数学分析简明教程答案09

合集下载

数值分析简明教程课后习题答案(第二版)

数值分析简明教程课后习题答案(第二版)

0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。

【解】 由于210)(-+=x e x f x,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

数值分析习题第九章答案

数值分析习题第九章答案

数值分析习题第九章答案数值分析习题第九章答案第一节:引言数值分析是一门研究数值计算方法和算法的学科,广泛应用于科学、工程和金融等领域。

在数值分析的学习过程中,习题是非常重要的一部分,通过解答习题可以加深对理论知识的理解,并提高解决实际问题的能力。

本文将重点讨论数值分析习题第九章的答案,希望能为读者解决一些困惑。

第二节:习题一习题一要求计算给定函数的导数。

根据数值分析中的导数近似计算方法,我们可以使用中心差分公式来估计导数的值。

中心差分公式的表达式为:f'(x) ≈ (f(x+h) - f(x-h)) / (2h)其中,h为步长,通常取一个较小的值。

根据这个公式,我们可以计算出给定函数在特定点的导数值。

第三节:习题二习题二要求求解给定的非线性方程。

非线性方程的求解是数值分析中的重要问题之一。

常用的求解方法包括二分法、牛顿法、割线法等。

这些方法都是通过迭代来逼近方程的解。

例如,牛顿法是通过迭代的方式逼近方程的根。

具体步骤如下:1. 选择初始近似解x0;2. 根据方程的导数计算出切线的斜率;3. 计算切线与x轴的交点,得到新的近似解x1;4. 重复步骤2和步骤3,直到满足收敛条件为止。

通过牛顿法或其他求解方法,我们可以得到给定非线性方程的近似解。

第四节:习题三习题三要求求解给定的线性方程组。

线性方程组的求解是数值分析中的基本问题之一。

常用的求解方法包括高斯消元法、LU分解法、迭代法等。

例如,高斯消元法是通过逐步消元的方式将线性方程组转化为上三角形式,然后通过回代求解出未知数的值。

LU分解法是将系数矩阵分解为一个下三角矩阵L和一个上三角矩阵U,然后通过前代和回代求解出未知数的值。

通过这些求解方法,我们可以得到给定线性方程组的解。

第五节:习题四习题四要求求解给定的插值问题。

插值是数值分析中的重要问题之一,常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。

例如,拉格朗日插值法是通过构造一个满足给定条件的多项式来逼近原函数。

数学分析简明教程第二版第二篇课后答案

数学分析简明教程第二版第二篇课后答案

第二章 函数§1 函数概念1.证明下列不等式: (1) y x y x -≥-;(2) n n x x x x x x +++≤+++ 2121;(3) )(2121n n x x x x x x x x +++-≥++++ . 证明(1)由 y y x y y x x +-≤+-=)(,得到y x y x -≤-,在该式中用x 与y 互换,得到 x y x y -≤-,即y x y x --≥-,由此即得,y x y x -≥-.(2)当2,1=n 时,不等式分别为212111,x x x x x x +≤+≤,显然成立. 假设当k n =时,不等式成立,即 k k x x x x x x +++≤+++ 2121,则当1+=k n 时,有121121121121121)()(+++++++++=++++≤++++≤++++=++++k k k k k k k k k k x x x x x x x x x x x x x x x x x x x x有数学归纳法原理,原不等式成立.(3)n n n x x x x x x x x x x x x +++-≥++++=++++ 212121)( )(21n x x x x +++-≥ . 2.求证bb aa ba b a +++≤+++111.证明 由不等式 b a b a +≤+,两边加上)(b a b a ++后分别提取公因式得,)1()()1(b a b a b a b a +++≤+++,即bb aa ba b ba a ba b a ba b a +++≤+++++=+++≤+++111111.3.求证22),max(ba b a b a -++=; 22),min(ba b a b a --+=. 证明 若b a ≥,则由于b a b a -=-,故有22),max(b a b a a b a -++==,22),min(b a b a b b a --+==, 若b a <,则由于)(b a b a --=-,故亦有22),max(b a b a b b a -++==,22),min(ba b a a b a --+==, 因此两等式均成立.4.已知三角形的两条边分别为a 和b ,它们之间的夹角为θ,试求此三角形的面积)(θs ,并求其定义域.解 θθsin 21)(ab s =,定义域为开区间),0(π. 5.在半径为r 的球内嵌入一内接圆柱,试将圆柱的体积表为其高的函数,并求此函数的定义域.解 设内接圆柱高为x ,则地面半径为422x r r -=',因而体积)4(222x r x x r V -='=ππ,定义域为开区间)2,0(r .6.某公共汽车路线全长为km 20,票价规定如下:乘坐km 5以下(包括km 5)者收费1元;超过km 5但在km 15以下(包括km 15)者收费2元;其余收费2元5角. 试将票价表为路程的函数,并作出函数的图形.解 设路程为x ,票价为y ,则⎪⎩⎪⎨⎧≤<≤<≤<=.2015,5.2,155,2,50,1x x x y函数图形见右图.7.一脉冲发生器产生一个三角波.若记它随时间t 的变化规律为)(t f ,且三个角分别有对应关系0)0(=f ,20)10(=f ,0)20(=f ,求)200()(≤≤t t f ,并作出函数的图形.解 ⎩⎨⎧≤<-≤≤=.2010,240,100,2)(t t t t t f函数图形如右图所示.8.判别下列函数的奇偶性:(1)12)(24-+=x x x f ; (2)x x x f sin )(+=; (3)22)(x e x x f -=;(4))1lg()(2x x x f ++=.解(1)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有)(121)(2)()(2424x f x x x x x f =-+=--+-=-,即得12)(24-+=x x x f 是偶函数. (2)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有)()sin (sin )sin()()(x f x x x x x x x f -=+-=--=-+-=-,因此,x x x f sin )(+=是奇函数.(3)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有)()()(222)(2x f e x e x x f x x ==-=----,即22)(x e x x f -=是偶函数.(4)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有,)()1lg(11lg)1lg())(1lg()(2222x f x x x x x x x x x f -=++-=++=++-=-++-=-因此,)1lg()(2x x x f ++=是奇函数.9.判别下列函数是否是周期函数,若是,试求其周期: (1)2cos )(x x f =; (2)3sin 22cos )(x x x f +=; (3)x x f 4cos )(π=;(4)x x f tan )(=.解(1)不是.若为周期函数,设周期为T ,则R x ∈∀,有)()(x f T x f =+,即22cos )cos(x T x =+,移项并使用三角公式化简得,0)2sin()2sin(222=+++T Tx T Tx x ,由R x ∈的任意性知道这是不可能的,故2cos )(x x f =不是周期函数.(2)是.周期为ππ4212=和ππ6312=的最小公倍数π12. (3)是.周期是842=ππ.(4)定义域是使0tan ≥x 的一切x 的取值,即},2{)(Z k k x k x f D ∈+<≤=πππ,由于)(f D x ∈∀,必有)(f D x ∈+π,且)(tan )tan()(x f x x x f ==+=+ππ,因此x x f tan )(=是周期函数,周期为π.10.证明21)(xxx f +=在),(∞+-∞有界. 证明 实际上,),(∞+-∞∈∀x ,都有21112111)(2222=++⋅≤+=+=xx x x x x x f , 由定义,21)(xxx f +=在),(∞+-∞有界. 11.用肯定语气叙述函数无界,并证明21)(x x f =在)1,0(无界. 解 叙述:若X x M M ∈∃>∀,0,使得M x f M >)(,则称函数)(x f 在X 无界.0>∀M ,要使M x x f >=21)(,只须Mx 1<,取)1,0(11∈+=M x M ,则有M M x x f MM >+==11)(2,所以21)(x x f =在)1,0(无界. 12.试证两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,一个奇函数和一个偶函数的乘积是奇函数.证明 设)(,)(x g x f 是定义于X 偶函数,)(,)(x x h ϕ是定义于X 奇函数.则由于以下事实)()()()(x g x f x g x f =--,)()()]()][([)()(x x h x x h x x h ϕϕϕ=--=--, )()()]()[()()(x h x f x h x f x h x f -=-=--,知两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,一个奇函数和一个偶函数的乘积是奇函数.13.设)(x f 为定义在),(∞+-∞内的任何函数,证明)(x f 可分解成奇函数和偶函数之和.证明 由于)(x f 的定义域为),(∞+-∞,故)(,),(x f x -∞+-∞∈∀有意义. 令2)()()(x f x f x g -+=,2)()()(x f x f x h --=,则)(x g 是偶函数,)(x h 是奇函数,且有)()()(x h x g x f +=.14.用肯定语气叙述:在),(∞+-∞上 (1) )(x f 不是奇函数; (2) )(x f 不是单调上升函数; (3) )(x f 无零点; (4) )(x f 无上界.解 (1)),(0∞+-∞∈∃x ,使得)()(00x f x f -≠-,则)(x f 在),(∞+-∞不是奇函数;(2)),(,21∞+-∞∈∃x x ,虽然21x x <,但)()(21x f x f >,则)(x f 在),(∞+-∞不是单调上升函数;(3)),(∞+-∞∈∀x ,均有0)(≠x f ,则)(x f 在),(∞+-∞无零点;(4)),(,),(∞+-∞∈∃∞+-∞∈∀b x b ,使得b x f b >)(,则)(x f 在),(∞+-∞无上界.§2 复合函数与反函数1.设xxx f +-=11)(,求证x x f f =))((. 证明 ()x f 定义域为1-≠x 的一切实数,因此1-≠∀x ,有()()()()x xx x x xx x x x x x f x f x f f =+-++++-+=+-++--=+-=11111111111111.2.求下列函数的反函数及其定义域: (1) +∞<<⎪⎭⎫⎝⎛+=x x x y 1,121; (2) ()+∞<<∞--=-x e e y x x,21; (3) ⎪⎩⎪⎨⎧+∞<<≤≤<<∞-=.x x x x x y x 4,2,41,,1,2解(1)变形为0122=+-yx x ,解得12-+=y y x ,由于()+∞∈∀=⋅⋅≥⎪⎭⎫ ⎝⎛+=,1,11221121x xx x x y 成立,因此函数⎪⎭⎫ ⎝⎛+=x x y 121,+∞<<x 1的反函数为()∞+∈-+=,1,12x x x y .(2)变形得,0122=--xxye e,解出1244222++=++=y y y y e x,即()1ln 2++=y y x ,因此原来函数的反函数为()∞+∞-∈++=,,)1ln(2x x x y .(3)当1<<∞-x 时,1,<<∞-=y y x ,当41≤≤x 时,161,≤≤=y y x ,而当+∞<<x 4时,16,log 2>=y y x .所以反函数为⎪⎩⎪⎨⎧+∞<<≤≤<<∞-=.x x x x x x y 16,log ,161,,1,2定义域为()+∞∞-,.3.设()x f ,()x g 为实轴上的单调函数,求证))((x g f 也是实轴上的单调函数. 证明 设()x f ,()x g 为实轴上的单调增函数,即()2,1,,=+∞∞-∈∀i x i ,且,21x x < 有()()()()2121,x g x g x f x f ≤≤,因此))(())((21x g f x g f ≤,即))((x g f 也是单调增函数.同理可证:当()x f ,()x g 为实轴上的单调减函数时,))((x g f 也是单调增函数;当()x f 为增函数,而()x g 为减函数或()x f 为减函数,而()x g 为增函数时,))((x g f 均为减函数.因此,()x f ,()x g 为实轴上的单调函数时,))((x g f 也是实轴上的单调函数. 4.设()⎩⎨⎧>≤--=.0,,0,1x x x x x f ()⎩⎨⎧>-≤=.0,,0,2x x x x x g , 求复合函数))((x g f ,))((x f g .解 有复合函数的定义,立即可得⎩⎨⎧>-≤--=,0,1,0,1))((2x x x x x g f ()⎪⎩⎪⎨⎧>-≤≤----<<∞-+-=.0,,01,1,1,1))((22x x x x x x x f g5.设21)(xx x f +=,求))((x f f f n次.解 2222221111)(1)())((xx x xx xx f x f x f f +=+++=+=,归纳法假设21))((kx xx f f f k +=次, 则有222)1(111)1()))((())((kx x kx xkx xf x f f f f x f f f k k +++=+==+ 次次2)1(1xk x ++=,依归纳法原理,知21))((nxx x f f f n +=次.6.设x x x f --+=11)(,试求))((x f f f n次.解 ⎪⎩⎪⎨⎧>≤≤--<-=1,2,11,2,1,2)(x x x x x f , ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤--<-=21,2,2121,4,21,2))((x x x x x f f ,归纳法假设 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-<-=----111121,2,2121,2,21,2))((k k k kk k x x x x x f f f 次,则当1+=k n 时,有⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-<-==++,21,2,2121,2,21,2)))((())((1)1(kk k k k k k x x x x x f f f f x f f f 次次 所以,⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-<-=----.次111121,2,2121,2,21,2))((n n n n n n x x x x x f f f 7.设x x f -=11)(,求))((x f f ,)))(((x f f f ,))(1(x f f . 解 x x f -=11)(定义域1≠x 的一切实数,)(11))((x f x f f -=要求1)(≠x f 且1≠x ,因此xxxx f x f f -=--=-=11111)(11))((,0≠x 且1≠x ; ))((11)))(((x f f x f f f -=要求1))((≠x f f 且0≠x ,1≠x ,因此x xx x f f x f f f =--=-=111))((11)))(((,21≠x ,0≠x 且1≠x ; )(111))(1(x f x f f -=要求1≠x 且1)(1≠x f ,因此 xx x f x f f 1)1(11)(111))(1(=--=-=,0≠x 且1≠x .§3 初等函数1.对下列函数分别讨论函数的定义域和值域,奇偶性,周期性,有界性,并作出函数的图形:(1) x y =;(2) ][x x y -=;(3) x y tan =; (4) )2(x x y -=;(5) x y 2sin =;(6) x x y cos sin +=.解(1)定义域),(∞+-∞=D ,值域),0[)(∞+=X f ,是偶函数,无界非周期函数; (2)定义域),(∞+-∞=D ,值域)1,0[)(=X f ,既非奇函数也非偶函数,是周期为1的有界周期函数;(1)题图 (2)题图(3)定义域),(∞+-∞=D ,值域),()(∞+-∞=X f ,是偶函数,无界非周期函数; (4)定义域]2,0[=D ,值域]1,0[)(=X f ,既非奇函数也非偶函数,是有界非周期函数;(3)题图 (4)题图(5)定义域),(∞+-∞=D ,值域]1,0[)(=X f ,是偶函数,是周期为π的有界周期函数;(6)定义域),(∞+-∞=D ,是偶函数.由于x x x x x y 2sin 1cos sin 2cos sin 222+=++=,所以212≤≤y ,并注意到0≥y ,得到函数的值域]2,1[)(=X f ,因而是有界函数.因为)(cos sin sin cos )2cos()2sin()2(x y x x x x x x x y =+=-+=+++=+πππ,所以函数x x y cos sin +=是周期为2π的周期函数.2.若已知函数)(x f y =的图形,作函数)(1x f y =,)(2x f y -=,)(3x f y --=的图形,并说明321,,y y y 的图形与y 的图形的关系.解 由于⎩⎨⎧<-≥==0)(,)(,0)(,)()(1x f x f x f x f x f y ,故其图形是将函数)(x f y =的图形在x轴上方部分的不动,在x 轴下方的部分绕x 轴旋转180后即得;)(2x f y -=的图形是将函数)(x f y =的图形绕y 轴旋转 180后得到的;)(3x f y --=的图形是将函数)(x f y =的图形在坐标平面内绕坐标原点旋转 180后得到的.3.若已知函数)(x f ,)(x g 的图形,试作函数])()()()([21x g x f x g x f y -±+=的图形,并说明y 的图形与)(x f 、)(x g 图形的关系.解 由于)}(),(max{)()(,)(,)()(,)(])()()()([21x g x f x g x f x g x g x f x f x g x f x g x f =⎩⎨⎧<≥=-++,)}(),(min{)()(,)(,)()(,)(])()()()([21x g x f x g x f x f x g x f x g x g x f x g x f =⎩⎨⎧<≥=--+, 因而极易由函数)(x f ,)(x g 的图形作出两函数])()()()([21x g x f x g x f y -±+=的图形,也知其关系.4. 作出下列函数的图形:(1) x x y sin =;(2) xy 1sin=. 解 图形如下.(1)题图 (2)题图5.符号函数⎪⎩⎪⎨⎧<-=>==,0,1,0,0,0,1sgn x x x x y试分别作出x sgn ,)2sgn(x ,)2sgn(-x 的图形.解x sgn )2sgn(x)2sgn(-x6.作出下列函数的图形: (1) x y cos sgn =;(2) ⎥⎦⎤⎢⎣⎡-=22][x x y .解(1)(2)数学分析续论A 卷复习资料一. 计算题1. 求函数3311(,)f x y x y y x=+在点(0,0)处的二次极限与二重极限. 解: 333311(,)sinf x y x y x y y x ==,因此二重极限为0. 因为33011x x y y x →+与33011y x y y x→+均不存在,故二次极限均不存在。

数学分析简明教程答案

数学分析简明教程答案

第二十一章曲线积分与曲面积分§1 第一型曲线积分与曲面积分1.对照定积分的基本性质写出第一型曲线积分和第一型曲面积分的类似性质。

解:第一型曲线积分的性质:1(线性性)设⎰L ds z y x f ),,(,⎰L ds z y x g ),,(存在,21,k k 是实常数,则[]ds z y x g k z y x f kL ⎰+),,(),,(21存在,且[]ds z y x g k z y x f k L⎰+),,(),,(21⎰⎰+=LLds z y x g kds z y x f k ),,(),,(21;2l ds L=⎰1,其中l 为曲线L 的长度;3(可加性)设L 由1L 与2L 衔接而成,且1L 与2L 只有一个公共点,则⎰Lds z y x f ),,(存在⇔⎰1),,(Lds z y x f 与⎰2),,(L ds z y x f 均存在,且=⎰Lds z y x f ),,(⎰1),,(L ds z y x f +⎰2),,(L ds z y x f ;4(单调性)若⎰L ds z y x f ),,(与⎰L ds z y x g ),,(均存在,且在L 上的每一点p 都有),()(p g p f ≤则⎰⎰≤L L ds p g ds p f )()(;5若⎰L ds p f )(存在,则⎰L ds p f )(亦存在,且≤⎰ds p f L)(⎰Ldsp f )(6(中值定理)设L 是光滑曲线,)(p f 在L 上连续,则存在L p ∈0,使得l p f ds p f L)()(0=⎰,l 是L 的长度;第一型曲面积分的性质: 设S 是光滑曲面,⎰⎰S ds p f )(,⎰⎰S ds p g )(均存在,则有1(线性性)设21,k k 是实常数,则[]⎰⎰+Sds p g k p f k)()(21存在, 且[]⎰⎰+Sds p g k p f k )()(21⎰⎰⎰⎰+=SSds p g k ds p f k )()(21;2s ds S=⎰1, 其中s 为S 的面积;3(可加性)若S 由1S ,2S 组成21S S S =,且1S ,2S 除边界外不相交,则⎰⎰Sds p f )(存在⇔⎰⎰1)(S ds p f 与⎰⎰2)(S ds p f 均存在,且⎰⎰Sds p f )(=⎰⎰1)(S ds p f +⎰⎰2)(S ds p f4 (单调性)若在S 上的的每一点p 均有),()(p g p f ≤则⎰⎰⎰⎰≤SSds p g ds p f )()(;5⎰⎰S ds p f )(也存在,且≤⎰⎰Sdsp f )(⎰⎰Sds p f )(;6 (中值定理)若)(p f 在S 上连续,则存在S p ∈0,使得使得s p f ds p f S⎰⎰=)()(0,其中s 为S 的面积。

《数学分析简明》尹小玲 第9章答案

《数学分析简明》尹小玲  第9章答案

第九章 再论实数系§1 实数连续性的等价描述2.利用紧致性定理证明单调有界数列必有极限.证明 设数列}{n x 单调递增且有上界,则}{n x 是有界数列,由紧致性定理知数列}{n x 必有收敛子数列}{k n x ,设c x k n k =∞→lim ,则由}{n x 单调递增知c 必为数列}{n x 的上界,且根据数列极限的定义知,,0K ∃>∀ε当K k >时,有ε<-c x k n ,即εε+<<-c x c k n ,特别地 ε->+c x K n 1,取1+=k n N ,则当1+=>k n N n 时,由数列}{n x 单调递增且c 为它的上界知εε+<≤≤<-+c c x x c n n K 1,即ε<-c x n ,从而c x n n =∞→lim ,即单调递增有上界数列必有极限.同理可证}{n x 单调递减有下界时必有极限,因而单调有界原理成立.3.用区间套定理证明单调有界数列必有极限.证明 不妨假设数列}{n x 单调递增有上界(}{n x 单调递减有下界可同理证明),即存在R b ∈,使得b x x x a n ≤≤≤≤≤= 21,下证数列}{n x 有极限.若b a =,则}{n x 为常驻列,故}{n x 收敛,因而以下假设b a <. 取b b a a ==11,,二等分区间],[11b a ,分点为211b a +,若211b a +仍为}{n x 的上界,则令2,11212b a b a a +==;若211b a +不是}{n x 的上界,即存在m ,使211b a x m +>,则令12112,2b b b a a =+=. 二等分区间],[22b a ,分点为222b a +,若222b a +为}{n x 的上界,则令2,22323b a b a a +==;若222b a +不是}{n x 的上界,则令 .,223223b b b a a =+= 依此类推得一闭区间套{}],[n n b a ,每一个区间的右端点都是}{n x 的上界,由闭区间套定理知存在唯一的R c ∈,使得c 属于所有闭区间,下证数列}{n x 的极限为c .由于02lim)(lim 1=-=--∞→∞→n n n n n ab a b ,故根据数列极限的定义,0>∀ε,存在N ,当N n >时,都有2ε<-n n a b ,而],[n n b a c ∈,故),(],[εε+-⊂c c b a n n . (*)另一方面,由闭区间套的构造知K ∃,使得n K n b x a ≤≤,故对K n >∀,由于K n x x >,故n n K n b x x a ≤≤≤. 而由(*)知εε+<<-c x c n ,即ε<-c x n ,从而c x n n =∞→lim ,因而单调有界数列必有极限.4.试分析区间套定理的条件:若将闭区间列改为开区间列,结果怎样?若将条件⊃⊃],[],[2211b a b a 去掉或将条件0→-n n a b 去掉,结果怎样?试举例说明.分析(1)若将闭区间列改为开区间列,结果不真.如开区间列⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛n 1,0满足001lim =⎪⎭⎫ ⎝⎛-∞→n n 且 ⊃⎥⎦⎤⎢⎣⎡⊃⊃⎥⎦⎤⎢⎣⎡⊃⎥⎦⎤⎢⎣⎡⊃⎥⎦⎤⎢⎣⎡n 1,031,021,011,0,但不存在r ,使r 属于所有区间.(2)若将定理其它条件不变,去掉条件 ⊃⊃],[],[2211b a b a ,则定理仍不成立,如⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+n n n 1,是闭区间列,且0→-n n a b ,但显然不存在r ,使r 属于所有区间. (3)若去掉定理条件0→-n n a b ,则定理仍不成立,如闭区间序列⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+-n n 13,11满足 ⊃⊃],[],[2211b a b a ,此时区间]3,1[内任意一点都属于闭区间序列的任何区间,与唯一性矛盾.5.若}{n x 无界,且非无穷大量,则必存在两个子列∞→k n x ,a x k m →(a 为有限数). 证明 由于}{n x 无界,故N k ∈∀,都存在k n x ,使得k x k n >,因而∞=∞→k n k x lim .又由于}{n x 不是无穷大量,根据无穷大量否定的正面陈述知0M ∃,对0>∀K ,存在K m k >,使得0||M x k m <. 从而对于0>∀K ,数列}{k m x 为有界数列,从而必有收敛子列}{k m x .故结论成立.6.有界数列}{n x 若不收敛,则必存在两个子列b x a x k k m n →→,)(b a ≠.证明 由于}{n x 为有界数列,由紧致性定理知数列}{n x 必有收敛的子列}{k n x ,不妨设)(∞→→k a x k n ,又因为数列}{n x 不收敛于a ,故从}{n x 中去掉}{k n x 后所得的项还有无穷多项(否则数列}{n x 就收敛于a ).记其为数列}{k n x ,又因为}{k n x 为有界数列,故有收敛子列,设此子列的极限为b ,则b a ≠,而此子列也是}{n x 的子列,故设其为}{k m x ,因而)(lim b a b x k m k ≠=∞→.7.求证:数列}{n a 有界的充要条件是,}{n a 的任何子数列}{k n a 都有收敛的子数列. 证明 必要性:由紧致性定理知结论成立.充分性:反设数列}{n a 无界.若}{n a 是无穷大量,则}{n a 的任何子列都不存在收敛的子列,矛盾;若}{n a 不是无穷大量,则由第5题知}{n a 有一子列}{k n a 是无穷大量,从而}{k n a 没有收敛的子数列,也矛盾.因而数列}{n a 有界.8.设)(x f 在],[b a 上定义,且在每一点处函数的极限存在,求证:)(x f 在],[b a 上有界.证明 对],[b a t ∈∀,由于)(x f 在t 处的极限存在,故设A x f tx =→)(lim ,则对01>=ε,存在0>t δ,x ∀,当t t x δ<-<||0时,有1)(=<-εA x f ,从而1||)(+<A x f ,取{}1||),(max +=A t f M ,则),(t t t t x δδ--∈∀,都有M x f <)(,即)(x f 在区间),(t t t t δδ--上有界.对所有],[b a t ∈,在1=ε下所取的t δ为半径的开区间{}],[|),(b a t t t t t ∈+-δδ构成闭区间],[b a 上的一个开覆盖,由有限覆盖定理知,存在],[,,,21b a t t t n ∈ ,使得),(],[1i i t i t i ni t t b a δδ+-⊂= ,而)(x f 在每个区间),(i i t i t i t t δδ+-),,2,1(n i =上有界,又由于区间个数有限,故)(x f 在],[b a 上有界.9.设)(x f 在],[b a 无界,求证:存在],[b a c ∈,对任意0>δ,函数)(x f 在],[),(b a c c δδ+-上无界.证明 反设结论不真,即],[b a c ∈∀,0>∃c δ,函数)(x f 在],[),(b a c c c c δδ+-上有界,则对所有的c ,{}],[|),(b a c c c c c ∈+-δδ构成区间],[b a 的一个开覆盖,由有限覆盖定理知其有有限子覆盖,即],[,,,21b a c c c n ∈∃ ,使),(],[1i i c i c i ni c c b a δδ+-⊂= ,由于函数在每一个],[),(b a c c i i c i c i δδ+-有界,而n 是有限数,故)(x f 在],[b a 有界,矛盾.因此结论成立.10.设)(x f 是),(b a 上的凸函数,且有上界,求证:)(lim ),(lim x f x f bx ax -+→→存在. 证明 由于)(x f 在),(b a 上有上界,故0>∃M ,对M x f b a x ≤∈∀)(),,(.先证明)(lim x f bx -→存在. 在区间),(b a 中任取一点0x ,并令 00)()()(x x x f x f x g --=,则由)(x f 是),(b a 上的凸函数知)(x g 在),(0b x 上递增,在),(0b x 中任取一点1x ,考察区间),(1b x ,),(1b x x ∈∀,由于1000)()()()(x x x f M x x x f x f x g --≤--=, 即)(x g 在),(1b x 上有上界,从而)(x g 在),(1b x 上单调递增且有上界,由定理3.12知)(lim x g b x -→存在,不妨令A x g bx =-→)(lim ,则 )()()()()()(lim )(lim 000000x f x b A x f x x x f x f x x x f b x b x +-=⎥⎦⎤⎢⎣⎡+--⋅-=--→→, 即)(lim x f bx -→存在. 再证明)(lim x f ax +→存在. 由于)(x f 是),(b a 上的凸函数,从而)(x g 在),(0x a 上递增,在),(0x a 中任取一点2x ,考察区间),(2x a ,),(2x a x ∈∀,由于ax Mx f x x x f x f x x x f x f x g --≥--=--=000000)()()()()()(, 即)(x g 在),(2x a 上有下界,从而)(x g 在),(2x a 上单调递增且有下界,由定理3.12的推论知)(lim x g ax +→存在,设B x g ax =+→)(lim ,则)()()()()()(lim )(lim 000000x f B x a x f x x x f x f x x x f a x a x +-=⎥⎦⎤⎢⎣⎡+--⋅-=++→→, 即)(lim x f ax +→也存在. 11.设)(x f 在],[b a 上只有第一类间断点,定义)0()0()(--+=x f x f x ω.求证:任意εωε≥>)(,0x 的点x 只有有限多个.证明 反证法,使用区间套定理. 根据结论,反设存在00>ε,在],[b a 上使0)(εω≥x 的点有无限多个.记],[],[11b a b a =,二等分区间],[11b a ,则在⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+111111,2,2,b b a b a a 中至少有一个区间含有无限多个x 使0)(εω≥x ,记此区间为],[22b a ,再二等分区间],[22b a ,在⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+222222,2,2,b b a b a a 中至少有一个区间含有无限多个x 使0)(εω≥x ,记此区间为 ],,[33b a ,如此继续下去,得闭区间套],[n n b a ,且每个区间],[n n b a 中含有无限多个x 使0)(εω≥x .由区间套定理可知存在唯一 ,2,1],,[=∈n b a r n n由于)(x f 在],[b a 上只有第一类间断点,而],[b a r ∈,故)0(+r f 和)0(-r f 存在,设B r f A r f =-=+)0(,)0(,则对上述00>ε,存在),(,011δδ+∈∀>r r x 时,有2)(0ε<-A x f ,即2)(2εε+<<-A x f A ,从而由极限不等式知,当),(1δ+∈r r x 时,0)(εω<x ;同理存在),(,022r r x δδ-∈∀>时,0)(εω<x .取{}21,min δδδ=,则在),(δδ+-r r 上满足0)(εω≥x 的点至多只能有r 一个点.而根据区间套性质知,N n N >∀∃,时,都有),(],[δδ+-⊂r r b a n n ,从而在],[n n b a 中最多只能有一个点,使得0)(εω≥x ,这与区间套的构造矛盾.故原结论成立.12.设)(x f 在],0[+∞上连续且有界,对),(+∞-∞∈∀a ,a x f =)(在),0[+∞上只有有限个根或无根,求证:)(lim x f x +∞→存在.证明 由)(x f 在],0[+∞上有界知)(x f 在],0[+∞上既有上界又有下界,不妨设上界为v ,下界为u ,若v u =,则v u x f x ==+∞→)(lim ,结论必然成立,故以下假定v u <.令],[],[11v u v u =,二等分区间],[11v u ,分点为211v u +,由于2)(11v u x f +=在),0[+∞上只有有限个根或无根,而且)(x f 连续,因而11,0X x X >∀>∃时,有2)(11v u x f +>或2)(11v u x f +<.若2)(11v u x f +>,令⎥⎦⎤⎢⎣⎡+=11122,2],[v v u v u ,若2)(11v u x f +<,则令⎥⎦⎤⎢⎣⎡+=2,],[11122v u u v u ,因此1X x >∀时,],[)(22v u x f ∈,即22)(v x f u ≤≤.二等分区间],[22v u ,分点为222v u +,由于2)(22v u x f +=在),0[+∞上只有有限个根或无根且)(x f 连续,故212,X x X X >∀>∃时,有2)(22v u x f +>或2)(22v u x f +<.若2)(22v u x f +>,令⎥⎦⎤⎢⎣⎡+=22233,2],[v v u v u ,反之令⎥⎦⎤⎢⎣⎡+=2,],[22233v u u v u ,因此2X x >∀时,],[)(33v u x f ∈,即33)(v x f u ≤≤. 依此类推,得一区间套]},{[n n v u ,而且由区间套的构造知,n n n X x X X >∀>∃-,1时,n n v x f u ≤≤)(.由区间套定理知存在唯一的 ,2,1],,[=∈n v u r n n ,下证r x f x =+∞→)(lim .事实上,对0>∀ε,由闭区间套]},{[n n v u 的构造知,存在N ,N n >∀时,有),(],[εε+-⊂r r v u n n ,特别地取1+=N n ,则),(],[11εε+-⊂++r r v u N N ,按区间套的构造知11,++>∀∃N N X x X 时,),(],[)(11εε+-⊂∈++r r v u x f N N ,即εε+<<-r x f r )(,从而ε<-r x f )(,即r x f x =+∞→)(lim ,也就是说)(lim x f x +∞→存在.§3 实数的完备性1.设)(x f 在),(b a 连续,求证:)(x f 在),(b a 一致连续的充要条件是)(lim x f ax +→与)(lim x f b x -→都存在.证明 )⇒必要性由)(x f 在),(b a 一致连续知,0,0>∃>∀δε,),(,b a x x ∈'''∀且δ<''-'||x x 时,都有ε<''-')()(x f x f .特别地,当),(,δ+∈'''a a x x 时,δ<''-'x x ,故ε<''-')()(x f x f ,由Cauchy 收敛原理知)(lim x f a x +→存在.同理可知)(lim x f b x -→也存在.)⇐充分性证法1 0>∀ε,由)(lim x f a x +→存在知1δ∃,),(,1δ+∈'''∀a a x x 时,ε<''-')()(x f x f ,又由于)(lim x f b x -→也存在,故2δ∃,),(,2b b x x δ-∈'''∀时,ε<''-')()(x f x f .取⎭⎬⎫⎩⎨⎧-=4,2,2min 21a b δδδ,则由以上两条知)(x f 在),[],,(b b a a δδ-+上一致连续,而又因为)(x f 在],[δδ-+b a 上连续,因而一致连续,因此)(x f 在],(δ+a a 、],[δδ-+b a 、),[b b δ-上均一致连续,因此)(x f 在),(b a 一致连续.证法2 由已知)(lim x f ax +→与)(lim x f bx -→ 都存在,设B x f A x f bx ax ==-+→→)(lim ,)(lim ,令 ⎪⎩⎪⎨⎧=∈==.);,()(;)(b x B b a x x f a x Ax F 则)(x F 在],[b a 连续,因而一致连续,从而)(x F 在),(b a 一致连续,而)(x F 在),(b a 上就是)(x f ,因而)(x f 在),(b a 上一致连续.2.求证数列nx n 1211+++= ,当∞→n 时的极限不存在.证明 利用Cauchy 收敛原理的否定形式证明. 取0,0210>∀>=N ε,任取N n >,则N n >2,从而 nn n x x n n 2121112+++++=-021212121212111ε==+++>+++++>n n n n n n , 由Cauchy 收敛原理的否定知数列nx n 1211+++= 当∞→n 时的极限不存在.3.利用Cauchy 收敛原理讨论下列数列的收敛性. (1))||,1||(2210M a q q a q a q a a x k n n n ≤<++++= ;(2)n n n x 2sin 22sin 21sin 12++++= ; (3)nx n n 1)1(312111+-+-+-= . 解(1)0>∀ε,由1||<q 知0lim 1=+∞→n n q ,从而N ∃,N n >∀时,有εMq qn ||1||1-<+,对上述N m n N >∀,,时(不妨n m >),有m n n m n n m n x x x x x x x x +++≤+++=-++++ 2121++=++++≤++++++221121||||||||n n n n m n n q a q a x x x ()εε=-⋅-<-=++≤+++Mq q M q q M q q M n n n ||1||1||1||||||121.由Cauchy 收敛原理知数列}{n x 收敛.(2)这是(1)中21,sin ,10===q k a a k 的特殊情形,由于21||,1<≤q a k ,故数列}{n x 收敛.(3)证法1 利用Cauchy 收敛原理.0>∀ε,由01lim=∞→n n 知,N ∃,N n >∀时ε<n1,对上述N m n N >∀,,时(不妨n m >),有 mn n x x m n n m n 1)1(21)1(11)1(132+++-+++-++-=-mn n n m 1)1(21111---+++-+=. 由于01)1(21111>-+++-+--mn n n m ,故 mn n x x n m m n 1)1(21111---+++-+=- .若n m -为偶数,则mn n x x n m m n 1)1(21111---+++-+=- m m m n n n 11121312111-⎪⎭⎫ ⎝⎛-----⎪⎭⎫ ⎝⎛+-+-+= ε<+≤11n . 若n m -为奇数,则mn n x x n m m n 1)1(21111---+++-+=- ⎪⎭⎫ ⎝⎛----⎪⎭⎫ ⎝⎛+-+-+=m m n n n 111312111 ε<+≤11n . 因而由Cauchy 收敛原理知数列}{n x 收敛.证法2 先考虑数列}{n x 的偶子列}{2n x ,由于22131211221)1(3121132)1(2+--+-=+-+-+-=++n n x n n ⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=221121211214131211n n n n n x n n 2211214131211=⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-> , 故偶子列}{2n x 是单调递增的数列,又由于1211213121121)1(31211122<⎪⎭⎫ ⎝⎛----⎪⎭⎫ ⎝⎛--=-+-+-=+n n n x n n , 因而偶子列}{2n x 是单调上升且有上界的数列,由单调有界原理知}{2n x 必有极限存在,设a x n n =∞→2lim . 又由于121212++=+n x x n n 且0121lim=+∞→n n ,从而a n x x n n n n n =++=∞→∞→+∞→121limlim lim 212.于是我们证得数列}{n x 的奇、偶子列均收敛而且极限相同,故数列}{n x 收敛.4.证明:极限)(lim 0x f x x →存在的充要条件是:对任意给定0>ε,存在0>δ,当δ<-'<00x x ,δ<-''<00x x 时,恒有ε<''-')()(x f x f .证明 )⇒必要性设A x f x x =→)(lim 0,则δδε<-<∀>∃>∀00,,0,0x x x ,就有2)(ε<-A x f ,因此由δ<-'<00x x ,δ<-''<00x x 知ε<-''+-'<-''--'=''-'A x f A x f A x f A x f x f x f )()())(())(()()(,因而必要性成立.)⇐充分性设}{n x 是任意满足0lim x x n n =∞→且0x x n ≠的数列,由已知0,0>∃>∀δε,只要δ<-'<00x x ,δ<-''<00x x 时,有ε<''-')()(x f x f .对上述0>δ,由于0lim x x n n =∞→,且0x x n ≠,故N n N >∀∃,时,有δ<-<||00x x n ;N m >∀时,有δ<-<||00x x m ,于是ε<-)()(m n x f x f ,即)}({n x f 是基本列,由实数列的Cauchy 收敛准则知)(lim n n x f ∞→存在.由}{n x 的取法知任意趋向于0x 而不等于0x 的实数列}{n x 都有极限)(lim n n x f ∞→存在.下证它们的极限都相等.反设)(lim ),(lim 0000x x x x x x x x n nn n n n ≠'='≠=∞→∞→,但)(lim )(lim n n n n x f x f '≠∞→∞→,则定义一个新的数列},,,,{}{2211 x x x x y n ''=, 由}{n y 的构造知)(lim 00x y x y n n n ≠=∞→,但)(lim n n y f ∞→有两个子序列极限不相等,故极限)(lim n n y f ∞→不存在,矛盾.从而任意趋向于0x 而不等于0x 的实数列}{n x 构成的数列)(n x f 都有极限存在.而且它们的极限都相等.由Heine 归结原则知)(lim 0x f x x →存在.5.证明)(x f 在0x 点连续的充要条件是:任给0>ε,存在0>ε,当δ<-'0x x ,δ<-''0x x 时,恒有ε<''-')()(x f x f .证明 )⇒必要性由)(x f 在0x 点连续知)()(lim 00x f x f x x =→,故δδε<-∀>∃>∀0,,0,0x x x ,就有2)()(0ε<-x f x f ,因此由δ<-'0x x ,δ<-''0x x 知))()(())()(()()(00x f x f x f x f x f x f -''--'=''-'ε<-''+-'≤)()()()(00x f x f x f x f .因而必要性成立.)⇐充分性设}{n x 是任意满足0lim x x n n =∞→的数列,由已知0,0>∃>∀δε,只要δ<-'0x x ,δ<-''0x x 时,就有ε<''-')()(x f x f .对上述0>δ,由于0lim x x n n =∞→,故N n N >∀∃,时,有δ<-||0x x n ,N m >∀时,有δ<-||0x x m ,于是ε<-)()(m n x f x f ,即)}({n x f 是基本列,由实数列的Cauchy 收敛准则知)(lim n n x f ∞→存在.由}{n x 的取法知任意趋向于0x 的实数列}{n x ,)(lim n n x f ∞→存在.下证它们的极限都相等.反设)(lim ),(lim 0000x x x x x x x x n n n n n n ≠'='≠=∞→∞→,但)(lim )(lim n n n n x f x f '≠∞→∞→,则定义一个新的数列},,,,{}{2211 x x x x y n ''=, 由}{n y 的构造知0lim x y n n =∞→,但)(lim n n y f ∞→有两个子序列极限不相等,故极限)(lim n n y f ∞→不存在,矛盾.从而,任意趋向于0x 的实数列}{n x 构成的数列)(n x f 都有极限存在,而且极限都相等,由Heine 归结原则知)(lim 0x f x x →存在.特别地,取}{n x 为恒为0x 的常数列,则可得)()(lim 0x f x f n n =∞→,即)()(lim 00x f x f x x =→,从而)(x f 在0x 点连续. 6.证明下列极限不存在:(1)32cos 11πn n n x n +-=;(2)n n n n x )1(21-+=;(3))sin(2n n x n +=π;(4)n x n cos =;(5)n x n tan =.解(1)取}{n x 的两个子序列,当k n 3=时,131336cos 13133+-=+-=k k k k k x k π,从而可以得到1lim 3=∞→k k x .而当13+=k n 时,233213)13(2cos 23313+⋅-=++=+k k k k k x k π,从而21lim 13-=+∞→k k x .}{n x 的两个子序列极限不等,故}{n x 的极限不存在. (2)对}{n x 的奇子列,由于121212211+++⎪⎭⎫ ⎝⎛+=k k k x ,而且12lim 12=+∞→k k ,故1l i m 12=+∞→k k x ;对}{n x 的偶子列,由于k k k x 22221+=,而222212222→⋅≤+≤k k k ,故2lim 2=∞→k k x .原数列的奇子列与偶子列极限不同,故}{n x 的极限不存在. (3)由于()21lim 2=-+∞→n n n n ,故取41=ε,则存在00,N n N >∀时 41212=<--+εn n n , 从而 4121412<--+<-n n n , 即 43412+<+<+n n n n , 从而 ()πππππ43412+<+<+n n n n . 当n 为偶数时,由于ααπsin )sin(=+n ,从而由上式知()1sin 222≤+=≤n n x n π;当n 为奇数时,由于ααπsin )sin(-=+n ,从而()22sin 12-≤+=≤-n n x n π. 因此取220=ε,对N ∀,任取},max{0N N n >,则},max{10N N n >+,而且n x 和1+n x 一个在⎥⎦⎤⎢⎣⎡1,22内,另一个在⎥⎦⎤⎢⎣⎡--22,1内,从而0122ε=>-+n n x x ,由Cauchy收敛原理的否定形式知数列}{n x 极限不存在.(4)取1sin 20=ε,对N ∀,由阿基米德公理知,存在+∈N k ,使得142+>+N k ππ, 在⎪⎭⎫ ⎝⎛++432,42ππππk k 区间上,由于区间长度12>π,从而存在N n >,使得 ⎪⎭⎫ ⎝⎛++∈+432,421ππππk k n , 对于n 和2+n ,有1sin )1sin(222sin 22sin 2cos )2cos(+=-+++=-+n n n n n n n 01sin 21sin 222ε==⋅≥, 由Cauchy 收敛原理的否定形式知数列}{cos }{n x n =极限不存在.(5)取0330>=ε,对N ∀,由阿基米德公理知,存在+∈N k ,使得N k >π,由于⎪⎭⎫ ⎝⎛++2,6ππππk k 的区间长度13>π,从而在⎪⎭⎫ ⎝⎛++2,6ππππk k 中有一个或两个大于N 的正整数点. 若在⎪⎭⎫ ⎝⎛++2,6ππππk k 中只有一个正整数点n ,则 ⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛+++∈+ππππππππ)1(,2)1(22,21k k k k n , 从而0336tantan )1tan(tan tan )1tan(επ==>>+-=-+n n n n n ; 若在⎪⎭⎫ ⎝⎛++2,6ππππk k 中有两个大于N 的正整数点,则取较大的正整数为n ,同样,⎪⎭⎫ ⎝⎛+-+∈+πππ)1(,2)1(1k k n ,从而0336tan tan )1tan(tan tan )1tan(επ==>>+-=-+n n n n n . 由Cauchy 收敛原理的否定形式知数列}{tan }{n x n =极限不存在.7.设)(x f 在),(+∞a 上可导,|)(|x f '单调下降,且)(lim x f x +∞→存在,求证: 0)(lim ='+∞→x f x x .证明 由于)(lim x f x +∞→存在,由Cauchy 收敛原理,0,0>∃>∀X ε,当X x >2时,也有X x >,从而22)(ε<⎪⎭⎫⎝⎛-x f x f .又因为)(x f 在),(+∞a 可导,故)(x f 在⎪⎭⎫ ⎝⎛x x ,2上满足Lagrange 中值定理条件,因而⎪⎭⎫ ⎝⎛∈∃x x ,2ξ,使得2)(2)(x f x f x f ξ'=⎪⎭⎫ ⎝⎛-,从而 )(2)(2ξf x x f x f '=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-, 又根据)(x f '单调下降得εεξξ=⋅<⎪⎭⎫ ⎝⎛-='='≤'='222)(2)()()()(x f x f f x f x x f x x f x , 因此0)(lim ='+∞→x f x x . 8.设)(x f 在),(+∞-∞可导,且1)(<≤'k x f ,任给0x ,令),2,1,0()(1 ==+n x f x n n ,求证:(1) n n x +∞→lim 存在; (2) 上述极限为)(x f x =的根,且是唯一的.证明(1)0>∀ε,取k x x k N ln )1(ln 01--=ε,N m n >∀,,不妨m n <,下证ε<-||n m x x .由已知)(x f 在),(+∞-∞可导,故由Lagrange 中值定理得1111))(()()(---+-≤-'=-=-n n n n n n n n x x k x x f x f x f x x ξ,同理 ,211----≤-n n n n x x k x x ,依此类推得011x x k x x n n n -≤-+,因此n n m m n n m m m n m x x x x x x x x x x x -++-≤-+-+-=-+-+--11111011101011)(x x k k k x x k x x k n n m n m -+++=-++-≤+--010111)(x x kk x x k k nn n --=-++<+ . 由于k x x k N n ln )1(ln 01--=>ε,而1<k ,从而01)1(ln ln x x k k n --<ε,故ε<--=-011x x kk x x nn m , 因此由Cauchy 收敛原理知n n x +∞→lim 存在. (2)由于)(x f 在),(+∞-∞可导,因而连续,在)(1n n x f x =+两边同时对∞→n 取极限,则)lim (lim n n n n x f x +∞→+∞→=,即n n x +∞→lim 是)(x f x =的根,下证唯一性. 反设有)(,b a b a ≠,且)(a f a =,)(b f b =,则b a b a k b a f b f a f b a -<-≤-⋅'=-=-)()()(ξ,矛盾,故根是唯一的.9.设)(x f 在],[b a 满足条件:(1)10],,[,,)()(<<∈∀-≤-k b a y x y x k y f x f ;(2))(x f 的值域包含在],[b a 内.则对任意],[0b a x ∈,令),2,1,0()(1 ==+n x f x n n ,有(1)n n x +∞→lim 存在; (2)方程)(x f x =的解在],[b a 上是唯一的,这个解就是上述极限值.证明(1)0>∀ε,取k x x k N ln ||)1(ln 01--=ε,N m n >∀,,不妨m n <,下证ε<-n m x x .由已知)(1n n x f x =+,而],[0b a x ∈且)(x f 的值域包含在],[b a 内,因而对n ∀,都有],[b a x n ∈,从而01111)()(x x k x x k x f x f x x n n n n n n n -≤-≤-=---+,因此n n m m n n m m m n m x x x x x x x x x x x -++-≤-+-+-=-+-+--11111011101011)(x x k k k x x k x x k n n m n m -+++=-++-≤+--ε<--=-++<+010111)(x x kk x x k k nn n . 因此由Cauchy 收敛原理知n n x +∞→lim 存在. (2)设方程)(x f x =在],[b a 上有两个不同的解d c ,,则d c d c k d f c f d c -<-<-=-)()(,矛盾,故根是唯一的.§4 再论闭区间上连续函数的性质1.设)(x f 在],[b a 上连续,并且最大值点0x 是唯一的,又设],[b a x n ∈,使)()(lim 0x f x f n n =+∞→,求证0lim x x n n =+∞→. 证明 不妨设),(0b a x ∈,当a x =0或b x =0时同理可证.对任意},min{000x b a x --<<ε,由于)(x f 在],[b a 上连续,故)(x f 在],[0ε-x a 、],[00εε+-x x 、],[0b x ε+上连续,由闭区间连续函数的最值定理,)(x f 在],[0ε-x a 、],[00εε+-x x 、],[0b x ε+上均有最大值,显然)(x f 在],[00εε+-x x 上的最大值为)(0x f ,设)(x f 在],[0ε-x a 和],[0b x ε+上的最大值为M ,由最大值点的唯一性可知M x f >)(0. 取02)(0>-M x f ,由)()(lim 0x f x f n n =+∞→知N n N >∀∃,时, 2)()()(00M x f x f x f n -<-,即 M M x f M x f x f x f n >+=-->2)(2)()()(000, 而)(x f 在],[0ε-x a 和],[0b x ε+上的最大值为M ,故),(00εε+-∈x x x n ,即ε<-||0x x n ,从而0lim x x n n =+∞→. 2.设)(x f 在],[b a 上连续,可微;又设(1) )(max )(min x f p x f bx a b x a ≤≤≤≤<<; (2) 如果p x f =)(,则有0)(≠'x f ,求证:p x f =)(的根只有有限多个.证明 利用区间套定理.反设p x f =)(在],[b a 上有无穷多个根,设],[],[11b a b a =,二等分区间],[11b a ,则在两个子区间中必有一个区间含有p x f =)(的无穷多个根,设此区间为],[22b a ,再二等分区间],[22b a ,则在两个子区间中必有一个区间含有p x f =)(的无穷多个根,设此区间为 ],,[33b a .依此类推得一区间套]},{[n n b a ,由区间套的构造知p x f =)(在任意],[n n b a 有无穷多个根.由区间套定理知],[b a r ∈∃,使得对于任意],[,n n b a r N n ∈∈+.若p r f ≠)(,则令p x f x g -=)()(,)(x g 也在],[b a 连续,且0)()(≠-=p r f r g ,从而由保号性知),(,δδδ+-∈∀∃r r x 时,都有0)(≠x g ,即p x f ≠)(,而由区间套知N n N >∀∃,时),(],[δδ+-⊂r r b a n n ,即p x f =)(在],[n n b a 无根,这与区间套的构造矛盾.若p r f =)(,则0)(≠'r f ,即0)()(li m ≠--→r x r f x f r x ,从而x ∀'∃,δ,当δ'<-<||0r x 时,有0)()(≠--rx r f x f ,即p x f ≠)(,从而在),(δδ'+'-r r 上)(x f 只有一个根r ,而由区间套知N n N >∀∃,时),(],[δδ+-⊂r r b a n n ,即p x f =)(在],[n n b a 只有一个根,这与区间套的构造矛盾.因此p x f =)(在],[b a 上只有有限多个根.3.设)(x f 在],[b a 上连续,0)(,0)(><b f a f ,求证:存在),(b a ∈ξ,使0)(=ξf 且)(0)(b x x f ≤<>ξ.证明 令],[|{b a x x E ∈=且}0)(=x f ,由于0)(,0)(><b f a f ,且)(x f 在],[b a 上连续,由介值性定理知φ≠E ,从而E 为非空有界数集,由确界原理知E 有上确界,设E sup =ξ,下证0)(=ξf .事实上,由于E sup =ξ,由本章第一节习题3知可以在E 中选取数列}{n x ,使ξ=∞→n n x lim ,又由)(x f 连续知 0)(lim )lim ()(===∞→∞→n n n n x f x f f ξ, 又对于],(b x ξ∈∀,由于E x ∉,从而0)(≠x f ,又根据0)(>b f 知0)(>x f ,因而结论成立.4.设)(x f 是],[b a 上的连续函数,其最大值和最小值分别为M 和)(M m m <,求证:必存在区间],[βα,满足条件:(1) m f M f ==)(,)(βα或M f m f ==)(,)(βα;(2) M x f m <<)(,当),(βα∈x .证明 由于)(x f 是],[b a 上的连续函数,且有最大值M 和最小值m ,故由最值定理知],[b a c ∈∃,使得M c f =)(;],[b a d ∈∃,使得m d f =)(,由于M m <,故d c ≠,令},min{d c =α,},max{d c =β,则在区间],[βα上满足:(1)m f M f ==)(,)(βα或M f m f ==)(,)(βα;(2)对),(βα∈∀x ,由于m f M f ==)(,)(βα或M f m f ==)(,)(βα,而m M ,分别为],[b a 上的最大值和最小值,故M x f m <<)(.5.设)(x f 在]2,0[a 上连续,且)2()0(a f f =,求证:存在],0[a x ∈,使)()(a x f x f +=.证明 考虑辅助函数)()()(a x f x f x g +-=,],0[a x ∈.若)()0(a f f =,根据已知条件)2()0(a f f =可知,取0=x 或a x =时,均有)()(a x f x f +=,命题已证.若)()0(a f f ≠,则)()0()0(a f f g -=,)0()()2()()(f a f a f a f a g -=-=,从而)0(g 与)(a g 符号相反,由零点定理知],0[a x ∈∃,使0)(=x g ,即)()(a x f x f +=.6.设)(x f 在],[b a 上连续,且取值为整数,求证≡)(x f 常数.证明 反设)(x f 不恒为常数,则],[,21b a x x ∈∃,使得)()(21x f x f ≠,又由于)(x f 取值为整数,故)(),(21x f x f 均为整数,在)(),(21x f x f 之间任取一非整数c ,则由介值性定理知],[b a ∈∃ξ,使得c f =)(ξ,这与)(x f 取值为整数矛盾.7.设)(x f 在),(b a 一致连续,±∞≠b a ,,证明:)(x f 在],[b a 上有界.证明 由于)(x f 在],[b a 上一致连续,故取01>=ε,则0>∃δ,当δ<-21x x 时,有1)()(21<-x f x f . 取定11,b a ,其中δ+<<a a a 1,b b b <<-1δ,则],(1a a x ∈∀, 有δ<-1a x ,故1)()(1<-a f x f ,因而1)()(1+<a f x f ;同理),[1b b x ∈∀,有δ<-1b x , 故1)()(1<-b f x f ,因而1)()(1+<b f x f ,因此)(x f 在区间],(1a a 和区间),[1b b 均有界. 另一方面,由于)(x f 在],[11b a 上一致连续,根据闭区间上连续函数的性质可知存在01>M ,使得111)(],,[M x f b a x <∈∀. 取0}1)(,1)(,max{111>++=b f a f M M ,则),(b a x ∈∀,均有M x f <)(,因而)(x f 在),(b a 上有界.8. 若函数)(x f 在),(b a 上满足利普希茨(Lipschitz )条件,即存在常数K ,使得x x K x f x f ''-'≤''-')()(,),(,b a x x ∈'''.证明:)(x f 在),(b a 上一致连续.证明 ,0>∀ε 取,21εδK= 则对δ<''-'∈'''∀x x b a x x ),,(,,由Lipschitz 条件知εε<⋅<''-'≤''-'KK x x K x f x f 21)()(,因而依定义知)(x f 在),(b a 上一致连续. 9.试用一致连续的定义证明:若函数)(x f 在],[c a 和],[b c 上都一致连续,则)(x f 在],[b a 上也一致连续.证明 对0>∀ε,由函数)(x f 在],[c a 一致连续知01>∃δ,对],[,21c a x x ∈∀而且121δ<-x x ,就有2)()(21ε<-x f x f ;又根据函数)(x f 在],[b c 上一致连续知02>∃δ,],[,21b c x x ∈∀且221δ<-x x 时,就有2)()(21ε<-x f x f .取},min{21δδδ=,则],[,21b a x x ∈∀且δ<-21x x 时,若21,x x 同属于],[c a ,有εε<<-2)()(21x f x f ;若21,x x 同属于],[b c ,也有εε<<-2)()(21x f x f ;若21,x x 一个属于],[c a ,另一个属于],[b c ,则由δ<-21x x 知δδ<-<-c x c x 21,,从而εεε=+<-+-≤-22)()()()()()(2121x f c f c f x f x f x f .因而],[,21b a x x ∈∀且δ<-21x x 时,ε<-)()(21x f x f . 因此由一致连续的定义可知)(x f 在],[b a 上一致连续.10.设函数)(x f 在),(+∞-∞上连续,且极限)(lim x f x -∞→与)(lim x f x +∞→存在. 证明:)(x f 在),(+∞-∞上一致连续.证明 对0>∀ε,由于)(lim x f x -∞→存在,根据Cauchy 收敛原理知,存在01>X ,任意121,X x x -<时,就有ε<-)()(21x f x f ;又由于)(lim x f x +∞→存在,故存在02>X ,任意221,X x x >,就有ε<-)()(21x f x f .由于)(x f 在),(+∞-∞上连续,故)(x f 在区间]1,1[21+--X X 上连续,因而在]1,1[21+--X X 上一致连续,由一致连续的定义知,对上述0>ε,存在01>δ,任意]1),1([,2121++-∈X X x x ,只要112δ<-x x ,就有ε<-)()(21x f x f .取0}1,min{1>=δδ,则),(,21+∞-∞∈∀x x ,只要δ<-21x x ,则21,x x 同属于区间),(1X --∞、]1),1([21++-X X 或),(2+∞X ,由上述讨论知,不管在哪种情况下,都有ε<-)()(21x f x f ,因而)(x f 在),(+∞-∞上一致连续.11.若)(x f 在区间X (有穷或无穷)中具有有界的导数,即M x f ≤')(,X x ∈,则)(x f 在X 中一致连续.证明 对0>∀ε,取Mεδ=,则对任意X x x ∈21,,只要δ<-||21x x ,根据Lagrange 中值定理,存在ξ在21,x x 之间,且εδξ=<-≤-'=-M x x M x x f x f x f 212121|))((|)()(,从而)(x f 在X 中一致连续.12.求证:x x x f ln )(=在),0(+∞上一致连续.证明 由于x x x f ln )(=,故xx x xxx f 2ln 2ln 211)(+=+=',xx x x f 4ln )(-='',令0)(=''x f 得1=x ,故1=x 是)(x f '的稳定点,当0)(),1,0(>''∈x f x ,从而)(x f '单调递增;而当0)(),,1(<''+∞∈x f x ,故)(x f '单调递减,因此1=x 是)(x f '的极大值点,也是最大值点,而1)1(='f ,从而对),0(+∞∈∀x ,1)(≤'x f .再令0)(='x f 得2-=e x ,在区间),[2+∞-e 上,由于0)(≥'x f ,因而在),[2+∞-e 上1)(0≤'≤x f ,即1)(≤'x f ,由上题结论知)(x f 在),[2+∞-e 上一致连续.此外,由于0ln lim )(lim 00==++→→x x x f x x ,若令 ⎩⎨⎧=>=.00,0ln )(x x xx x g则)(x g 在]2,0[连续,因而一致连续,从而)(x g 在]2,0(上一致连续,即)(x f 在]2,0(一致连续.对0>∀ε,由)(x f 在),[2+∞-e 上一致连续知,01>∃δ,对任意),[,221+∞∈-e x x 且121δ<-x x ,都有ε<-)()(21x f x f ;又由)(x f 在]2,0(上一致连续知,02>∃δ,对任意]2,0(,21∈x x 且221δ<-x x ,也有ε<-)()(21x f x f .取0}1,,min{21>=δδδ,则当),0(,21+∞∈x x 且δ<-21x x 时,要么],2,0(,21∈x x要么),[,221+∞∈-e x x ,从而ε<-)()(21x f x f .因此x x x f ln )(=在),0(+∞上一致连续.13.设)(x f 在),(+∞a 上可导,且+∞='+∞→)(lim x f x ,求证:)(x f 在),(+∞a 上不一致连续.证明 取10=ε,对0>∀δ,由于+∞='+∞→)(lim x f x ,故0>∃X ,当X x >时,有δ2)(>'x f ,任取X x >1,X x x >+=212δ,虽然有δδ<=-221x x ,但根据lagrange中值定理知,存在)2,(11δξ+∈x x ,使得02121122)()()(εδδξ==⋅>-⋅'=-x x f x f x f . 根据一致连续的否定定义知)(x f 在),(+∞a 上不一致连续.14.求证:x x x f ln )(=在),0(+∞上不一致连续.证明 由于+∞=+='+∞→+∞→)1(ln lim )(lim x x f x x ,由上题结论知结论成立.§5 可积性1. 判断下列函数在区间]1,0[上的可积性: (1))(x f 在]1,0[上有界,不连续点为),2,1(1==n nx ; (2)⎪⎩⎪⎨⎧=∈⎪⎭⎫⎝⎛=;0,0],1,0(,sin sgn )(x x x x f π (3)⎪⎩⎪⎨⎧=∈⎥⎦⎤⎢⎣⎡-=;0,0],1,0(,11)(x x x x x f (4)[]⎪⎩⎪⎨⎧=∈=.0,0],1,0(,1)(1x x x f x解(1)由于)(x f 在]1,0[上有界,故存在0>M ,对]1,0[∈∀x ,都有M x f ≤)(,故在区间]1,0[的任何子区间上,)(x f 的振幅M 2≤ω.对任给0>ε,由于04lim=∞→n M n ,故N n N >∀∃,时,都有24ε<n M ,特别地取10+=N n 时,也有240ε<n M . 由于)(x f 在⎥⎦⎤⎢⎣⎡1,10n 上只有有限个间断点,因而是可积的,即01>∃δ,使得对区间⎥⎦⎤⎢⎣⎡1,10n 的任何1)max(δλ<∆='i x 的分法,都有∑<∆'''2i i i x εω.取⎭⎬⎫⎩⎨⎧=011,min n δδ,对]1,0[的任意δλ<∆=)max(i x 的分法,下证εω<∆∑=ni i i x 1.由于)1,0(10∈n ,故对上述任意分法,都存在分点00,1i i x x -,使得00011i i x n x <≤-,因而 ∑∑∑∑∑+=-=+==-=∆++∆≤∆+∆+∆=∆ni i iii i i ni i iii i n i i i iiiixM x M xx xx o 11111110000022ωδωωωωεεεε=+<++≤222121200n M n M, 这里最后一项210εω<∆∑+=ni i i i x 是由于[]⎥⎦⎤⎢⎣⎡⊂+1,11,010n x i ,而)(x f 在⎥⎦⎤⎢⎣⎡1,10n 可积,故函数在区间[]1,10+i x 可积,因而210εω<∆∑+=n i i iix .因此0lim 1=∆∑=→ni iix ωλ,即)(x f 在]1,0[上可积.(2)由于)(x f 在]1,0[上有界,且不连续点为),2,1(1==n nx 和0=x ,根据(1)的证法知)(x f 在]1,0[上可积.(3)由于)(x f 在]1,0[上有1)(≤x f ,故)(x f 有界,而且)(x f 的不连续点为0=x 和),2,1(1==n nx ,由(2)的证法知,)(x f 在]1,0[可积. (4)由于)(x f 在]1,0[上有1)(0≤≤x f ,故)(x f 有界,而且)(x f 的不连续点只有),2,1(1==n nx ,由(1)的证明知)(x f 在]1,0[可积. 2.讨论)(),(),(2x f x f x f 三者之间可积性的关系.解 )(),(),(2x f x f x f 三者之间可积性的关系是:若)(x f 可积,则)(x f 与)(2x f 均可积,反之不然;)(x f 可积与)(2x f 可积等价.下面给出证明:(1)先由)(x f 可积推导)(x f 可积.由)(x f 可积知0lim1=∆∑=→ni ii xωλ,而对于任一所讨论区间],[1i i x x -中的任意两点x x ''',,都有)()()()(x f x f x f x f ''-'≤''-',即i i ωω≤*(其中*i ω是)(x f 在[]i i x x ,1-上的振幅),因而)0(0011*→→∆≤∆≤∑∑==λωωni ni i i i ix x ,即)(x f 可积.再由)(x f 可积推导)(2x f 可积.由)(x f 可积知)(x f 有界,即存在0>M ,对定义域中的任意x ,都有M x f <)(,而且0lim1=∆∑=→ni ii xωλ.对任一区间[]i i x x ,1-中的任意两点x x ''',,由于(设i ω'是)(2x f 在[]i i x x ,1-上的振幅))()(2)()()()()()(22x f x f M x f x f x f x f x f x f ''-'≤''-'⋅''+'=''-',故)0(02011→→∆≤∆'≤∑∑==λωωni ni i i ii x M x,从而)(2x f 可积.(2)再说明)(x f 与)(2x f 可积不能推出)(x f 可积,例如令函数⎩⎨⎧∈∈-∈∈=,且,且,Q R x x Q x x x f \],10[,1,],10[,1)( 则任意]1,0[∈x 时,1)()(2==x f x f ,故在]1,0[上)(x f 与)(2x f 均可积,但对于函数)(x f 而言,在],[b a 的任一子区间上,振幅2=i ω,故021≠=∆∑=ni i i x ω,于是)(x f 在],[b a 上不可积.(3)最后证明)(x f 可积与)(2x f 可积等价. 先由)(x f 可积推导)(2x f 可积. 由于x f x f x f x f x f x f ''-'⋅''+'=''-'()(()()()(22()x f x f x f x f ''-'⋅''+'=()(()( x f x f M ''-'⋅≤()(2,因而由)(x f 可积知)(2x f 可积.再由)(2x f 可积推导)(x f 可积.不妨令)0()(2>≥c c x f ,否则考虑函数c x f x g +=)()(2,则)(x g 与)(2x f 有同样的可积性.对任一区间[]i i x x ,1-中的任意两点x x ''',,由于)()()()()()(22x f x f x f x f x f x f ''-'=''+'⋅''-',故 )()(21)()()()()()(2222x f x f cx f x f x f x f x f x f ''-'≤''+'''-'=''-',从而由)(2x f 可积可得)(x f 可积. 因此)(x f 可积与)(2x f 可积等价.3.设)(x f ,)(x g 都在],[b a 上可积,证明:))(),(min()()),(),(max()(x g x f x m x g x f x M ==在],[b a 上也是可积的.证明 由于)()(212)()()(x g x f x g x f x M -++=,而)(x f ,)(x g 都在],[b a 上可积,故由积分的可加性和上题结果知)(x M 可积;同理,)()(212)()()(x g x f x g x f x m --+=,因而)(x m 可积.4.设)(x f 在],[b a 上可积,且0)(>≥r x f ,求证:(1))(1x f 在],[b a 可积; (2))(ln x f 在],[b a 可积.证明 由于)(x f 在],[b a 上可积,故0lim1=∆∑=→ni ii xωλ,即对0,0>∃>∀δε,对区间],[b a 的任意δλ<∆=)max(i x 的分法,都有εω<∆∑=ni i i x 1.(1)对上述],[b a 的任意δλ<的分法,设*i ω为函数)(1x f 在区间[]i i x x ,1-上的振幅,并设)(1)(1*x f x f i ''-'=ω,由于。

数学分析简明教程答案(尹小玲 邓东皋)

数学分析简明教程答案(尹小玲 邓东皋)
n n n

un vn un vn .
n 1 n 1 n 1



D
4.设级数 un 各项是正的, 把级数的项经过组合而得到的新级数 U n ,即
n 1 n 1


U n 1 ukn 1 ukn 2 ukn1 , n 0,1, 2, , 其中k0 0, k0 k1 k2 kn kn 1 . 若级数 U n收敛,证明原来的级数也收敛。
(2)
n 1

1 4n 2 1

1 1 1 2 n 1 2n 1 2n 1

1 1 1 1 1 1 1 1 lim 1 2 n 3 3 5 5 7 2n 1 2n 1 1 1 1 lim 1 . 2 n 2n 1 2
n
于是可得 Sn 由于 r 1,因此有
r
n 1

n
r cos x r 2 . 1 r 2 2r cos x
2.讨论下列级数的敛散性: (1) n ; n 1 2n 1

lim
n 1 0, 故原级数发散。 n 2n 1 2 由于级数 lim cos
第十章 数项级数
§1 级数问题的提出
1.证明:若微分方程xy '' y ' xy 0有多项式解 y a0 a1 x a2 x 2 an x n ; 则必有ai 0, i 1, 2, , n. 证明:若y a0 a1 x a2 x 2 an x n 微分方程的一个解, 那么 y ' a1 2a2 x 3a3 x 2 nan x n 1 y '' 2a2 6a3 x n(n 1)an x n 2 ; 于是可得 xy '' 2a2 x 6a3 x 2 n(n 1)an x n 1 xy a0 x a1 x 2 a2 x 3 an x n 1. 因此可知 xy '' y ' xy a1 (4a2 a0 ) x (9a3 a1 ) x 2 (n 2 an an 2 ) x n 1 an x n 0 那么由多项式相等可知有 a1 0 2 n an an 2 0 a 0 n 递推可知有ai 0, i 1, 2, , n成立。 n 2.

数值分析简明教程课后习题答案

数值分析简明教程课后习题答案

比较详细的数值分析课后习题答案0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。

【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

数值分析简明教程(第二版)课后习题答案

数值分析简明教程(第二版)课后习题答案

0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。

【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章再论实数系§1实数连续性的等价描述1.求数列}{n x 的上、下确界(若}{n x 无上(下)确界,则称)(-∞∞+是}{n x 的上(下)确界):(1)nx n 11-=;(2)])2(2[nn n x -+=;(3))3,2,1(11,122 =+==+k k x k x k k ;(4)nn x n n 1])1(1[+-+=;(5)nn n nx )1(21-+=;(6)32cos 11πn n n x n +-=.解(1)0}inf{,1}sup{==n n x x ;(2)-∞=+∞=}inf{,}sup{n n x x ;(3)1}inf{,}sup{=+∞=n n x x ;(4)0}inf{,3}sup{==n n x x ;(5)1}inf{,5}sup{==n n x x ;(6)21}inf{,1}sup{-==n n x x .2.设)(x f 在D 上定义,求证:(1))}({inf )}({sup x f x f Dx Dx ∈∈-=-;(2))}({sup )}({inf x f x f Dx Dx ∈∈-=-.证明(1)设a x f =)}(inf{,则D x ∈∀,都有a x f ≥)(,因而a x f -≤-)(,又由于0>∀ε,都D x ∈∃ε,使得εε+<a x f )(,因而εε-->-a x f )(,因此)}({inf )}({sup x f x f Dx Dx ∈∈-=-.(2)设b x f Dx =∈)}({sup ,则D x ∈∀有b x f ≤)(,从而b x f -≥-)(,又由于,0>∀ε都D x ∈∃ε,使得εε->b x f )(,从而εε+-<-b x f )(,因此)}({sup )}({inf x f x f Dx Dx ∈∈-=-.3.设E sup =β,且E ∉β,试证自E 中可选取数列}{n x 且n x 互不相同,使β=∞→n n x lim ;又若E ∈β,则情形如何?证明由已知条件知E sup =β且E ∉β,因而(1)E x ∈∀,有β<x ;(2)0>∀ε,都存在E x ∈ε,使得εβε->x .由(1)、(2)知:对1=ε,存在E x ∈1,使得ββ<<-11x ;对},21min{1x -=βε,E x ∈∃2,使得ββ<<-221x 并且112)(x x x =-->ββ;对},31min{2x -=βε,E x ∈∃3,使得ββ<<-231x 并且223)(x x x =-->ββ;…如此继续下去,得数列}{n x 且n x 互不相同,并且β=∞→n n x lim .若E ∈β,则结论不真,如⎭⎬⎫⎩⎨⎧=n E 1,则1sup =E ,但没有n x 互不相同的数列}{n x ,使1lim =∞→n n x .4.试证收敛数列必有上确界和下确界,趋于∞+的数列必有下确界,趋于∞-的数列必有上确界.证明(1)由于收敛数列是非空有界数列,且既有上界又有下界,因而有确界定理知其必有上确界和下确界;(2)设+∞=∞→n n x lim ,则N ∃,当N n >时0>n x ,因而}0,,,,min{21N x x x 是数列}{n x 的下界,由确界原理知数列}{n x 存在下确界;(3)设-∞=∞→n n x lim ,则N ∃,当N n >时0<n x ,因而}0,,,,max{21N x x x 是数列}{n x 的上界,由确界定理知数列}{n x 存在上确界.5.试分别举出满足下列条件的数列:(1)有上确界无下确界的数列;(2)含有上确界但不含有下确界的数列;(3)既含有上确界又含有下确界的数列;(4)既不含有上确界又不含有下确界的数列,其中上、下确界都有限.解(1)有上确界无下确界的数列,如}{}{n x n -=有上确界1}sup{-=n x ,但无下确界;(2)含有上确界但不含有下确界的数列,如取⎭⎬⎫⎩⎨⎧=n x n 1}{,则该数列含有它的上确界1}sup{=n x ,但下确界0}inf{=n x ,该数列不含有0;(3)既含有上确界又含有下确界的数列,如⎭⎬⎫⎩⎨⎧-+=n x n n )1(1}{,既含有上确界1,又含有下确界0;(4)既不含有上确界又不含有下确界的数列,其中上、下确界都有限,如⎪⎪⎩⎪⎪⎨⎧∈=-∈+==++.,213;,121Z k k n nZ k k n n x n 则数列}{n x 有上确界3和下确界0,该数列}{n x 上含其上、下确界3和0.§2实数闭区间的紧致性1.利用有限覆盖定理9.2证明紧致性定理9.4.证明设数列}{n x 有界,即存在R b a ∈,,使得对N n ∈∀,都有b x a n ≤≤.下证}{n x 有收敛子列.(1)若}{n x 存在子列}{k n x 是常数列,则}{k n x 是}{n x 的收敛子列.(2)若}{n x 不存在是常数列的子列,下证}{n x 有收敛子列,为此设}|{N n x X n ∈=,则X 是无限点集.反设}{n x 没有收敛的子数列,则],[b a x ∈∀都不是}{n x 的任一子数列的极限,因此对],[b a x ∈∀,都存在开区间),(x x x v u I =,使得x I x ∈且X I x 是有限集(否则对包含x的任一开区间),(x x v u 都有X 的无穷项,则x 是}{n x 的某一子列的极限),因此所有开区间x I 构成闭区间],[b a 的一个开覆盖Ω,由有限覆盖定理知存在有限数m ,使i x mi I b a 1],[=⊂ ,因而有)()()()()(],[3211X I X I X I X I X I X b a m i x x x x x mi =⊂=,注意到上式右端每一项都是有限集,故X b a ],[为有限集,矛盾!综合(1)(2)知}{n x 必有一收敛的子数列.2.利用紧致性定理证明单调有界数列必有极限.证明设数列}{n x 单调递增且有上界,则}{n x 是有界数列,由紧致性定理知数列}{n x 必有收敛子数列}{k n x ,设c x k n k =∞→lim ,则由}{n x 单调递增知c 必为数列}{n x 的上界,且根据数列极限的定义知,,0K ∃>∀ε当K k >时,有ε<-c x k n ,即εε+<<-c x c k n ,特别地ε->+c x K n 1,取1+=k n N ,则当1+=>k n N n 时,由数列}{n x 单调递增且c 为它的上界知εε+<≤≤<-+c c x x c n n K 1,即ε<-c x n ,从而c x n n =∞→lim ,即单调递增有上界数列必有极限.同理可证}{n x 单调递减有下界时必有极限,因而单调有界原理成立.3.用区间套定理证明单调有界数列必有极限.证明不妨假设数列}{n x 单调递增有上界(}{n x 单调递减有下界可同理证明),即存在R b ∈,使得b x x x a n ≤≤≤≤≤= 21,下证数列}{n x 有极限.若b a =,则}{n x 为常驻列,故}{n x 收敛,因而以下假设b a <.取b b a a ==11,,二等分区间],[11b a ,分点为211b a +,若211b a +仍为}{n x 的上界,则令2,11212b a b a a +==;若211b a +不是}{n x 的上界,即存在m ,使211b a x m +>,则令12112,2b b b a a =+=.二等分区间],[22b a ,分点为222b a +,若222b a +为}{n x 的上界,则令2,22323b a b a a +==;若222b a +不是}{n x 的上界,则令.,223223b b b a a =+=依此类推得一闭区间套{}],[n n b a ,每一个区间的右端点都是}{n x 的上界,由闭区间套定理知存在唯一的R c ∈,使得c 属于所有闭区间,下证数列}{n x 的极限为c .由于02lim)(lim 1=-=--∞→∞→n n n n n ab a b ,故根据数列极限的定义,0>∀ε,存在N ,当N n >时,都有2ε<-n n a b ,而],[n n b a c ∈,故),(],[εε+-⊂c c b a n n .(*)另一方面,由闭区间套的构造知K ∃,使得n K n b x a ≤≤,故对K n >∀,由于K n x x >,故n n K n b x x a ≤≤≤.而由(*)知εε+<<-c x c n ,即ε<-c x n ,从而c x n n =∞→lim ,因而单调有界数列必有极限.4.试分析区间套定理的条件:若将闭区间列改为开区间列,结果怎样?若将条件⊃⊃],[],[2211b a b a 去掉或将条件0→-n n a b 去掉,结果怎样?试举例说明.分析(1)若将闭区间列改为开区间列,结果不真.如开区间列⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛n 1,0满足001lim =⎪⎭⎫ ⎝⎛-∞→n n 且 ⊃⎦⎤⎢⎣⎡⊃⊃⎥⎦⎤⎢⎣⎡⊃⎥⎦⎤⎢⎣⎡⊃⎥⎦⎤⎢⎣⎡n 1,031,021,011,0,但不存在r ,使r 属于所有区间.(2)若将定理其它条件不变,去掉条件 ⊃⊃],[],[2211b a b a ,则定理仍不成立,如⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+n n n 1,是闭区间列,且0→-n n a b ,但显然不存在r ,使r 属于所有区间.(3)若去掉定理条件0→-n n a b ,则定理仍不成立,如闭区间序列⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+-n n 13,11满足 ⊃⊃],[],[2211b a b a ,此时区间]3,1[内任意一点都属于闭区间序列的任何区间,与唯一性矛盾.5.若}{n x 无界,且非无穷大量,则必存在两个子列∞→k n x ,a x k m →(a 为有限数).证明由于}{n x 无界,故N k ∈∀,都存在k n x ,使得k x k n >,因而∞=∞→k n k x lim .又由于}{n x 不是无穷大量,根据无穷大量否定的正面陈述知0M ∃,对0>∀K ,存在K m k >,使得0||M x k m <.从而对于0>∀K ,数列}{k m x 为有界数列,从而必有收敛子列}{k m x .故结论成立.6.有界数列}{n x 若不收敛,则必存在两个子列b x a x k k m n →→,)(b a ≠.证明由于}{n x 为有界数列,由紧致性定理知数列}{n x 必有收敛的子列}{k n x ,不妨设)(∞→→k a x k n ,又因为数列}{n x 不收敛于a ,故从}{n x 中去掉}{k n x 后所得的项还有无穷多项(否则数列}{n x 就收敛于a ).记其为数列}{k n x ,又因为}{k n x 为有界数列,故有收敛子列,设此子列的极限为b ,则b a ≠,而此子列也是}{n x 的子列,故设其为}{k m x ,因而)(lim b a b x k m k ≠=∞→.7.求证:数列}{n a 有界的充要条件是,}{n a 的任何子数列}{k n a 都有收敛的子数列.证明必要性:由紧致性定理知结论成立.充分性:反设数列}{n a 无界.若}{n a 是无穷大量,则}{n a 的任何子列都不存在收敛的子列,矛盾;若}{n a 不是无穷大量,则由第5题知}{n a 有一子列}{k n a 是无穷大量,从而}{k n a 没有收敛的子数列,也矛盾.因而数列}{n a 有界.8.设)(x f 在],[b a 上定义,且在每一点处函数的极限存在,求证:)(x f 在],[b a 上有界.证明对],[b a t ∈∀,由于)(x f 在t 处的极限存在,故设A x f tx =→)(lim ,则对01>=ε,存在0>t δ,x ∀,当t t x δ<-<||0时,有1)(=<-εA x f ,从而1||)(+<A x f ,取{}1||),(max +=A t f M ,则),(t t t t x δδ--∈∀,都有M x f <)(,即)(x f 在区间),(t t t t δδ--上有界.对所有],[b a t ∈,在1=ε下所取的t δ为半径的开区间{}],[|),(b a t t t t t ∈+-δδ构成闭区间],[b a 上的一个开覆盖,由有限覆盖定理知,存在],[,,,21b a t t t n ∈ ,使得),(],[1i i t i t i ni t t b a δδ+-⊂= ,而)(x f 在每个区间),(i i t i t i t t δδ+-),,2,1(n i =上有界,又由于区间个数有限,故)(x f在],[b a 上有界.9.设)(x f 在],[b a 无界,求证:存在],[b a c ∈,对任意0>δ,函数)(x f 在],[),(b a c c δδ+-上无界.证明反设结论不真,即],[b a c ∈∀,0>∃c δ,函数)(x f 在],[),(b a c c c c δδ+-上有界,则对所有的c ,{}],[|),(b a c c c c c ∈+-δδ构成区间],[b a 的一个开覆盖,由有限覆盖定理知其有有限子覆盖,即],[,,,21b a c c c n ∈∃ ,使),(],[1i i c i c i ni c c b a δδ+-⊂= ,由于函数在每一个],[),(b a c c i i c i c i δδ+-有界,而n 是有限数,故)(x f 在],[b a 有界,矛盾.因此结论成立.10.设)(x f 是),(b a 上的凸函数,且有上界,求证:)(lim ),(lim x f x f bx ax -+→→存在.证明由于)(x f 在),(b a 上有上界,故0>∃M ,对M x f b a x ≤∈∀)(),,(.先证明)(lim x f bx -→存在.在区间),(b a 中任取一点0x ,并令00)()()(x x x f x f x g --=,则由)(x f 是),(b a 上的凸函数知)(x g 在),(0b x 上递增,在),(0b x 中任取一点1x ,考察区间),(1b x ,),(1b x x ∈∀,由于1000)()()()(x x x f M x x x f x f x g --≤--=,即)(x g 在),(1b x 上有上界,从而)(x g 在),(1b x 上单调递增且有上界,由定理3.12知)(lim x g b x -→存在,不妨令A x g bx =-→)(lim ,则)()()()()()(lim )(lim 000000x f x b A x f x x x f x f x x x f b x b x +-=⎥⎦⎤⎢⎣⎡+--⋅-=--→→,即)(lim x f bx -→存在.再证明)(lim x f ax +→存在.由于)(x f 是),(b a 上的凸函数,从而)(x g 在),(0x a 上递增,在),(0x a 中任取一点2x ,考察区间),(2x a ,),(2x a x ∈∀,由于ax Mx f x x x f x f x x x f x f x g --≥--=--=000000)()()()()()(,即)(x g 在),(2x a 上有下界,从而)(x g 在),(2x a 上单调递增且有下界,由定理3.12的推论知)(lim x g ax +→存在,设B x g ax =+→)(lim ,则)()()()()()(lim )(lim 000000x f B x a x f x x x f x f x x x f a x a x +-=⎥⎦⎤⎢⎣⎡+--⋅-=++→→,即)(lim x f ax +→也存在.11.设)(x f 在],[b a 上只有第一类间断点,定义)0()0()(--+=x f x f x ω.求证:任意εωε≥>)(,0x 的点x 只有有限多个.证明反证法,使用区间套定理.根据结论,反设存在00>ε,在],[b a 上使0)(εω≥x 的点有无限多个.记],[],[11b a b a =,二等分区间],[11b a ,则在⎥⎦⎤⎢⎣⎡+⎦⎤⎢⎣⎡+111111,2,2,b b a b a a 中至少有一个区间含有无限多个x 使0)(εω≥x ,记此区间为],[22b a ,再二等分区间],[22b a ,在⎥⎦⎤⎢⎣⎡+⎦⎤⎢⎣⎡+222222,2,2,b b a b a a 中至少有一个区间含有无限多个x 使0)(εω≥x ,记此区间为 ],,[33b a ,如此继续下去,得闭区间套],[n n b a ,且每个区间],[n n b a 中含有无限多个x 使0)(εω≥x .由区间套定理可知存在唯一,2,1],,[=∈n b a r n n 由于)(x f 在],[b a 上只有第一类间断点,而],[b a r ∈,故)0(+r f 和)0(-r f 存在,设B r f A r f =-=+)0(,)0(,则对上述00>ε,存在),(,011δδ+∈∀>r r x 时,有2)(0ε<-A x f ,即2)(200εε+<<-A x f A ,从而由极限不等式知,当),(1δ+∈r r x 时,0)(εω<x ;同理存在),(,022r r x δδ-∈∀>时,0)(εω<x .取{}21,min δδδ=,则在),(δδ+-r r 上满足0)(εω≥x 的点至多只能有r 一个点.而根据区间套性质知,N n N >∀∃,时,都有),(],[δδ+-⊂r r b a n n ,从而在],[n n b a 中最多只能有一个点,使得0)(εω≥x ,这与区间套的构造矛盾.故原结论成立.12.设)(x f 在],0[+∞上连续且有界,对),(+∞-∞∈∀a ,a x f =)(在),0[+∞上只有有限个根或无根,求证:)(lim x f x +∞→存在.证明由)(x f 在],0[+∞上有界知)(x f 在],0[+∞上既有上界又有下界,不妨设上界为v ,下界为u ,若v u =,则v u x f x ==+∞→)(lim ,结论必然成立,故以下假定v u <.令],[],[11v u v u =,二等分区间],[11v u ,分点为211v u +,由于2)(11v u x f +=在),0[+∞上只有有限个根或无根,而且)(x f 连续,因而11,0X x X >∀>∃时,有2)(11v u x f +>或2)(11v u x f +<.若2)(11v u x f +>,令⎥⎦⎤⎢⎣⎡+=11122,2],[v v u v u ,若2)(11v u x f +<,则令⎦⎤⎢⎣⎡+=2,],[11122v u u v u ,因此1X x >∀时,],[)(22v u x f ∈,即22)(v x f u ≤≤.二等分区间],[22v u ,分点为222v u +,由于2)(22v u x f +=在),0[+∞上只有有限个根或无根且)(x f 连续,故212,X x X X >∀>∃时,有2)(22v u x f +>或2)(22v u x f +<.若2)(22v u x f +>,令⎥⎦⎤⎢⎣⎡+=22233,2],[v v u v u ,反之令⎥⎦⎤⎢⎣⎡+=2,],[22233v u u v u ,因此2X x >∀时,],[)(33v u x f ∈,即33)(v x f u ≤≤.依此类推,得一区间套]},{[n n v u ,而且由区间套的构造知,n n n X x X X >∀>∃-,1时,n n v x f u ≤≤)(.由区间套定理知存在唯一的 ,2,1],,[=∈n v u r n n ,下证r x f x =+∞→)(lim .事实上,对0>∀ε,由闭区间套]},{[n n v u 的构造知,存在N ,N n >∀时,有),(],[εε+-⊂r r v u n n ,特别地取1+=N n ,则),(],[11εε+-⊂++r r v u N N ,按区间套的构造知11,++>∀∃N N X x X 时,),(],[)(11εε+-⊂∈++r r v u x f N N ,即εε+<<-r x f r )(,从而ε<-r x f )(,即r x f x =+∞→)(lim ,也就是说)(lim x f x +∞→存在.§3实数的完备性1.设)(x f 在),(b a 连续,求证:)(x f 在),(b a 一致连续的充要条件是)(lim x f ax +→与)(lim x f b x -→都存在.证明)⇒必要性由)(x f 在),(b a 一致连续知,0,0>∃>∀δε,),(,b a x x ∈'''∀且δ<''-'||x x 时,都有ε<''-')()(x f x f .特别地,当),(,δ+∈'''a a x x 时,δ<''-'x x ,故ε<''-')()(x f x f ,由Cauchy 收敛原理知)(lim x f ax +→存在.同理可知)(lim x f bx -→也存在.)⇐充分性证法10>∀ε,由)(lim x f a x +→存在知1δ∃,),(,1δ+∈'''∀a a x x 时,ε<''-')()(x f x f ,又由于)(lim x f bx -→也存在,故2δ∃,),(,2b b x x δ-∈'''∀时,ε<''-')()(x f x f .取⎭⎬⎫⎩⎨⎧-=4,2,2min 21a b δδδ,则由以上两条知)(x f 在),[],,(b b a a δδ-+上一致连续,而又因为)(x f 在],[δδ-+b a 上连续,因而一致连续,因此)(x f 在],(δ+a a 、],[δδ-+b a 、),[b b δ-上均一致连续,因此)(x f 在),(b a 一致连续.证法2由已知)(lim x f ax +→与)(lim x f bx -→都存在,设B x f A x f bx ax ==-+→→)(lim ,)(lim ,令⎪⎩⎪⎨⎧=∈==.);,()(;)(b x B b a x x f a x A x F 则)(x F 在],[b a 连续,因而一致连续,从而)(x F 在),(b a 一致连续,而)(x F 在),(b a 上就是)(x f ,因而)(x f 在),(b a 上一致连续.2.求证数列nx n 1211+++= ,当∞→n 时的极限不存在.证明利用Cauchy 收敛原理的否定形式证明.取0,0210>∀>=N ε,任取N n >,则N n >2,从而nn n x x n n 2121112+++++=- 021212121212111ε==+++>+++++>n n n n n n ,由Cauchy 收敛原理的否定知数列nx n 1211+++= 当∞→n 时的极限不存在.3.利用Cauchy 收敛原理讨论下列数列的收敛性.(1))||,1||(2210M a q q a q a q a a x k nn n ≤<++++= ;(2)n n n x 2sin 22sin 21sin 12++++= ;(3)nx n n 1)1(312111+-+-+-= .解(1)0>∀ε,由1||<q 知0lim 1=+∞→n n q,从而N ∃,N n >∀时,有εMq q n ||1||1-<+,对上述N m n N >∀,,时(不妨n m >),有mn n m n n m n x x x x x x x x +++≤+++=-++++ 2121 ++=++++≤++++++221121||||||||n n n n m n n q a q a x x x ()εε=-⋅-<-=++≤+++Mq q M q q M q q M n n n ||1||1||1||||||121.由Cauchy 收敛原理知数列}{n x 收敛.(2)这是(1)中21,sin ,10===q k a a k 的特殊情形,由于21||,1<≤q a k ,故数列}{n x 收敛.(3)证法1利用Cauchy 收敛原理.0>∀ε,由01lim=∞→n n 知,N ∃,N n >∀时ε<n 1,对上述N m n N >∀,,时(不妨n m >),有mn n x x m n n m n 1)1(21)1(11)1(132+++-+++-++-=- mn n n m 1)1(21111---+++-+=.由于01)1(21111>-+++-+--mn n n m ,故mn n x x n m m n 1)1(21111---+++-+=- .若n m -为偶数,则mn n x x n m m n 1)1(21111---+++-+=- m m m n n n 11121312111-⎪⎭⎫ ⎝⎛-----⎪⎭⎫ ⎝⎛+-+-+= ε<+≤11n .若n m -为奇数,则mn n x x n m m n 1)1(21111---+++-+=- ⎪⎭⎫ ⎝⎛----⎪⎭⎫ ⎝⎛+-+-+=m m n n n 111312111 ε<+≤11n .因而由Cauchy 收敛原理知数列}{n x 收敛.证法2先考虑数列}{n x 的偶子列}{2n x ,由于22131211221)1(3121132)1(2+--+-=+-+-+-=++n n x n n ⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=221121211214131211n n n n n x n n 2211214131211=⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-> ,故偶子列}{2n x 是单调递增的数列,又由于1211213121121)1(31211122<⎪⎭⎫ ⎝⎛----⎪⎭⎫ ⎝⎛--=-+-+-=+n n n x n n ,因而偶子列}{2n x 是单调上升且有上界的数列,由单调有界原理知}{2n x 必有极限存在,设a x n n =∞→2lim .又由于121212++=+n x x n n 且0121lim=+∞→n n ,从而a n x x n n n n n =++=∞→∞→+∞→121lim lim lim 212.于是我们证得数列}{n x 的奇、偶子列均收敛而且极限相同,故数列}{n x 收敛.4.证明:极限)(lim 0x f x x →存在的充要条件是:对任意给定0>ε,存在0>δ,当δ<-'<00x x ,δ<-''<00x x 时,恒有ε<''-')()(x f x f .证明)⇒必要性设A x f x x =→)(lim 0,则δδε<-<∀>∃>∀00,,0,0x x x ,就有2)(ε<-A x f ,因此由δ<-'<00x x ,δ<-''<00x x 知ε<-''+-'<-''--'=''-'A x f A x f A x f A x f x f x f )()())(())(()()(,因而必要性成立.)⇐充分性设}{n x 是任意满足0lim x x n n =∞→且0x x n ≠的数列,由已知0,0>∃>∀δε,只要δ<-'<00x x ,δ<-''<00x x 时,有ε<''-')()(x f x f .对上述0>δ,由于0lim x x n n =∞→,且0x x n ≠,故N n N >∀∃,时,有δ<-<||00x x n ;N m >∀时,有δ<-<||00x x m ,于是ε<-)()(m n x f x f ,即)}({n x f 是基本列,由实数列的Cauchy 收敛准则知)(lim n n x f ∞→存在.由}{n x 的取法知任意趋向于0x 而不等于0x 的实数列}{n x 都有极限)(lim n n x f ∞→存在.下证它们的极限都相等.反设)(lim ),(lim 0000x x x x x x x x n nn n n n ≠'='≠=∞→∞→,但)(lim )(lim n n n n x f x f '≠∞→∞→,则定义一个新的数列},,,,{}{2211 x x x x y n ''=,由}{n y 的构造知)(lim 00x y x y n n n ≠=∞→,但)(lim n n y f ∞→有两个子序列极限不相等,故极限)(lim n n y f ∞→不存在,矛盾.从而任意趋向于0x 而不等于0x 的实数列}{n x 构成的数列)(n x f 都有极限存在.而且它们的极限都相等.由Heine 归结原则知)(lim 0x f x x →存在.5.证明)(x f 在0x 点连续的充要条件是:任给0>ε,存在0>ε,当δ<-'0x x ,δ<-''0x x 时,恒有ε<''-')()(x f x f .证明)⇒必要性由)(x f 在0x 点连续知)()(lim 00x f x f x x =→,故δδε<-∀>∃>∀0,,0,0x x x ,就有2)()(0ε<-x f x f ,因此由δ<-'0x x ,δ<-''0x x 知))()(())()(()()(00x f x f x f x f x f x f -''--'=''-'ε<-''+-'≤)()()()(00x f x f x f x f .因而必要性成立.)⇐充分性设}{n x 是任意满足0lim x x n n =∞→的数列,由已知0,0>∃>∀δε,只要δ<-'0x x ,δ<-''0x x 时,就有ε<''-')()(x f x f .对上述0>δ,由于0lim x x n n =∞→,故N n N >∀∃,时,有δ<-||0x x n ,N m >∀时,有δ<-||0x x m ,于是ε<-)()(m n x f x f ,即)}({n x f 是基本列,由实数列的Cauchy 收敛准则知)(lim n n x f ∞→存在.由}{n x 的取法知任意趋向于0x 的实数列}{n x ,)(lim n n x f ∞→存在.下证它们的极限都相等.反设)(lim ),(lim 0000x x x x x x x x n nn n n n ≠'='≠=∞→∞→,但)(lim )(lim n n n n x f x f '≠∞→∞→,则定义一个新的数列},,,,{}{2211 x x x x y n ''=,由}{n y 的构造知0lim x y n n =∞→,但)(lim n n y f ∞→有两个子序列极限不相等,故极限)(lim n n y f ∞→不存在,矛盾.从而,任意趋向于0x 的实数列}{n x 构成的数列)(n x f 都有极限存在,而且极限都相等,由Heine 归结原则知)(lim 0x f x x →存在.特别地,取}{n x 为恒为0x 的常数列,则可得)()(lim 0x f x f n n =∞→,即)()(lim 00x f x f x x =→,从而)(x f 在0x 点连续.6.证明下列极限不存在:(1)32cos 11πn n n x n +-=;(2)nn n nx )1(21-+=;(3))sin(2n n x n +=π;(4)n x n cos =;(5)n x n tan =.解(1)取}{n x 的两个子序列,当k n 3=时,131336cos 13133+-=+-=k k k k k x k π,从而可以得到1lim 3=∞→k k x .而当13+=k n 时,233213)13(2cos 23313+⋅-=++=+k k k k k x k π,从而21lim 13-=+∞→k k x .}{n x 的两个子序列极限不等,故}{n x 的极限不存在.(2)对}{n x 的奇子列,由于121212211+++⎪⎭⎫⎝⎛+=k k k x ,而且12lim 12=+∞→k k ,故1lim 12=+∞→k k x ;对}{n x 的偶子列,由于k k k x 22221+=,而222212222→⋅≤+≤k k k ,故2lim 2=∞→k k x .原数列的奇子列与偶子列极限不同,故}{n x 的极限不存在.(3)由于()21lim2=-+∞→n n nn ,故取41=ε,则存在00,N n N >∀时41212=<--+εn n n ,从而4121412<--+<-n n n ,即43412+<+<+n n n n ,从而()πππππ43412+<+<+n n n n .当n 为偶数时,由于ααπsin )sin(=+n ,从而由上式知()1sin 222≤+=≤n n x n π;当n 为奇数时,由于ααπsin )sin(-=+n ,从而()22sin 12-≤+=≤-n n x n π.因此取220=ε,对N ∀,任取},max{0N N n >,则},max{10N N n >+,而且n x 和1+n x 一个在⎥⎦⎤⎢⎣⎡1,22内,另一个在⎥⎦⎤⎢⎣⎡--22,1内,从而0122ε=>-+n n x x ,由Cauchy 收敛原理的否定形式知数列}{n x 极限不存在.(4)取1sin 20=ε,对N ∀,由阿基米德公理知,存在+∈N k ,使得142+>+N k ππ,在⎪⎭⎫⎝⎛++432,42ππππk k 区间上,由于区间长度12>π,从而存在N n >,使得⎪⎭⎫ ⎝⎛++∈+432,421ππππk k n ,对于n 和2+n ,有1sin )1sin(222sin 22sin2cos )2cos(+=-+++=-+n nn n n n n 01sin 21sin 222ε==⋅≥,由Cauchy 收敛原理的否定形式知数列}{cos }{n x n =极限不存在.(5)取0330>=ε,对N ∀,由阿基米德公理知,存在+∈N k ,使得N k >π,由于⎪⎭⎫ ⎝⎛++2,6ππππk k 的区间长度13>π,从而在⎪⎭⎫ ⎝⎛++2,6ππππk k 中有一个或两个大于N 的正整数点.若在⎪⎭⎫⎝⎛++2,6ππππk k 中只有一个正整数点n ,则⎪⎭⎫⎝⎛+-+=⎪⎭⎫ ⎝⎛+++∈+ππππππππ)1(,2)1(22,21k k k k n ,从而0336tantan )1tan(tan tan )1tan(επ==>>+-=-+n n n n n ;若在⎪⎭⎫⎝⎛++2,6ππππk k 中有两个大于N 的正整数点,则取较大的正整数为n ,同样,⎪⎭⎫⎝⎛+-+∈+πππ)1(,2)1(1k k n ,从而0336tantan )1tan(tan tan )1tan(επ==>>+-=-+n n n n n .由Cauchy 收敛原理的否定形式知数列}{tan }{n x n =极限不存在.7.设)(x f 在),(+∞a 上可导,|)(|x f '单调下降,且)(lim x f x +∞→存在,求证:0)(lim ='+∞→x f x x .证明由于)(lim x f x +∞→存在,由Cauchy 收敛原理,0,0>∃>∀X ε,当X x>2时,也有X x >,从而22)(ε<⎪⎭⎫⎝⎛-x f x f .又因为)(x f 在),(+∞a 可导,故)(x f 在⎪⎭⎫ ⎝⎛x x ,2上满足Lagrange 中值定理条件,因而⎪⎭⎫⎝⎛∈∃x x ,2ξ,使得2)(2)(x f x f x f ξ'=⎪⎭⎫⎝⎛-,从而)(2)(2ξf x x f x f '=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-,又根据)(x f '单调下降得εεξξ=⋅<⎪⎭⎫⎝⎛-='='≤'='222)(2)()()()(x f x f f x f x x f x x f x ,因此0)(lim ='+∞→x f x x .8.设)(x f 在),(+∞-∞可导,且1)(<≤'k x f ,任给0x ,令),2,1,0()(1 ==+n x f x n n ,求证:(1)n n x +∞→lim 存在;(2)上述极限为)(x f x =的根,且是唯一的.证明(1)0>∀ε,取k x x k N ln )1(ln1--=ε,N m n >∀,,不妨m n <,下证ε<-||n m x x .由已知)(x f 在),(+∞-∞可导,故由Lagrange 中值定理得1111))(()()(---+-≤-'=-=-n n n n n n n n x x k x x f x f x f x x ξ,同理 ,211----≤-n n n n x x k x x ,依此类推得011x x k x x nn n -≤-+,因此nn m m n n m m m n m x x x x x x x x x x x -++-≤-+-+-=-+-+--11111 011101011)(x x k k k x x k x x k n n m n m -+++=-++-≤+-- 010111)(x x kk x x kk nn n--=-++<+ .由于k x x k N n ln )1(ln01--=>ε,而1<k ,从而01)1(lnln x x k k n --<ε,故ε<--=-011x x kk x x nn m ,因此由Cauchy 收敛原理知n n x +∞→lim 存在.(2)由于)(x f 在),(+∞-∞可导,因而连续,在)(1n n x f x =+两边同时对∞→n 取极限,则)lim (lim n n n n x f x +∞→+∞→=,即n n x +∞→lim 是)(x f x =的根,下证唯一性.反设有)(,b a b a ≠,且)(a f a =,)(b f b =,则b a b a k b a f b f a f b a -<-≤-⋅'=-=-)()()(ξ,矛盾,故根是唯一的.9.设)(x f 在],[b a 满足条件:(1)10],,[,,)()(<<∈∀-≤-k b a y x y x k y f x f ;(2))(x f 的值域包含在],[b a 内.则对任意],[0b a x ∈,令),2,1,0()(1 ==+n x f x n n ,有(1)n n x +∞→lim 存在;(2)方程)(x f x =的解在],[b a 上是唯一的,这个解就是上述极限值.证明(1)0>∀ε,取k x x k N ln ||)1(ln01--=ε,N m n >∀,,不妨m n <,下证ε<-n m x x .由已知)(1n n x f x =+,而],[0b a x ∈且)(x f 的值域包含在],[b a 内,因而对n ∀,都有],[b a x n ∈,从而01111)()(x x k x x k x f x f x x n n n n n n n -≤-≤-=---+,因此nn m m n n m m m n m x x x x x x x x x x x -++-≤-+-+-=-+-+--11111 011101011)(x x k k k x x k x x k n n m n m -+++=-++-≤+-- ε<--=-++<+010111)(x x kk x x kk nn n.因此由Cauchy 收敛原理知n n x +∞→lim 存在.(2)设方程)(x f x =在],[b a 上有两个不同的解d c ,,则d c d c k d f c f d c -<-<-=-)()(,矛盾,故根是唯一的.§4再论闭区间上连续函数的性质1.设)(x f 在],[b a 上连续,并且最大值点0x 是唯一的,又设],[b a x n ∈,使)()(lim 0x f x f n n =+∞→,求证0lim x x n n =+∞→.证明不妨设),(0b a x ∈,当a x =0或b x =0时同理可证.对任意},min{000x b a x --<<ε,由于)(x f 在],[b a 上连续,故)(x f 在],[0ε-x a 、],[00εε+-x x 、],[0b x ε+上连续,由闭区间连续函数的最值定理,)(x f 在],[0ε-x a 、],[00εε+-x x 、],[0b x ε+上均有最大值,显然)(x f 在],[00εε+-x x 上的最大值为)(0x f ,设)(x f 在],[0ε-x a 和],[0b x ε+上的最大值为M ,由最大值点的唯一性可知M x f >)(0.取02)(0>-Mx f ,由)()(lim 0x f x f n n =+∞→知N n N >∀∃,时,2)()()(00Mx f x f x f n -<-,即M Mx f M x f x f x f n >+=-->2)(2)()()(000,而)(x f 在],[0ε-x a 和],[0b x ε+上的最大值为M ,故),(00εε+-∈x x x n ,即ε<-||0x x n ,从而0lim x x n n =+∞→.2.设)(x f 在],[b a 上连续,可微;又设(1))(max )(min x f p x f bx a bx a ≤≤≤≤<<;(2)如果p x f =)(,则有0)(≠'x f ,求证:p x f =)(的根只有有限多个.证明利用区间套定理.反设p x f =)(在],[b a 上有无穷多个根,设],[],[11b a b a =,二等分区间],[11b a ,则在两个子区间中必有一个区间含有p x f =)(的无穷多个根,设此区间为],[22b a ,再二等分区间],[22b a ,则在两个子区间中必有一个区间含有p x f =)(的无穷多个根,设此区间为 ],,[33b a .依此类推得一区间套]},{[n n b a ,由区间套的构造知p x f =)(在任意],[n n b a 有无穷多个根.由区间套定理知],[b a r ∈∃,使得对于任意],[,n n b a r N n ∈∈+.若p r f ≠)(,则令p x f x g -=)()(,)(x g 也在],[b a 连续,且0)()(≠-=p r f r g ,从而由保号性知),(,δδδ+-∈∀∃r r x 时,都有0)(≠x g ,即p x f ≠)(,而由区间套知N n N >∀∃,时),(],[δδ+-⊂r r b a n n ,即p x f =)(在],[n n b a 无根,这与区间套的构造矛盾.若p r f =)(,则0)(≠'r f ,即0)()(lim≠--→rx r f x f rx ,从而x ∀'∃,δ,当δ'<-<||0r x 时,有0)()(≠--rx r f x f ,即p x f ≠)(,从而在),(δδ'+'-r r 上)(x f 只有一个根r ,而由区间套知N n N >∀∃,时),(],[δδ+-⊂r r b a n n ,即p x f =)(在],[n n b a 只有一个根,这与区间套的构造矛盾.因此p x f =)(在],[b a 上只有有限多个根.3.设)(x f 在],[b a 上连续,0)(,0)(><b f a f ,求证:存在),(b a ∈ξ,使0)(=ξf 且)(0)(b x x f ≤<>ξ.证明令],[|{b a x x E ∈=且}0)(=x f ,由于0)(,0)(><b f a f ,且)(x f 在],[b a 上连续,由介值性定理知φ≠E ,从而E 为非空有界数集,由确界原理知E 有上确界,设E sup =ξ,下证0)(=ξf .事实上,由于E sup =ξ,由本章第一节习题3知可以在E 中选取数列}{n x ,使ξ=∞→n n x lim ,又由)(x f 连续知0)(lim )lim ()(===∞→∞→n n n n x f x f f ξ,又对于],(b x ξ∈∀,由于E x ∉,从而0)(≠x f ,又根据0)(>b f 知0)(>x f ,因而结论成立.4.设)(x f 是],[b a 上的连续函数,其最大值和最小值分别为M 和)(M m m <,求证:必存在区间],[βα,满足条件:(1)m f M f ==)(,)(βα或M f m f ==)(,)(βα;(2)M x f m <<)(,当),(βα∈x .证明由于)(x f 是],[b a 上的连续函数,且有最大值M 和最小值m ,故由最值定理知],[b a c ∈∃,使得M c f =)(;],[b a d ∈∃,使得m d f =)(,由于M m <,故d c ≠,令},min{d c =α,},max{d c =β,则在区间],[βα上满足:(1)m f M f ==)(,)(βα或M f m f ==)(,)(βα;(2)对),(βα∈∀x ,由于m f M f ==)(,)(βα或M f m f ==)(,)(βα,而m M ,分别为],[b a 上的最大值和最小值,故M x f m <<)(.5.设)(x f 在]2,0[a 上连续,且)2()0(a f f =,求证:存在],0[a x ∈,使)()(a x f x f +=.证明考虑辅助函数)()()(a x f x f x g +-=,],0[a x ∈.若)()0(a f f =,根据已知条件)2()0(a f f =可知,取0=x 或a x =时,均有)()(a x f x f +=,命题已证.若)()0(a f f ≠,则)()0()0(a f f g -=,)0()()2()()(f a f a f a f a g -=-=,从而)0(g 与)(a g 符号相反,由零点定理知],0[a x ∈∃,使0)(=x g ,即)()(a x f x f +=.6.设)(x f 在],[b a 上连续,且取值为整数,求证≡)(x f 常数.证明反设)(x f 不恒为常数,则],[,21b a x x ∈∃,使得)()(21x f x f ≠,又由于)(x f 取值为整数,故)(),(21x f x f 均为整数,在)(),(21x f x f 之间任取一非整数c ,则由介值性定理知],[b a ∈∃ξ,使得c f =)(ξ,这与)(x f 取值为整数矛盾.7.设)(x f 在),(b a 一致连续,±∞≠b a ,,证明:)(x f 在],[b a 上有界.证明由于)(x f 在],[b a 上一致连续,故取01>=ε,则0>∃δ,当δ<-21x x 时,有1)()(21<-x f x f .取定11,b a ,其中δ+<<a a a 1,b b b <<-1δ,则],(1a a x ∈∀,有δ<-1a x ,故1)()(1<-a f x f ,因而1)()(1+<a f x f ;同理),[1b b x ∈∀,有δ<-1b x ,故1)()(1<-b f x f ,因而1)()(1+<b f x f ,因此)(x f 在区间],(1a a 和区间),[1b b 均有界.另一方面,由于)(x f 在],[11b a 上一致连续,根据闭区间上连续函数的性质可知存在01>M ,使得111)(],,[M x f b a x <∈∀.取0}1)(,1)(,max{111>++=b f a f M M ,则),(b a x ∈∀,均有M x f <)(,因而)(x f 在),(b a 上有界.8.若函数)(x f 在),(b a 上满足利普希茨(Lipschitz )条件,即存在常数K ,使得x x K x f x f ''-'≤''-')()(,),(,b a x x ∈'''.证明:)(x f 在),(b a 上一致连续.证明,0>∀ε取,21εδK=则对δ<''-'∈'''∀x x b a x x ),,(,,由Lipschitz 条件知εε<⋅<''-'≤''-'KK x x K x f x f 21)()(,因而依定义知)(x f 在),(b a 上一致连续.9.试用一致连续的定义证明:若函数)(x f 在],[c a 和],[b c 上都一致连续,则)(x f 在],[b a 上也一致连续.证明对0>∀ε,由函数)(x f 在],[c a 一致连续知01>∃δ,对],[,21c a x x ∈∀而且121δ<-x x ,就有2)()(21ε<-x f x f ;又根据函数)(x f 在],[b c 上一致连续知02>∃δ,],[,21b c x x ∈∀且221δ<-x x 时,就有2)()(21ε<-x f x f .取},min{21δδδ=,则],[,21b a x x ∈∀且δ<-21x x 时,若21,x x 同属于],[c a ,有εε<<-2)()(21x f x f ;若21,x x 同属于],[b c ,也有εε<<-2)()(21x f x f ;若21,x x 一个属于],[c a ,另一个属于],[b c ,则由δ<-21x x 知δδ<-<-c x c x 21,,从而εεε=+<-+-≤-22)()()()()()(2121x f c f c f x f x f x f .因而],[,21b a x x ∈∀且δ<-21x x 时,ε<-)()(21x f x f .因此由一致连续的定义可知)(x f 在],[b a 上一致连续.10.设函数)(x f 在),(+∞-∞上连续,且极限)(lim x f x -∞→与)(lim x f x +∞→存在.证明:)(x f 在),(+∞-∞上一致连续.证明对0>∀ε,由于)(lim x f x -∞→存在,根据Cauchy 收敛原理知,存在01>X ,任意121,X x x -<时,就有ε<-)()(21x f x f ;又由于)(lim x f x +∞→存在,故存在02>X ,任意221,X x x >,就有ε<-)()(21x f x f .由于)(x f 在),(+∞-∞上连续,故)(x f 在区间]1,1[21+--X X 上连续,因而在]1,1[21+--X X 上一致连续,由一致连续的定义知,对上述0>ε,存在01>δ,任意]1),1([,2121++-∈X X x x ,只要112δ<-x x ,就有ε<-)()(21x f x f .取0}1,min{1>=δδ,则),(,21+∞-∞∈∀x x ,只要δ<-21x x ,则21,x x 同属于区间),(1X --∞、]1),1([21++-X X 或),(2+∞X ,由上述讨论知,不管在哪种情况下,都有ε<-)()(21x f x f ,因而)(x f 在),(+∞-∞上一致连续.11.若)(x f 在区间X (有穷或无穷)中具有有界的导数,即M x f ≤')(,X x ∈,则)(x f 在X 中一致连续.证明对0>∀ε,取Mεδ=,则对任意X x x ∈21,,只要δ<-||21x x ,根据Lagrange 中值定理,存在ξ在21,x x 之间,且εδξ=<-≤-'=-M x x M x x f x f x f 212121|))((|)()(,从而)(x f 在X 中一致连续.12.求证:x x x f ln )(=在),0(+∞上一致连续.证明由于x x x f ln )(=,故xx x xxx f 2ln 2ln 211)(+=+=',xx x x f 4ln )(-='',令0)(=''x f 得1=x ,故1=x 是)(x f '的稳定点,当0)(),1,0(>''∈x f x ,从而)(x f '单调递增;而当0)(),,1(<''+∞∈x f x ,故)(x f '单调递减,因此1=x 是)(x f '的极大值点,也是最大值点,而1)1(='f ,从而对),0(+∞∈∀x ,1)(≤'x f .再令0)(='x f 得2-=e x ,在区间),[2+∞-e 上,由于0)(≥'x f ,因而在),[2+∞-e 上1)(0≤'≤x f ,即1)(≤'x f ,由上题结论知)(x f 在),[2+∞-e 上一致连续.此外,由于0ln lim )(lim 00==++→→x x x f x x ,若令⎩⎨⎧=>=.00,0ln )(x x x x x g则)(x g 在]2,0[连续,因而一致连续,从而)(x g 在]2,0(上一致连续,即)(x f 在]2,0(一致连续.对0>∀ε,由)(x f 在),[2+∞-e 上一致连续知,01>∃δ,对任意),[,221+∞∈-e x x 且121δ<-x x ,都有ε<-)()(21x f x f ;又由)(x f 在]2,0(上一致连续知,02>∃δ,对任意]2,0(,21∈x x 且221δ<-x x ,也有ε<-)()(21x f x f .取0}1,,min{21>=δδδ,则当),0(,21+∞∈x x 且δ<-21x x 时,要么],2,0(,21∈x x 要么),[,221+∞∈-e x x ,从而ε<-)()(21x f x f .因此x x x f ln )(=在),0(+∞上一致连续.13.设)(x f 在),(+∞a 上可导,且+∞='+∞→)(lim x f x ,求证:)(x f 在),(+∞a 上不一致连续.证明取10=ε,对0>∀δ,由于+∞='+∞→)(lim x f x ,故0>∃X ,当X x >时,有δ2)(>'x f ,任取X x >1,X x x >+=212δ,虽然有δδ<=-221x x ,但根据lagrange 中值定理知,存在)2,(11δξ+∈x x ,使得02121122)()()(εδδξ==⋅>-⋅'=-x x f x f x f .根据一致连续的否定定义知)(x f 在),(+∞a 上不一致连续.14.求证:x x x f ln )(=在),0(+∞上不一致连续.证明由于+∞=+='+∞→+∞→)1(ln lim )(lim x x f x x ,由上题结论知结论成立.§5可积性1.判断下列函数在区间]1,0[上的可积性:(1))(x f 在]1,0[上有界,不连续点为),2,1(1==n nx ;(2)⎪⎩⎪⎨⎧=∈⎪⎭⎫⎝⎛=;0,0],1,0(,sin sgn )(x x x x f π(3)⎪⎩⎪⎨⎧=∈⎥⎦⎤⎢⎣⎡-=;0,0],1,0(,11)(x x x x x f(4)[]⎪⎩⎪⎨⎧=∈=.0,0],1,0(,1)(1x x x f x解(1)由于)(x f 在]1,0[上有界,故存在0>M ,对]1,0[∈∀x ,都有M x f ≤)(,故在区间]1,0[的任何子区间上,)(x f 的振幅M 2≤ω.对任给0>ε,由于04lim=∞→n Mn ,故N n N >∀∃,时,都有24ε<n M ,特别地取10+=N n 时,也有240ε<n M .由于)(x f 在⎥⎦⎤⎢⎣⎡1,10n 上只有有限个间断点,因而是可积的,即01>∃δ,使得对区间⎥⎦⎤⎢⎣⎡1,10n 的任何1)max(δλ<∆='i x 的分法,都有∑<∆'''2i i i x εω.取⎭⎫⎩⎨⎧=011,min n δδ,对]1,0[的任意δλ<∆=)max(i x 的分法,下证εω<∆∑=ni i i x 1.由于)1,0(10∈n ,故对上述任意分法,都存在分点00,1i i x x -,使得00011i i x n x <≤-,因而∑∑∑∑∑+=-=+==-=∆++∆≤∆+∆+∆=∆ni i iii i i ni i iii i n i i i iiiixM x M xx xx o 11111110000022ωδωωωωεεεε=+<++≤222121200n M n M,这里最后一项210εω<∆∑+=ni i i i x 是由于[]⎥⎦⎤⎢⎣⎡⊂+1,11,010n x i ,而)(x f 在⎥⎦⎤⎢⎣⎡1,10n 可积,故函数在区间[]1,10+i x 可积,因而21εω<∆∑+=ni i i i x .因此0lim 10=∆∑=→ni i i x ωλ,即)(x f 在]1,0[上可积.(2)由于)(x f 在]1,0[上有界,且不连续点为),2,1(1==n nx 和0=x ,根据(1)的证法知)(x f 在]1,0[上可积.(3)由于)(x f 在]1,0[上有1)(≤x f ,故)(x f 有界,而且)(x f 的不连续点为0=x 和),2,1(1==n nx ,由(2)的证法知,)(x f 在]1,0[可积.(4)由于)(x f 在]1,0[上有1)(0≤≤x f ,故)(x f 有界,而且)(x f 的不连续点只有。

相关文档
最新文档