第一章误差与误差理论

合集下载

1.《计算方法》-误差

1.《计算方法》-误差

《计算方法》教案(第一章误差)选用教材:普通高等教育“十一五”国家级规划教材《计算方法引论》(第三版)徐箤薇孙绳武编著主讲老师:刘鸣放2010年3月于河南大学一.基本内容提要1. 误差的来源2. 浮点数、误差、误差限和有效数字3. 相对误差和相对误差限4. 误差的传播5. 在近似计算中需要注意的一些问题二.教学目的和要求1. 熟练掌握绝对误差、绝对误差限、相对误差、相对误差限和有效数字的概念及其相互关系;2. 了解误差的来源以及误差传播的情况,掌握在基本算术运算中误差传播后对运算结果误差限的计算方法和函数求值中的误差估计;3. 理解并掌握几种减少误差避免错误结果应采取的措施,了解选用数值稳定的算法的重要性。

三.教学重点1.绝对误差、绝对误差限、相对误差、相对误差限和有效数字的概念及其相互关系,误差传播,减少误差避免错误结果应采取的措施。

四.教学难点1.误差传播;2. 数值稳定算法的选用。

五.课程类型新知识理论课;六.教学方法结合课堂提问,以讲授为主。

七.教学过程如下:Introduction1.《计算方法》课程介绍计算方法是用数值的方法研究研究科学与工程中的计算问题;它的内容主要包括:近似值的计算和误差估计两个方面;主要工具:计算机;地位:这门课已成为工科各专业,特别是计算机科学与技术、土木工程、机械、数学等专业的必修基础课。

2.发展状况几十年来,计算方法效率的提高是与计算机速度的提高几乎同步地、同比例地前进的。

这里简述一下国家重点基础研究计划项目(简称973项目)“大规模科学计算研究”(1999-2004)的主要内容,可以帮助同学们了解我国科学计算界所关心的问题。

此项目由石钟慈院士等人为首组织,集中了我国计算数学、计算物理、计算力学、计算机、以及材料、环境能源等领域60多名专家,跨学科,跨部门通力合作研究以下几个方面的主要内容:(1)复杂流体的高精度计算,含天气预报数值模拟研究;(2)新材料的物理性质机理多尺度计算研究,含超导、超硬度合金等问题的计算研究;(3)地质油藏模拟与波动问题及其反问题计算研究;(4)基础计算方法的理论创新与发展;(5)大规模计算软件系统的基础理论和实施。

《新概念测量误差理论》第一章

《新概念测量误差理论》第一章

第1章认识测量1.1测量自然界有许许多多的物理量,这些物理量在人类出现之前就已经客观存在。

人类的工业文明恰恰就是给这些物理量赋予数量值开始的。

给物理量赋予数值的过程就是测量。

这里提前说明,测量这个过程是指包括从该物理量的定义开始、所有仪器制造校准以及你当前的测量操作在内的全部过程,是一个全局过程。

一个测量结果的形成是众多测量工作者共同劳动的结果。

这一基本认识是新概念测量理论的哲学基础。

1.2真值人类在科学研究中发现各种物理量之间存在内在联系,于是通过定义把这些量之间的数学关系固定下来,譬如:通过万有引力常数把质量距离和力之间的关系固定下来、功率等于电流乘以电压等。

通过定义各种物理量的单位而使得各种物理量形成完整统一的整体,这就是科学量制体系。

因为物理量的定义已经约定,一个物理量与其定义一致的数量值就是真值(真实值)。

目前,国际计量大会给出的7个SI基本物理量单位是:米:光在真空中(1/299 792 458)s时间间隔内所经过路径的长度。

[第17届国际计量大会(1983)]千克:国际千克原器的质量。

[第1届国际计量大会(1889)和第3届国际计量大会(1901)]秒:铯-133原子基态的两个超精细能级之间跃迁所对应的辐射的9 192 631 770个周期的持续时间。

[第13届国际计量大会(1967),决议1]安培:在真空中,截面积可忽略的两根相距1 m的无限长平行圆直导线内通以等量恒定电流时,若导线间相互作用力在每米长度上为2×10-7 N,则每根导线中的电流为1 A。

[国际计量委员会(1946)决议2。

第9届国际计量大会(1948)批准]开尔文:水三相点热力学温度的1/273.16。

[第13届国际计量大会(1967),决议4] 摩尔:是一系统的物质的量,该系统中所包含的基本单元(原子、分子、离子、电子及其他粒子,或这些粒子的特定组合)数与0.012 kg碳-12的原子数目相等。

[第14届国际计量大会(1971),决议3]坎德拉:是一光源在给定方向上的发光强度,该光源发出频率为540×1012 Hz的单色辐射,且在此方向上的辐射强度为(1/683)W/sr。

《误差理论与数据处理》答案

《误差理论与数据处理》答案

《误差理论与数据处理》第一章 绪论1-1.研究误差的意义是什么?简述误差理论的主要内容.答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。

误差理论的主要内容:误差定义、误差来源及误差分类等。

1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。

系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化; 粗大误差的特点是可取性。

1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。

答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了"还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值.+多少表明大了多少,-多少表示小了多少。

(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少?解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =0.001mm ,测件的真实长度L0=L -△L =50-0.001=49。

999(mm ) 1-7.用二等标准活塞压力计测量某压力得 100。

误差理论第一章绪论

误差理论第一章绪论
9
§1-3 精度
精度:反映测量结果与真值接近程度的量, 精度 反映测量结果与真值接近程度的量,与误差的大小相 反映测量结果与真值接近程度的量 对应。误差小则精度高,误差大则精度低。 对应。误差小则精度高,误差大则精度低。 分为: 分为: 反映测量结果中系统误差的影响程度。 ①准确度:反映测量结果中系统误差的影响程度。 准确度 反映测量结果中系统误差的影响程度 ②精密度:反映测量结果中随机误差的影响程度。 精密度:反映测量结果中随机误差的影响程度。 ③精确度:反映测量结果中系统误差和随机误差综合的影响 精确度: 程度。 程度。 一般可用测量的不确定度(或极限误差)来表示。 一般可用测量的不确定度(或极限误差)来表示。对具体的 测量,精密度高的而准确度不一定高, 测量,精密度高的而准确度不一定高,准确度高的而精密度 也不一定高,但精确度高,则精密度和准确度都高。 也不一定高,但精确度高,则精密度和准确度都高。
第一种方法的相对误差为: v1 50.004 − L1 0.004 = = = 0.008% L1 L1 50
v2 80.006 − L2 0.006 第二种方法的相对误差为: = = = 0.0075% L2 L2 80
可见,尽管第二种方法的绝对误差大,但相对误差却较小, 可见,尽管第二种方法的绝对误差大,但相对误差却较小, 故第二种方法的精度较高。 故第二种方法的精度较高。 引用误差 误差: ③ 引用误差:是一种简化和实用方便的仪器仪表示值的相对 误差,是以某一刻度点的示值误差为分子, 误差,是以某一刻度点的示值误差为分子,以测量范围上限 5 值或全量程为分母,比值即为引用误差。 值或全量程为分母,比值即为引用误差。
测量结果应保留的位数原则是 测量结果应保留的位数原则是:其最末一位数字是不可靠 保留的位数原则 的,而倒数第二位数字应是可靠的,测量误差一般取1~2 而倒数第二位数字应是可靠的,测量误差一般取 位有效数字。 位有效数字。 在比较重要的测量中, 在比较重要的测量中,测量结果和测量误差可比上述原则 再多取一位数字作为参考,如结果 再多取一位数字作为参考,如结果15.214±0.042,倒 ± , 数第一位数为参考数字,倒数第二位为不可靠数字, 数第一位数为参考数字,倒数第二位为不可靠数字,而倒 数第三位是可靠数字。 数第三位是可靠数字。 二、数据舍入规则 ①若舍去部分的数值,大于保留部分的末位的半个单位, 若舍去部分的数值,大于保留部分的末位的半个单位, 则末位加1; 则末位加 ; ②若舍去部分的数值,小于保留部分的末位的半个单位, 若舍去部分的数值,小于保留部分的末位的半个单位, 则末位不变; 则末位不变;

误差ppt第一章

误差ppt第一章

特点与性质
粗大 误差
1.2.2 误差分类
1.系统误差(Systematic Error) 系统误差( 系统误差 ) 定义: 定义:在同一条件下,多次重复测量同一量值时,绝对值 例如: 例如:用天平计量物体质量时,砝码的质量偏差[绝对值和符号保持不
变];用千分表读数时,表盘安装偏心引起的示值误差[按某一确定 规律变化];刻线尺的温度变化引起的示值误差[在条件改变时,按 某一确定规律变化]。 实际估计系统误差常用适当次数的重复测量的算术平均值减去约定真值 来表示,也称为测量器具的偏移 偏畸 偏移或偏畸 偏移 偏畸(Bias)。 由于系统误差具有一定的规律性,因此可以根据其产生原因,采取一定的 技术措施,设法消除或减小;也可以在相同条件下对已知约定真值的标准 器具进行多次重复测量的办法,或者通过多次变化条件下的重复测量的办 法,设法找出其系统误差的规律后,对测量结果进行修正。
1.2.2 误差来源
测量方法误差 由于测量方法的不完善引起的误差,如 采用近似的测量方法、计算公式等原因所 引起的误差,又称为理论误差。
如用均值电压表测量交流电压时,其读数是按 照正弦波的有效值进行刻度,由于计算公式 α = KFU =πU / 2 2 中出现无理数 π 和 2,故 取近似公式 α ≈1.11 ,由此产生的误差即为理论 U 误差。
标准器件误差
设计测量装置 时,由于采用 近似原理所带 来的工作原理 误差 组成设备的 主要零部件 的制造误差 与设备的装 配误差
仪器误差
设备出厂 时校准与 定度所带 来的误差
附件误差
数字式仪 器所特有 的量化误 差
读数分辨 力有限而 造成的读 数误差
1.2.2 误差来源
测量环境误差 指各种环境因素与规定的标准状态不一致而 造成的误差。

误差理论与数据处理总结

误差理论与数据处理总结

误差理论与数据处理总结三、误差分类三、数据运算规则在有效数据后多保留一位参考(安全)数字。

第一章绪论 (1)近似加减运算。

结果应与小数位数最少的数据小数位数按误差的特点和性质,误差可分为系统误差、随机误差(也相同。

称偶然误差)和粗大误差三类。

第一节研究误差的意义 (2)近似乘除运算。

运算以有效位最少的数据位数多取一 (一)系统误差一、研究误差的意义位,结果位数相同。

在相同条件下,多次测量同一量值时,该误差的绝对值和符号保 1、正确认识误差的性质,分析误差产生的原因,以消除或减少(3)近似平方或开方运算。

按乘除运算处理。

持不变,或者在条件改变时,按某一确定规律变化的误差—系统误差。

(4)对数运算。

n位有效数字的数据该用n 位对数表,或误差。

如标准量值不准、一起刻度不准确引起的误差。

2、正确处理测量和实验数据,合理计算所得结果,以便在一定—曲线上拐点A的横坐标—曲线右半部面积重,(n+1)位对数表。

, 系统误差又可按下列分类: ''''''''条件下得到更接近于真值的数据。

(5)三角函数。

角度误差 10.10.01101、按对误差掌握的程度分心B的横坐标 3、正确组织实验过程,合理设计仪器或选用仪器和测量方法,(1)已定系统误差:指误差的绝对值和符号已确定函数值位数 5 6 78 ,—右半部面积的平分线的横坐标。

以便在最经济条件下,得到最理想结果。

(2)未定系统误差:指误差的绝对值和符号未确定,但可的出4、研究误差可促进理论发展。

(如雷莱研究:化学方法、空气误差范围。

第二章误差的基本性质与处理三、算术平均值分离方法。

制氮气时,密度不同,导致后人发现惰性气体。

) 2、按误差出现规律分(1)不变系统误差:(指绝对值和符号一定)相当于以定系统误第一节随机误差第二节误差基本概念 ,,,lLL1、公理:一系列等精度测量,则。

—真值差。

ii00nnn(2)变化系统误差:(指绝对值和符号为变化)相当于未定系统随机误差的代数和 ,,,,,lLlnL,,,,,iii00定义:在相同条件下多次重复测量同一量时,以不可预定的一、误差定义及表示方法误差,但变化规律可知,如线性、周期性等。

误差理论与数据处理课后习题及答案

误差理论与数据处理课后习题及答案

第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。

其测量误差为m μ12±,试比较三种测量方法精度的高低。

相对误差0.01%110111±=±=mm mI μ0.0082%11092±=±=mm mI μ%008.0150123±=±=mmm I μ123I I I <<第三种方法的测量精度最高2-7在立式测长仪上测量某校对量具,重量测量5次,测得数据(单位为mm )为20.0015,20.0016,20.0018,20.0015,20.0011。

若测量值服从正态分布,试以99%的置信概率确定测量结果。

20.001520.001620.001820.001520.00115x ++++=20.0015()mm =0.00025σ==正态分布 p=99%时,t 2.58=lim t δσ=±21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o2.58=± 0.0003()mm =±测量结果:lim (20.00150.0003)x X x mm δ=+=±2-12某时某地由气压表得到的读数(单位为Pa )为102523.85,102391.30,102257.97,102124.65,101991.33,101858.01,101724.69,101591.36,其权各为1,3,5,7,8,6,4,2,试求加权算术平均值及其标准差。

第一章数值计算中的误差

第一章数值计算中的误差

用 x ± ε 表示一个近似值,这在实际计算中很不方便。当在实际运算中遇到的数的位数 很多时,如π , e 等,常常采用四舍五入的原则得到近似值,为此引进有效数字的概念。
定义 3:当近似值 x* 的误差限是其某一位上的半个单位时,我们就称其“准确”到这一位,
xn n!
&1+
x
+
x2 2!
+"+
xn n!
近似代替
ex
,这时的截断误差为
Rn
(x)
=
eξ (n +1)!
x n +1
,
ξ 介于 0 与 x 之间。
这种误差就是截断误差。
sin x = x − x3 + x5 − ...... , 用近似计算公式 sin x ≈ x - x3 + x5 截断误差估计
实际问题→数学模型→计算方法→程序设计→上机计算 由实际问题应用有关科学知识和数学理论建立数学模型这一过程,通常作为应用数学的 任务。而根据数学模型提出求解的计算方法直到编出程序上机算出结果,进而对计算结果进 行分析,这一过程则是计算数学的任务,也是数值计算方法的研究对象。 数值计算方法(也称数值分析或计算方法)是计算数学的一个主要部分,它是一门把数 学理论与计算机紧密结合起来进行研究的实用性很强的学科。它主要研究用计算机求解各种 数学问题的数值方法及其相关理论。
的绝对误差限为 0.0005
显然,误差限 ε(x)总是正数,且
ε (x) = x − x* ≤η
(1.3.3)

x * −η ≤ x ≤ x * +η
这个不等式,在应用上常常采用如下写法
x = x * ±η
(1.3.4) (1.3.5)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.1 观测误差与测量平差的任务
1.1.1 测量误差来源 1.1.2 观测误差的分类 1.1.3 测量平差的任务
学习的目的和要求: 明确测量误差产生的来源 掌握偶然误差的定义、特性 掌握系统误差的定义、特性、消除或减弱的措施 粗差的定义、特性、消除的措施
学习的重点和难点: 误差的分类;系统误差消除减弱的措施;发现粗差 的方法
内容概要
• 第一章 • 第二章 • 第三章 • 第四章 • 第五章 • 第六章 • 第七章
观测误差与测量平差的任务 条件平差 间接平差 平差综合模型 误差椭圆 统计假设检验在测量平差中的应用 近代平差概述
第一章 误差与误差理论
• 1.1 观测误差与测量平差的任务 • 1.2 偶然误差的统计性质 • 1.3 衡量精度的指标 • 1.4 协方差传播率 • 1.5 权与定权的常用方法 • 1.6 协因数与协因数传播率 • 1.7 由真误差计算中误差及实际应用 • 1.8 系统误差的传播 • 1.9 参数估计与最小二乘估计
实例: ——经纬仪测角误差是安平、照准、读数、外界条件变化等 所引起的误差的综合。而其中每一项误差都很小,没有那一 项占主导地位,误差的大小和符号具有随机性。
偶然误差是无法使用消除系统误差的方法来消除的。
测量平差研究的主要对象:
——偶然误差,即总是假定含粗差的观测 值已被剔除,含系统误差的观测值已经过适 当改正。
误差理论与测量平差
主 编: 夏春林 副 主 编: 钱建国、张恒憬 参 编: 李伟东、文 晔 编写高校: 辽宁工程技术大学
吉林建筑大学 大连理工大学城市学院
前言
为什么要学习误差理论与测量平差这门课程?
①这门课程是测绘工程、摄影测量与遥感、地理信 息系统等专业的一门专业理论基础课。
②误差理论与测量平差是测绘数据处理和成果质量 控制的理论基础,在地理信息、遥感等领域有着越 来越突出的地位。
L
L2
n,1 M
Ln
~
L1
L
n
~
L1
L1
~ L2
L2
n,1
M
~
Ln
M
Ln
L% - L
偶然误差的特性
例1:在相同的条件下独立观测了358个三角形的全部内角,计算各内 角和的真误差,并按误差区间的间隔0.2秒进行统计列表如下:
1.1.3 测量平差的任务
• 第一项:对带有偶然误差的观测值进行处 理,消除观测结果之间的不符值,得到观 测量的最可靠结果。——通过数据处理求 未知量的最优估值。
• 第二项:评定观测值及其函数值的最可靠 结果的精度,也就是考核测量成果的质量 。——评定最优估值的精度。
1.2 偶然误差的统计性质
概念:
误差 区间
0.00~0.20 0.20~0.40 0.40~0.60 0.60~0.80 0.80~1.00 1.00~1.20 1.20~1.40 1.40~1.60
>1.60

个数K 45 40 33 23 17 13 6 4 0 181
-△ 频率K/n 0.126 0.112 0.092 0.064 0.047 0.036 0.017 0.011
因此,在观测误差中,仅含偶然误差或是偶 然误差占主导地位。
(3) 粗差
概念:粗差就是粗大误差,是观测过程中的错误造成的。
产生原因: ——主要由于测量人员的技术水平不高,工作态度不端正造成
的,如:控制点起始数据输入错误,数据记错,读错等。
发现、剔除粗差: ——在观测中必须避免出现粗差:
①进行必要的重复观测,即多余观测; ②采用必要而又严格的检核、验算方式; ③遵守国家测绘管理机构制定的各类测量规范和细则,一 般也能起到防范粗差的作用。
1.1.1 测量误差来源
测量数据中为什么存在不可避免的误差?
观测条件包含:
测量仪器
观测者
外界条件
每种仪器总是具 有一定限度的准 确度
感官的局限性、 温度、湿度、大 工作水平、工作 气折光、折射等 态度
观测条件的好坏 与 观测成果的质量密切相关。
换言之: 1.观测条件好则观测成果质量高; 2.观测条件差则观测成果的质量就差; 3.相同观测条件下观测的成果质量相同。
在观测方法和观测程序上采取必要的措施,限制 或削弱系统误差的影响;
在平差计算前进行必要的预处理,即利用已有公 式对观测值进行系统误差改正;
将系统误差当作未知参数纳入平差函数模型中, 一并解算。
(2) 偶然误差
概念: 在相同的观测条件下作一系列的观测,如果误差在大小
和符号上都表现出偶然性,即从单个误差看,该列误差的大 小和符号没有规律性,但就大量误差的总体而言,具有一定 的统计规律,这种误差称为偶然误差。
真值:任何一个被观测量,客观上总是存在着 一个能代表其真正大小的数值。这一数值就称
为该观测量的真值。习惯上用 L%来表示。
真误差(偶然误差):真值与观测值之差,记为: 真误差 = 真值 – 观测值
i L%i - Li
用向量表示:若进行n次观测,观测值:L1, L2, ……,Ln;可表示为:
L1
③误差理论与测量平差的奠基人之一陶本藻教授曾 说过“在测绘领域,还未发现不懂误差理论与测量 平差成为院士和大家的”。
• 在测量工作中,观测的未知量一般是角度、距离 和高差等。
• 任何未知量,通常观测值不会等于真值,因为观 测中不可避免地存在误差。
• • 测量平差就是以包含误差的观测数据为研究对象
,利用所含误差的自身规律,采取一定的数学手 段消除或减弱其影响,从而得到未知量的最优估 值(也称为最或然值)。
实例: ① 钢尺的长度和标称长度不一致时,而使所测的距离产生误
差; ② 水准仪的视准轴与水准轴不平行造成的i角影响等; ③ 三角高程测量中,大气折光造成的误差从目前的研究成果
来看,也将其视为系统误差; ④ GPS接收机的时钟误差。最初的GPS伪距定位方程中并没有
接收机钟差改正数。
系统误差消除或减弱的方法:
1.1.2 观测误差的分类
根据误差对测量结果影响的性质,可以分为
三类:
1.系统误差(Δs) 2.偶然误差(Δ)
3.粗差(Δg) 可以表示为:
s g
(1)系统误差
概念: 在相同的观测条件下作一系列的观测,如果误差在大小、 符号上表现出系统性,或者在观测过程中按一定的规律变 化,或者为某一常数,那么,这种误差称为系统误差。
相关文档
最新文档