⨯<++++<⨯=L.可知整数部分是1.作业1.答案:3 11简答:把分子都变成6.作业2.答案:A,C简答:401129A=⨯,401327B=⨯,401426C=⨯.分子都是40,根据和同近积大,可知A的分母最小,C的分母最大.作业3.答案:36简答:1351136++++=L,2222266 2313152313⨯<+++<⨯L,即122221212313152313<+++<<L.可知原式的整数部分是36.作业4.答案:66简答:原式209.999966.6663≈⨯=.整数部分是66.作业5.答案:18简答:设两个乘数分别为A和B,那么A在7.5与8.5之间,B在8.5与9.5之间.那么它们的乘积在63.75与80.75之间.整数部分可能是63~80,有18种可能.。

高思奥数导引小学五年级含详解答案第02讲:整除

高思奥数导引小学五年级含详解答案第02讲:整除

第2讲:数的整除内容概述:掌握整除的概念和基本性质,掌握能被某些特殊数整除的数的特征。

通过分析整除特征解决数的补填问题,以及多位数的构成问题等。

典型问题:兴趣篇1.下面有9个自然数:14,35,80,152,650,434,4375,9064,24125。

在这些自然数中,请问:(1)有哪些数能被2整除?哪些能被4整除?哪些能被8整除?(2)有哪些数能被5整除?哪些能被25整除?哪些能被125整除?2.有如下9个三位数:452,387,228,975,525,882,715,775,837。

这些数中哪些能被3整除?哪些能被9整除?哪些能同时被2和3整除?3.一个三位数64的十位数字未知。

请分别根据下列要求找出“”中合适的取值:(1)如果要求这个三位数能被3整除,“”可能等于多少?(2)如果要求这个三位数能被4整除,“”可能等于多少?(3)这个三位数有没有可能同时被3和4整除,如果有可能,“”可能等于多少?4.新学年开学了,同学们要改穿新的校服。

雯雯收了9位同学的校服费(每人交的钱一样多)交给老师。

老师给了雯雯一张纸条,上面写着“交来校服费238元”其中有一滴墨水,把方格处的数字污染得看不清了。

牛牛看了看,很快就算出了方格处的数字。

聪明的读者们,你们能算出这个数字是多少吗?5.四位数29能同时被3和5整除,求出所有满足要求的四位数。

6.四位偶数64能被11整除,求出所有满足要求的四位数。

7.多位数323232321n 个能被11整除,满足条件的n 最小是多少?8.一天,王经理去电信营业厅为公司安装一部电话。

服务人员告诉他,目前只有形如“123468”的号码可以申请。

也就是说,在申请号码时,方框内的两个数字可以随意选择,而其余数字不得改动。

王经理打算申请一个能同时被8和11整除的号码。

请问:他申请的号码可能是多少?9.一个各位数字互不相同的四位数能被9整除,把它的个位数字去掉后剩下一个三位数,这个三位数能被4整除。

五年级奥数逻辑推理题讲座及练习答案 (优选.)

五年级奥数逻辑推理题讲座及练习答案 (优选.)

wo最新文件---------------- 仅供参考--------------------已改成-----------word文本--------------------- 方便更改rd五年级奥数集训专题讲座——逻辑推理解答推理问题常用的方法有:排除法、假设法、反证法。

一般可以从以下几方面考虑: 1 、选准突破口,分析时综合几个条件进行判断。

2、根据题中条件,在推理过程中,不断排除不可能的情况,从而得出要求的结论。

3、对可能出现的情况作出假设,然后再根据条件推理,如果得到的结论和条件不矛盾,说明假设是正确的。

4、遇到比较复杂的推理问题,可以借助图表进行分析。

例1:有三个小朋友在谈论谁做的好事多。

冬冬说:“兰兰做的比静静多。

”兰兰说:“冬冬做的比静静多”静静说:“兰兰做的比冬冬少。

”这三位小朋友中,谁做的好事最多?准做的好事最少?【思路导航】我们用“ > ”来表示每个小朋友之间做好事多少的关系。

兰兰>静静冬冬>静静冬冬>兰兰所以,冬冬>兰兰>静静,冬冬做的好事最多,静静做的最少答:冬冬做的最多,静静做的最少。

【疯狂操练】( l )卢刚,丁飞和陈瑜一位是工程师,一位是医生,一位是飞行员。

现在只知道:卢刚和医生不同岁;医生比丁飞年龄小;陈瑜比飞行员年龄大。

请问,谁是工程师,谁是医生,谁是飞行员?解:卢刚和医生不同岁,那么卢刚是工程师或者飞行员。

医生比丁飞年龄小;那么医生只能是卢刚或者陈瑜。

这里可以知道,医生就是陈琦。

(卢刚和陈瑜不同岁;陈瑜比丁飞年龄小)陈琦比飞行员年龄大。

那么飞行员是卢刚,工程师就是丁飞了。

〔 2 )小李、小徐和小张是同学,大学毕业后分别当了教师,数学家和工程师。

小张年龄比工程师大;小李和数学家不同岁;数学家比小徐年龄小。

想一想,谁是教师,谁是数学家,谁是工程师。

解:(1)此题解答的关键在于抓住“小张年龄比工程师大;小李和数学家不同岁;数学家比小徐年龄小”这一条件来推理.①小张年龄比工程师大→小张不是工程师,②②小李和数学家不同岁→小李不是数学家,③③数学家比小徐年龄小→小徐也不是数学家.④由②③→小张是数学家.进一步推出小徐是教师,小李是工程师.解:(2)小张比工程师年龄大,说明小张不是工程师,小李和数学家不同岁,说明小李不是数学家,数学家比小徐年龄小,说明小徐也不是数学家,而小李和小徐都不是数学家,那只有小张是数学家了.然而从小张比工程师年龄大,又比小徐年龄小这两句话可以看出小徐不是工程师,那只有小徐是教师,小李是工程师了.因此,小徐是教师,小张是数学家,小李是工程师.( 3 )江波、刘晓、吴萌三位老师,其中一位教语文,一位教数学,一位教英语。

五年级奥数逻辑推理题讲座及练习答案

五年级奥数逻辑推理题讲座及练习答案

五年级奥数集训专题讲座——逻辑推理解答推理问题常用的方法有:排除法、假设法、反证法。

一般可以从以下几方面考虑:1 、选准突破口,分析时综合几个条件进行判断。

2、根据题中条件,在推理过程中,不断排除不可能的情况,从而得出要求的结论。

3、对可能出现的情况作出假设,然后再根据条件推理,如果得到的结论和条件不矛盾,说明假设是正确的。

4、遇到比较复杂的推理问题,可以借助图表进行分析。

例1:有三个小朋友在谈论谁做的好事多。

冬冬说:“兰兰做的比静静多。

”兰兰说:“冬冬做的比静静多”静静说:“兰兰做的比冬冬少。

”这三位小朋友中,谁做的好事最多?准做的好事最少?【思路导航】我们用“ > ”来表示每个小朋友之间做好事多少的关系。

兰兰>静静冬冬>静静冬冬>兰兰所以,冬冬>兰兰>静静,冬冬做的好事最多,静静做的最少答:冬冬做的最多,静静做的最少。

【疯狂操练】( l )卢刚,丁飞和陈瑜一位是工程师,一位是医生,一位是飞行员。

现在只知道:卢刚和医生不同岁;医生比丁飞年龄小;陈瑜比飞行员年龄大。

请问,谁是工程师,谁是医生,谁是飞行员?解:卢刚和医生不同岁,那么卢刚是工程师或者飞行员。

医生比丁飞年龄小;那么医生只能是卢刚或者陈瑜。

这里可以知道,医生就是陈琦。

(卢刚和陈瑜不同岁;陈瑜比丁飞年龄小)陈琦比飞行员年龄大。

那么飞行员是卢刚,工程师就是丁飞了。

〔 2 )小李、小徐和小张是同学,大学毕业后分别当了教师,数学家和工程师。

小张年龄比工程师大;小李和数学家不同岁;数学家比小徐年龄小。

想一想,谁是教师,谁是数学家,谁是工程师。

解:(1)此题解答的关键在于抓住“小张年龄比工程师大;小李和数学家不同岁;数学家比小徐年龄小”这一条件来推理.①小张年龄比工程师大→小张不是工程师,②②小李和数学家不同岁→小李不是数学家,③③数学家比小徐年龄小→小徐也不是数学家.④由②③→小张是数学家.进一步推出小徐是教师,小李是工程师.解:(2)小张比工程师年龄大,说明小张不是工程师,小李和数学家不同岁,说明小李不是数学家,数学家比小徐年龄小,说明小徐也不是数学家,而小李和小徐都不是数学家,那只有小张是数学家了.然而从小张比工程师年龄大,又比小徐年龄小这两句话可以看出小徐不是工程师,那只有小徐是教师,小李是工程师了.因此,小徐是教师,小张是数学家,小李是工程师.( 3 )江波、刘晓、吴萌三位老师,其中一位教语文,一位教数学,一位教英语。

高斯小学奥数五年级上册含答案_逻辑推理二

高斯小学奥数五年级上册含答案_逻辑推理二

第十三讲逻辑推理二相信学们之前已经接触过一些有趣的逻辑推理题目,其中比较典型的一类题目就是让我们来判断问题的真假.还记得我们用什么方法来判断吗?对了,假设法!假设法就像是测谎仪,用它来测一测,就知道谁说的是真话,谁说的是假话了.除此之外,如果有两个人说的话正好相反,那么我就可以断定其中必然有一个人说的是真话,另一个人说的是假话.我们可以把这个方法称为矛盾分析法.好了,下面就开始我们的推理之旅吧!例题1.3位女神分别说了如下的话.雅典娜(智慧女神):“阿佛洛狄忒不是最美的.”阿佛洛狄忒(爱和美的女神):“赫拉不是最美的.”赫拉(天后):“我是最美的.”只有最美的女神说了真话,请问她是谁?「分析」阿佛洛狄忒和赫拉的话是互相矛盾的,据此可以推理出什么呢?懒懒和笨笨是两只小猪,一只说真话,一只说假话.而且它们一只是公的,一只是母的.懒懒说:“说谎的是母猪.”笨笨说:“说谎的不是母猪.”请问懒懒和笨笨谁是母猪?例题2.艾趣、艾吕和艾游三姐妹参加了去英国的旅行团.回国后,三人向朋友们分享去英国的经历:艾趣:“我们去了爱丁堡,没去湖泊区,但参观了北威尔士.”艾吕:“我们去了爱丁堡,也去了湖泊区,但没有参观北威尔士.”艾游:“我们没有去爱丁堡,但是去了北威尔士.”已知每个人都说了一句谎话,那么她们三人到底去了哪些景区?「分析」如果要用假设法,先根据谁的话来作假设会更简单一些?一位农夫建了一个三角形的鸡窝,三边都是等高的铁丝网.这位农夫在笔记本上做了如下记录:(1)面向仓库那边的铁丝网价钱:10美元;(2)面向水池那边的铁丝网价钱:20美元;(3)面向住宅那边的铁丝网价钱:30美元.而这三个价钱中有一个是错的.又知道每一边铁丝网的价钱都是10美元的倍数,且三边铁丝网的价钱互不相同.那么这位农夫一共花了多少钱买铁丝网?除了真假问题之外,还有一类题目是告诉我们一些条件让我们做出判断或计算,我们可以把这类问题称为条件推理问题.例题3.现在要从六个人中挑选几个去参加数学竞赛,有以下要求:(1)赵甲和钱乙这两人至少去一个;(2)赵甲和李丁不能都去;(3)赵甲、周戊和吴己这三个人中要去两人;(4)钱乙和孙丙要么都去,要么都不去;(5)孙丙和李丁要去一人;(6)如果李丁不去,周戊也不去.应该挑选哪几个人去?「分析」虽然这道题目不是真话假话问题,但是也可以用假设法来解决.根据第几个条件作假设会简单一些?A,B,C,D四名学生猜测自己的数学成绩.A说:“如果我得优,那么B也得优.”B说:“如果我得优,那么C也得优.” C说:“如果我得优,那么D也得优.”结果大家都没说错,但是只有两个人得优.谁得了优?例题4.热火队和雷霆队为了争夺NBA总决赛的冠军,斗得难分难解.在今天晚上的比赛中:(1)两队都没有换过人;(2)除了三名队员外,其他队员得分都互不相同.这三名队员都得了22分,但是不在同一个队中;(3)全场最高个人得分是30分,只有三名队员得分不到20;(4)热火队中,得分最多和得分最少的球员只相差3分;(5)雷霆队每人的得分正好组成一个等差数列.这场比赛谁胜谁负?比分是多少?「分析」因为每个队都没有换过人,所以各队总分都是五个数的和.根据第二个条件和第五个条件可知,雷霆队有一个22分,热火队有两个22分.接下来继续推理就容易了.甲、乙、丙、丁四人一起打牌,每人的姓是赵、钱、孙、李中的一个.他们约好第一把赢的人可以从其他三人手中各拿100元;第二把赢的人可以从其他三人手中各拿200元;第三把赢的人可以从其他三人手中各拿300元;第四把赢的人可以从其他三人手中各拿400元.他们一共玩了4把,每人各赢了一次.又知道:(1)第一把赢的人是孙先生;(2)第二把赢的人是乙;(3)第三把赢的人是钱先生;(4)第四把赢的人是丙;(5)打牌之前李先生的钱最多,打牌后丁的钱最多.那么甲、乙、丙、丁分别姓什么?例5.鹿哼、雷婷、王萍和贺纯正在进行一场精彩的室内网球双打赛,通过下面观众的议论,我们知道以下信息:(1)鹿哼比雷婷年轻;(2)王萍比他的两个对手年龄都大;(3)鹿哼比他的搭档年纪大;(4)鹿哼和雷婷的年龄差距比王萍和贺纯的年龄差距更大.请讲这四位运动员按照年龄大小顺序排列,并且找出鹿哼的搭档是谁.「分析」这道题目与大小顺序有关系,可以先画出四个位置,然后根据题目中的条件把人放到位置上.例题6.桌上放着3红2蓝5个帽子.张三、李四和迟哼站成一排,须老师从桌上拿出3个帽子,分别戴到三个人的头上.排队的人都能看到前面的人头上帽子的颜色,但是看不到自己的(当然也看不到后面的人,但是三个人都知道帽子一共有3红2蓝).这时须老师问队伍最后面的张三是否知道自己帽子的颜色,张三说不知道.须老师又问中间的李四是否知道自己帽子的颜色,李四说不知道.想不到这时候站在最前面的迟哼,竟然非常有把握的说:“老师,我知道我帽子的颜色!”请问,迟哼头上的帽子是什么颜色的,他又是怎么知道的?「分析」张三的回答是不知道.那如果张三的回答是知道,能说明什么呢?第一次数学危机从某种意义上来讲,现代意义下的数学(也就是作为演绎系统的纯粹数学)来源于古希腊的毕达哥拉斯学派。

高斯小学奥数五年级上册含答案_逻辑推理二

高斯小学奥数五年级上册含答案_逻辑推理二

第十三讲逻辑推理二相信学们之前已经接触过一些有趣的逻辑推理题目,其中比较典型的一类题目就是让我们来判断问题的真假.还记得我们用什么方法来判断吗?对了,假设法!假设法就像是测谎仪,用它来测一测,就知道谁说的是真话,谁说的是假话了.除此之外,如果有两个人说的话正好相反,那么我就可以断定其中必然有一个人说的是真话,另一个人说的是假话.我们可以把这个方法称为矛盾分析法.好了,下面就开始我们的推理之旅吧!例题1.3位女神分别说了如下的话.雅典娜(智慧女神):“阿佛洛狄忒不是最美的.”阿佛洛狄忒(爱和美的女神):“赫拉不是最美的.”赫拉(天后):“我是最美的.”只有最美的女神说了真话,请问她是谁?「分析」阿佛洛狄忒和赫拉的话是互相矛盾的,据此可以推理出什么呢?懒懒和笨笨是两只小猪,一只说真话,一只说假话.而且它们一只是公的,一只是母的.懒懒说:“说谎的是母猪.”笨笨说:“说谎的不是母猪.”请问懒懒和笨笨谁是母猪?例题2.艾趣、艾吕和艾游三姐妹参加了去英国的旅行团.回国后,三人向朋友们分享去英国的经历:艾趣:“我们去了爱丁堡,没去湖泊区,但参观了北威尔士.”艾吕:“我们去了爱丁堡,也去了湖泊区,但没有参观北威尔士.”艾游:“我们没有去爱丁堡,但是去了北威尔士.”已知每个人都说了一句谎话,那么她们三人到底去了哪些景区?「分析」如果要用假设法,先根据谁的话来作假设会更简单一些?一位农夫建了一个三角形的鸡窝,三边都是等高的铁丝网.这位农夫在笔记本上做了如下记录:(1)面向仓库那边的铁丝网价钱:10美元;(2)面向水池那边的铁丝网价钱:20美元;(3)面向住宅那边的铁丝网价钱:30美元.而这三个价钱中有一个是错的.又知道每一边铁丝网的价钱都是10美元的倍数,且三边铁丝网的价钱互不相同.那么这位农夫一共花了多少钱买铁丝网?除了真假问题之外,还有一类题目是告诉我们一些条件让我们做出判断或计算,我们可以把这类问题称为条件推理问题.例题3.现在要从六个人中挑选几个去参加数学竞赛,有以下要求:(1)赵甲和钱乙这两人至少去一个;(2)赵甲和李丁不能都去;(3)赵甲、周戊和吴己这三个人中要去两人;(4)钱乙和孙丙要么都去,要么都不去;(5)孙丙和李丁要去一人;(6)如果李丁不去,周戊也不去.应该挑选哪几个人去?「分析」虽然这道题目不是真话假话问题,但是也可以用假设法来解决.根据第几个条件作假设会简单一些?A,B,C,D四名学生猜测自己的数学成绩.A说:“如果我得优,那么B也得优.”B说:“如果我得优,那么C也得优.” C说:“如果我得优,那么D也得优.”结果大家都没说错,但是只有两个人得优.谁得了优?例题4.热火队和雷霆队为了争夺NBA总决赛的冠军,斗得难分难解.在今天晚上的比赛中:(1)两队都没有换过人;(2)除了三名队员外,其他队员得分都互不相同.这三名队员都得了22分,但是不在同一个队中;(3)全场最高个人得分是30分,只有三名队员得分不到20;(4)热火队中,得分最多和得分最少的球员只相差3分;(5)雷霆队每人的得分正好组成一个等差数列.这场比赛谁胜谁负?比分是多少?「分析」因为每个队都没有换过人,所以各队总分都是五个数的和.根据第二个条件和第五个条件可知,雷霆队有一个22分,热火队有两个22分.接下来继续推理就容易了.甲、乙、丙、丁四人一起打牌,每人的姓是赵、钱、孙、李中的一个.他们约好第一把赢的人可以从其他三人手中各拿100元;第二把赢的人可以从其他三人手中各拿200元;第三把赢的人可以从其他三人手中各拿300元;第四把赢的人可以从其他三人手中各拿400元.他们一共玩了4把,每人各赢了一次.又知道:(1)第一把赢的人是孙先生;(2)第二把赢的人是乙;(3)第三把赢的人是钱先生;(4)第四把赢的人是丙;(5)打牌之前李先生的钱最多,打牌后丁的钱最多.那么甲、乙、丙、丁分别姓什么?例5.鹿哼、雷婷、王萍和贺纯正在进行一场精彩的室内网球双打赛,通过下面观众的议论,我们知道以下信息:(1)鹿哼比雷婷年轻;(2)王萍比他的两个对手年龄都大;(3)鹿哼比他的搭档年纪大;(4)鹿哼和雷婷的年龄差距比王萍和贺纯的年龄差距更大.请讲这四位运动员按照年龄大小顺序排列,并且找出鹿哼的搭档是谁.「分析」这道题目与大小顺序有关系,可以先画出四个位置,然后根据题目中的条件把人放到位置上.例题6.桌上放着3红2蓝5个帽子.张三、李四和迟哼站成一排,须老师从桌上拿出3个帽子,分别戴到三个人的头上.排队的人都能看到前面的人头上帽子的颜色,但是看不到自己的(当然也看不到后面的人,但是三个人都知道帽子一共有3红2蓝).这时须老师问队伍最后面的张三是否知道自己帽子的颜色,张三说不知道.须老师又问中间的李四是否知道自己帽子的颜色,李四说不知道.想不到这时候站在最前面的迟哼,竟然非常有把握的说:“老师,我知道我帽子的颜色!”请问,迟哼头上的帽子是什么颜色的,他又是怎么知道的?「分析」张三的回答是不知道.那如果张三的回答是知道,能说明什么呢?第一次数学危机从某种意义上来讲,现代意义下的数学(也就是作为演绎系统的纯粹数学)来源于古希腊的毕达哥拉斯学派。

小学奥数之逻辑推理题(详细解析)

小学奥数之逻辑推理题(详细解析)

小学奥数之逻辑推理题(详细解析)1、有500人聚会,其中至少有一人说假话,这500人里任意两个人总有一个(即总有人)说真话。

说真话的有多少人?说假话的有多少人?分析:任意2个人都有人说真话,说明说假话的必须≤1人,又因为题目说了,至少有一人说假话即说假话的人≥1人,所以满足≤1和人≥1,可见说假话的只能是1人,所以说真话的有500-1=499人。

2、某次考试考完后,A、B、C、D四个同学猜测他们的考试成绩。

A说:“我肯定考得最好”。

-------(1)|B说:“我不会是最差的”。

-------(2)C说:“我没有A考得好,但也不是最差的”。

--------(3)D说:“可能我考得最差。

”-------(4)成绩一公布,只有一人说错了。

请你按照考试分数由高到低排出他们的顺序。

分析:假设法。

假设A是最差的,那么第(1)和(2)都是错的话。

矛盾了。

假设B是最差的,那么第(2)和(4)都是错的话。

矛盾了。

假设C是最差的,那么第(3)和(4)都是错的话。

矛盾了。

、所以证明了D是最差的。

那么第(4)句话是对的。

第(2)句话也是对的,第(1)句话和第(3)句话必须一个对一个错,如果第(1)是对的,那么第(3)一定对,那么四个都是对的话,矛盾了。

所以:第(1)句话是错的,第(3)必须对的。

根据D是最差的,A不是最好的,C是对的,C比A差,所以只有B才是最好的。

所以A 是第二好,C是第三好,D是最差的。

由高到低排列为:B、A、从、D。

3、王涛、李明、江兵三人在一起谈话。

他们当中一位是校长,一位是老师,一位是学生家长。

现在只知道:(1)江兵比家长年龄大。

(2)王涛和老师不同岁。

(3)老师比李明年龄小。

你能确定谁是校长、谁是老师、谁是家长吗?:分析:第(2)和第(3)中,老师不是李明也不是王涛,所以老师是江兵。

因为江兵是老师,所以第(3)句话中证明了:江兵比李明小,结合第(1)句话中“江兵比家长大”,说明“李明”不是家长,是校长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三讲逻辑推理相信学们之前已经接触过一些有趣的逻辑推理题目,其中比较典型的一类题目就是让我们来判断问题的真假.还记得我们用什么方法来判断吗?对了,假设法!假设法就像是测谎仪,用它来测一测,就知道谁说的是真话,谁说的是假话了.除此之外,如果有两个人说的话正好相反,那么我就可以断定其中必然有一个人说的是真话,另一个人说的是假话•我们可以把这个方法称为矛盾分析法.好了,下面就开始我们的推理之旅吧!例题1. 3位女神分别说了如下的话.雅典娜(智慧女神):“阿佛洛狄忒不是最美的•”阿佛洛狄忒(爱和美的女神):“赫拉不是最美的•”赫拉(天后):“我是最美的.”只有最美的女神说了真话,请问她是谁?「分析」阿佛洛狄忒和赫拉的话是互相矛盾的,据此可以推理出什么呢?懒懒和笨笨是两只小猪,一只说真话,一只说假话.而且它们一只是公的,一只是母的.懒懒说:“说谎的是母猪.”笨笨说:“说谎的不是母猪.”请问懒懒和笨笨谁是母猪?例题2.艾趣、艾吕和艾游三姐妹参加了去英国的旅行团.回国后,三人向朋友们分享去英国的经历:艾趣:“我们去了爱丁堡,没去湖泊区,但参观了北威尔士. ”艾吕:“我们去了爱丁堡,也去了湖泊区,但没有参观北威尔士. ”艾游:“我们没有去爱丁堡,但是去了北威尔士. ”已知每个人都说了一句谎话,那么她们三人到底去了哪些景区?「分析」如果要用假设法,先根据谁的话来作假设会更简单一些?一位农夫建了一个三角形的鸡窝,三边都是等高的铁丝网.这位农夫在笔记本上做了如下记录:(1)面向仓库那边的铁丝网价钱:10美元;(2)面向水池那边的铁丝网价钱:20美元;(3)面向住宅那边的铁丝网价钱:30美元.而这三个价钱中有一个是错的.又知道每一边铁丝网的价钱都是10美元的倍数, 且三边铁丝网的价钱互不相同•那么这位农夫一共花了多少钱买铁丝网?除了真假问题之外,还有一类题目是告诉我们一些条件让我们做出判断或计算,我们可以把这类问题称为条件推理问题.例题3.现在要从六个人中挑选几个去参加数学竞赛,有以下要求:(1)赵甲和钱乙这两人至少去一个;(2 )赵甲和李丁不能都去;(3)赵甲、周戊和吴己这三个人中要去两人;(4)钱乙和孙丙要么都去,要么都不去;(5 )孙丙和李丁要去一人;(6)如果李丁不去,周戊也不去.应该挑选哪几个人去?「分析」虽然这道题目不是真话假话问题,但是也可以用假设法来解决. 根据第几个条件作假设会简单一些?A,B,C,D四名学生猜测自己的数学成绩. A说:如果我得优,那么B也得优.B说:如果我得优,那么C也得优.” C说:如果我得优,那么D也得优.”结果大家都没说错,但是只有两个人得优•谁得了优?例题4•热火队和雷霆队为了争夺NBA总决赛的冠军,斗得难分难解•在今天晚上的比赛中:(1)两队都没有换过人;(2)除了三名队员外,其他队员得分都互不相同.这三名队员都得了22分,但是不在同一个队中;(3)全场最高个人得分是30分,只有三名队员得分不到20;(4)热火队中,得分最多和得分最少的球员只相差3分;(5 )雷霆队每人的得分正好组成一个等差数列.这场比赛谁胜谁负?比分是多少?「分析」因为每个队都没有换过人,所以各队总分都是五个数的和. 根据第二个条件和第五个条件可知,雷霆队有一个22分,热火队有两个22分.接下来继续推理就容易了.甲、乙、丙、丁四人一起打牌,每人的姓是赵、钱、孙、李中的一个•他们约好第一把赢的人可以从其他三人手中各拿100元;第二把赢的人可以从其他三人手中各拿200元;第三把赢的人可以从其他三人手中各拿300元;第四把赢的人可以从其他三人手中各拿400元.他们一共玩了4把,每人各赢了一次.又知道:(1)第一把赢的人是孙先生;(2)第二把赢的人是乙;(3)第三把赢的人是钱先生;(4)第四把赢的人是丙;(5)打牌之前李先生的钱最多,打牌后丁的钱最多. 那么甲、乙、丙、丁分别姓什么?例5.鹿哼、雷婷、王萍和贺纯正在进行一场精彩的室内网球双打赛,通过下面观众的议论,我们知道以下信息:(1)鹿哼比雷婷年轻;(2)王萍比他的两个对手年龄都大;(3)鹿哼比他的搭档年纪大;(4)鹿哼和雷婷的年龄差距比王萍和贺纯的年龄差距更大. 请讲这四位运动员按照年龄大小顺序排列,并且找出鹿哼的搭档是谁.「分析」这道题目与大小顺序有关系,可以先画出四个位置,然后根据题目中的条件把人放到位置上.例题6.桌上放着3 红2 蓝5 个帽子.张三、李四和迟哼站成一排,须老师从桌上拿出 3 个帽子,分别戴到三个人的头上.排队的人都能看到前面的人头上帽子的颜色,但是看不到自己的(当然也看不到后面的人,但是三个人都知道帽子一共有3红2 蓝).这时须老师问队伍最后面的张三是否知道自己帽子的颜色,张三说不知道.须老师又问中间的李四是否知道自己帽子的颜色,李四说不知道.想不到这时候站在最前面的迟哼,竟然非常有把握的说:“老师,我知道我帽子的颜色!” 请问,迟哼头上的帽子是什么颜色的,他又是怎么知道的?「分析」张三的回答是不知道.那如果张三的回答是知道,能说明什么呢?第一次数学危机从某种意义上来讲,现代意义下的数学(也就是作为演绎系统的纯粹数学)来源于古希腊的毕达哥拉斯学派。

这个学派兴旺的时期为公元前500 年左右,它是一个唯心主义流派。

他们重视自然及社会中不变因素的研究,把几何、算术、天文学、音乐称为“四艺”,在其中追求宇宙的和谐及规律性。

他们认为“万物皆数”,认为数学的知识是可靠的、准确的,而且可以应用于现实的世界。

数学的知识是由于纯粹的思维而获得,并不需要观察、直觉及日常经验。

毕达哥拉斯的数是指整数,他们在数学上的一项重大发现是证明了勾股定理。

他们知道满足直角三角形三边长的一般公式,但由此也发现了一些直角三角形的三边比不能用整数来表达,也就是勾长或股长与弦长是不可通约的。

这样一来,就否定了毕达哥拉斯学派的信条:宇宙间的一切现象都能归结为整数或整数之比。

不可通约性的发现引起第一次数学危机。

有人说,这种性质是希帕索斯约在公元前400 年发现的,为此,他的同伴把他抛进大海。

不过更有可能是毕达哥拉斯已经知道这种事实,而希帕索斯因泄密而被处死。

不管怎样,这个发现对古希腊的数学观点有极大的冲击。

这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之数却可以由几何量表示出来。

整数的尊崇地位受到挑战,于是几何学开始在希腊数学中占有特殊地位。

同时这也反映出,直觉和经验不一定靠得住,而推理证明才是可靠的。

从此希腊人开始由“自明的”公理出发,经过演绎推理,并由此建立几何学体系,这不能不说是数学思想上一次巨大革命,这也是第一次数学危机的自然产物。

回顾以前的各种数学,无非都是“算”,也就是提供算法。

即使在古希腊,数学也是从实际出发,应用到实际问题中去的。

比如泰勒斯预测日食,利用影子距离计算金字塔高度,测量船只离岸距离等等,都是属于计算技术范围的。

至于埃及、巴比伦、中国、印度等国的数学,并没有经历过这样的危机和革命,所以也就一直停留在“算学”阶段。

而希腊数学则走向了完全不同的道路,形成了欧几里得《几何原本》的公理体系与亚里士多德的逻辑体系。

作业1.甲、乙、丙3人,一个总说谎,一个从不说谎,一个有时说谎.已知牧师从不说谎,骗子总说谎,赌徒有时说谎•有一次谈到他们的职业,甲说:“我不是牧师•”乙说:“我不是骗子•”丙说:“我不是赌徒•”总说谎的人是谁?作业2.在一次猜谜晚会上,甲、乙、丙 3人分别猜中1、2、3条谜语•甲说:“我猜中 2条乙说:“我猜中的最多•”丙说:“我猜中的不是偶数条•”已知他们3人只有 1人说谎,他是谁?作业3.甲、乙、丙、丁在比他们的身高•甲说:“我最高•”乙说:“我不是最矮的丙说:“我没甲高,但还有人比我矮•”丁说:“我最矮•”实际测量的结果表明,只有1人说错了.请将他们按身高次序从高到矮排列出来.张卡片上是什么字,猜得的情况见右图•结 果有一人全猜对了,有一人猜对 2个,有一人全猜错了•全猜错的人是谁?作业5.姐妹俩得了一种怪病:姐姐上午很老实, 一到下午就说假话; 妹妹正好相反,上午说假话,下午说真话.一天家里来了位客人, 分不清一胖一瘦两位小姐谁是姐姐谁是妹 妹,就问:“你们俩谁是姐姐? ”没想到胖瘦两位小姐都说自已是姐姐•他又问:“现在几点了? ”胖小姐说:“快到中午了•”瘦小姐说:“中午已经过了•”姐姐是胖小姐还是瘦小姐? 第十三讲 逻辑推理二例题1. 答案:阿弗洛狄忒详解:假设法.如果雅典娜是最美的,则阿弗洛狄忒说的也是真 话,矛盾;如果赫拉是最美的,则雅典娜说的也是真话,矛盾; 所以只能是阿弗洛狄忒说真话.作业4.从分别写着努、力、学、习 4个字的张卡片中选出3张,然后将这3张卡片有字 的面朝下摆在桌子上•甲、乙、丙分别猜每例题2. 答案:三人去了爱丁堡、湖泊区和北威尔士详解:用假设法,因为艾游只说了两句话,所以依次假设他说的第一句话是谎话、第二句话是谎话即可.例题3. 答案:赵甲、钱乙、孙丙、吴己详解:首先根据第四个条件来假设,如果钱乙和孙丙不去,根据第一个条件,赵甲必须去.根据第二个条件,李丁不能去.那么孙丙和李丁都不去,不满足第五个条件,所以钱乙和孙丙都去了,继续推理就可知去的是赵甲、钱乙、孙丙和吴己.例题4. 答案:110:104,雷霆胜详解:综合条件,可以得到雷霆队得分组成的等差数列的公差只能是4 分,队员分别得分为30、26、22、18、14,而热火队得分为22、22、21、20、19.例题5. 答案:由大到小依次为:雷婷、王萍、鹿哼和贺纯,鹿哼的搭档是贺纯详解:根据第二个条件可知,王萍的年龄可能排第一或者第二,又根据第一个条件,可知鹿哼的年龄一定比王萍小.结合第一个和第三个条件,可知鹿哼排第三,他的搭档是贺纯.再根据第四个条件,可知不可能王萍第一,雷婷第二.例题6. 答案:红色的详解:张三在最后面,不知道自己帽子颜色,说明前面人的帽子不都是蓝色的,否则张三就知道自己戴红帽子了.此时李四听到张三的话,已经知道了这个事实,但仍然不知道自己的帽子,说明第一个人的帽子是红色的.否则李四就知道自己戴的是红帽子了.所以迟哼听了李四的话就知道自己戴的是红帽子.练习1. 答案:笨笨简答:若懒懒说的真话,则母猪说谎,懒懒是公猪,笨笨是母猪;若笨笨说的是真话,则说谎的是公猪,笨笨是母猪,懒懒是公猪.综上所述,懒懒是公猪,笨笨是母猪.练习2. 答案:90美元简答:由于鸡窝是三角形,三角形的三条边满足:两边之和大于第三边.只能是第一个条件是错的,并且只能为40 美元.因此农夫一共花了90 美元.练习3.答案:C和D简答:如果A得优,那么四人都得优,不满足条件,所以A不得优.类似方法可知B 不得优,C、D 都得优.练习4. 答案:分别姓孙、李、赵和钱简答:第一把赢钱的人一共输了600 元,第二把赢钱的人一共输了200 元,第三把赢钱的人一共赢了200 元,第四把赢钱的人一共赢了600元.第四把赢钱的人不姓孙,不姓钱,只能姓赵和李.但是李先生打牌前钱最多,如果他是第四把赢钱的人,打牌后他也会是钱最多的人,这与打牌后丁的钱最多矛盾.所以可知第四把赢钱的人姓赵.类似的也可以推断出第一把赢的人是甲.那么乙只能姓李,钱先生是丁.作业1. 答案:乙简答:只有骗子才会说“我不是骗子作业2. 答案:乙简答:用假设法逐个排除即可.作业3. 答案:乙>甲>丙>丁简答:用假设法即可.作业4. 答案:丙简答:有一个全对,一个全错,这两个人没有相同的结果.一定是乙和丙,那么甲就是猜对两个的.乙是全对的,丙是全错的.作业5.答案:胖小姐简答:分别假设现在是上午和下午,发现不管现在是上午还是下午,姐姐一定是胖小姐.。

相关文档
最新文档