金属学与热处理第二章
金属学与热处理第二章

第二章关于均匀形核和非均匀形核的知识点没总结,到时候抄在最后面金属由液态转变成固态的过程称为凝固,由于凝固后的固态金属通常是晶体,所以称为结晶金属的理论结晶温度与实际结晶温度的差称为过冷度过冷度越大,实际结晶温度越低过冷度随金属的本性和纯度的不同,以及冷却速度的差异可以在很大范围内变化,金属不同则过冷度大小也不同。
金属的纯度越高,则过冷度越大。
过冷度大小主要取决于冷却速度,冷却速度越大,则过冷度越大,则实际结晶温度越低。
反之冷却速度越慢,则过冷度越小,实际结晶温度越接近理论结晶温度相变潜热:1mol物质从一个相转变为另一个相,伴随着放出或吸收的热量称为相变潜热熔化潜热:金属熔化时从固相转变为液相吸收的热量结晶潜热:结晶时从液相转变成固相放出的热量当液态金属的温度达到结晶温度时,由于结晶潜热的释放,补偿了散失到周围环境的热量,所以再冷却曲线上出现了平台,平台延续的时间就是结晶过程所需要的是时间结晶过程是形核与张大的过程结晶的驱动力:液相金属与固相金属的自由能之差阻力是新旧两相之间的界面能相变:在均匀一相或几个混合相内,出现具有不同成分或不同结构(包括原子、离子或电子的位置或位向)或不同组织形态或不同性质的相,称为相变。
结晶能否发生取决于固相的只有能是否低于液相的自由能熵:表示系统中原子排列混乱程度的参数要获得结晶过程所需的驱动力,一定要使实际结晶温度低于理论结晶温度,这样才能满足结晶的热力学条件。
过冷度越大,固液两相的自由能差越大,则相变驱动力越大,结晶速度便越快短程有序:在液态中的微小范围内,存在着紧密接触规则排列的原子集团,但在大范围内原子是无序分布的长程有序:晶体中大范围的原子是呈有序排列的结构起伏:这种不断变化着的短程有序原子集团只有在过冷液体中出现的尺寸较大的相起伏才有可能在结晶时转变成晶核。
这些相起伏就是晶核的胚芽,称为晶胚总之液态金属的一个重要特点是存在着相起伏,只有在过冷液体中的相起伏才能成为晶胚。
金属学与热处理第二章

根据构成能障的界面情况的不同,可能出现两种不同的形核
方式:
均匀形核
非均匀形核
15
3.1 均匀形核
在没有任何外来界面的均匀熔体中的生核过程。均质生核在熔 体各处几率相同,晶核的全部固-液界面皆由生核过程提供。因 此,所需的驱动力也较大。理想液态金属的生核过程就是均匀形 核,又称均质形核或自发形核。
16
31
(2) 形核速率
' GA Gk GA Gk f ( ) N k1 exp[( )] k1 exp[( )] kBT kBT
根据上式可知,异质形核率与下列因素有关: (1) 过冷度(ΔT):过冷度越大,形核率越高。
32
(2) 界面:界面由夹杂物的特性、形态和数量来决定。如夹 杂物基底与晶核润湿,则形核率大。 失配度
20
(3) 形核率 形核速率为单位时间、单位体积生成固相核心的数目。临界
尺寸r的晶核处于介稳定状态,既可溶解,也可长大。当r >rk时 才能成为稳定核心,即在rk的原子集团上附加一个或一个以上的 原子即成为稳定核心。其成核率 N 为:
N N1 N 2
Gk N1 N L exp( ) kBT
(1) 形核热力学
液相与固相体积自由能之差--相变的驱动力
由于出现了固/液界面而使系统增加了界面能--相 变的阻力
G G均 V GV 4 3 r GV 4 r 2 3
17
临界形核半径
2 Tm 2 rk Gv H f T
18
(2) 形核功
在实际金属中,由于金属原子的活动能力强,不易出现极大 点,即随着过冷度的增大,形核率急剧增加。 23
(4) 均匀生核理论的局限性 均匀形核的过冷度很大,约为0.2T m,如纯铝结晶时的过冷度
《金属学与热处理》第二课后习题答案

金属学与热处理第一章习题1.作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向3.某晶体的原子位于正方晶格的节点上,其晶格常数a=b≠c,c=2/3a。
今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数。
解:设X方向的截距为5a,Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)4.体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的晶面间距,并指出面间距最大的晶面解:(1 0 0)面间距为a/2,(1 1 0)面间距为√2a/2,(1 1 1)面间距为√3a/3三个晶面晶面中面间距最大的晶面为(1 1 0)7.证明理想密排六方晶胞中的轴比c/a=1.633证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示则OD=c/2,AB=BC=CA=CD=a因△ABC是等边三角形,所以有OC=2/3CE由于(BC)2=(CE)2+(BE)2则有(CD)2=(OC)2+(1/2c)2,即因此c/a=√8/3=1.6338.试证明面心立方晶格的八面体间隙半径为r=0.414R解:面心立方八面体间隙半径r=a/2-√2a/4=0.146a面心立方原子半径R=√2a/4,则a=4R/√2,代入上式有R=0.146X4R/√2=0.414R9.a)设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积膨胀。
b)经X射线测定,在912℃时γ-Fe的晶格常数为0.3633nm,α-Fe的晶格常数为0.2892nm,当由γ-Fe转化为α-Fe时,求其体积膨胀,并与a)比较,说明其差别的原因。
金属学与热处理课件 02金属的结晶

第2章 金属的结晶 2.1 纯金属的结晶与铸锭
过冷度越大,金属由液态转变为固态的推动力越大, 过冷度越大,金属由液态转变为固态的推动力越大,能稳定存在的短程有 序的原子集团的尺寸越小,因此生成的自发晶核越多。但是, 序的原子集团的尺寸越小,因此生成的自发晶核越多。但是,当过冷度过大或 温度过低时,由于原子的活动能力太低,生成晶核所需的原子的扩散受阻, 温度过低时,由于原子的活动能力太低,生成晶核所需的原子的扩散受阻,形 核的速率反而减小,故形核率与过冷度有关。 核的速率反而减小,故形核率与过冷度有关。 在实际金属结晶中,往往不需要自发形核那么大的过冷度就已开始形核, 在实际金属结晶中,往往不需要自发形核那么大的过冷度就已开始形核, 因为实际液态金属中总是不可避免地含有一些杂质, 因为实际液态金属中总是不可避免地含有一些杂质,杂质的存在常常促使金属 原子在其表面形核。此外,液态金属总是与锭模内壁相接触, 原子在其表面形核。此外,液态金属总是与锭模内壁相接触,于是晶核就依附 于这些现成的固体表面形成。 于这些现成的固体表面形成。这种依靠外来质点作为结晶核心的方式称为非自 发形核。 发形核。 按照结晶时能量的条件,基底与晶体结构以及点阵常数越相近, 按照结晶时能量的条件,基底与晶体结构以及点阵常数越相近,它们的原 子在接触面上越容易吻合,基底与晶核之间的界面能越小, 子在接触面上越容易吻合,基底与晶核之间的界面能越小,从而可以减少形核 时体系自由焓的增值,这样的基底促进非自发形核形成的效果较好,因此, 时体系自由焓的增值,这样的基底促进非自发形核形成的效果较好,因此,当 杂质的晶体结构和晶格常数与金属的结构相似或相当时, 杂质的晶体结构和晶格常数与金属的结构相似或相当时,有利于形成非自发形 晶核就优先依附于这些现成的表面而形成, 核,晶核就优先依附于这些现成的表面而形成,也有些难熔金属的晶体结构与 金属的结构相差甚远,但是其表面的凹孔或裂缝有时残留未熔金属, 金属的结构相差甚远,但是其表面的凹孔或裂缝有时残留未熔金属,也可以成 为非自发形核的核心。在生产实际中, 为非自发形核的核心。在生产实际中,液态金属结晶时形核方式主要是非自发 形核。 形核。
《金属学和热处理》崔忠圻[第二版]课后答案解析[完整版]
![《金属学和热处理》崔忠圻[第二版]课后答案解析[完整版]](https://img.taocdn.com/s3/m/b52838811a37f111f1855b79.png)
第一章金属的晶体结构1-1 作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6]等晶向。
答:1-2 立方晶系的{1 1 1}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。
答:{1 1 1}晶面共包括(1 1 1)、(-1 1 1)、(1 -1 1)、(1 1 -1)四个晶面,在一个立方晶系中画出上述四个晶面。
1-3 某晶体的原子位于正方晶格的节点上,其晶格常数为a=b≠c,c=2/3a。
今有一晶面在X、Y、Z坐标轴上的结局分别为5个原子间距、2个原子间距和3个原子间距,求该晶面的晶面指数。
答:由题述可得:X方向的截距为5a,Y方向的截距为2a,Z方向截距为3c=3×2a/3=2a。
取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)1-4 体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的面间距大小,并指出面间距最大的晶面。
答:H==a/2(1 0 0)==√2a/2H(1 1 0)==√3a/6H(1 1 1)面间距最大的晶面为(1 1 0)1-5 面心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的面间距大小,并指出面间距最大的晶面。
答:==a/2H(1 0 0)H==√2a/4(1 1 0)==√3a/3H(1 1 1)面间距最大的晶面为(1 1 1)注意:体心立方晶格和面心立方晶格晶面间距的计算方法是:1、体心立方晶格晶面间距:当指数和为奇数是H=,当指数和为偶数时H=2、面心立方晶格晶面间距:当指数不全为奇数是H=,当指数全为奇数是H=。
1-6 试从面心立方晶格中绘出体心正方晶胞,并求出它的晶格常数。
答:1-7 证明理想密排六方晶胞中的轴比c/a=1.633。
《金属学与热处理》课件

本课程将介绍金属学基础、金属热力学、金属相变、金属缺陷与强化、金属 热处理以及金属表面处理,让您掌握金属材料与加工的基本知识。
第一章 金属学基础
1
金属的组成
金属是由原子或离子通过共用自由电子结合而成,是导热、导电、延展、可塑性 极强的物质。
2
金属的晶体结构
金属是具有整齐排列、具有规律性的晶体结构。晶格是六面体密排结构。
3
金属的晶界和位错
晶界是晶体内部不同晶粒相交界面。位错是晶粒中原子或离子排列存在的缺陷。
第二章 金属热力学
热力学第一定律
能量可以从一种形式转换成 另一种形式,但能量总量不 变。
热力学第二定律
热量不会自己从低温转移到 高温物体,只有在做功或吸 收外界热量的情况下才可以。
热力学第三定律
在温度绝对零度的情况下, 能量变为零。
2 热处理设备
有固体加热炉、电阻炉、气体加热炉、水加热炉等。
3 热处理工艺控制
包括加热速度、加热温度、保温时间、冷却速度等控制参数。
第六章 金属表面处理
金属表面处理方法
包括化学处理、机械加工、电 化学处理、热处理、电镀等多 种方法。
金属表面处理工艺流程
表面清洁、表面活化、表面处 理、表面涂装等环节组成。
产生于晶体生长、切割、变形等过程中。
包括薄亚晶带、位错、蠕变加工硬化带。
3
面缺陷
是金属晶体的缺陷,其形状是哑铃、孔
强化机理
4
等。表现为晶界、裂纹等。
金属材料经过不同的加工或处理过程, 可以获得不同的强度、硬度、延展性等
性能。
第五章 金属的热处理
1 热处理工艺
是在一定的加热、保温和冷却条件下,对金属材料进行组织和性能控制的工艺。
金属学与热处理课后习题答案第二章

第二章纯金属的结晶2-1 a)试证明均匀形核时,形成临界晶粒的△Gk与其体积V之间关系式为△Gk=V △Gv/2b)当非均匀形核形成球冠状晶核时,其△Gk与V之间的关系如何答:2-2 如果临界晶核是边长为a的正方体,试求出△Gk和a之间的关系。
为什么形成立方体晶核的△Gk比球形晶核要大。
答:2-3 为什么金属结晶时一定要由过冷度影响过冷度的因素是什么固态金属熔化时是否会出现过热为什么答:金属结晶时需过冷的原因:如图所示,液态金属和固态金属的吉布斯自由能随温度的增高而降低,由于液态金属原子排列混乱程度比固态高,也就是熵值比固态高,所以液相自由能下降的比固态快。
当两线相交于Tm温度时,即Gs=Gl,表示固相和液相具有相同的稳定性,可以同时存在。
所以如果液态金属要结晶,必须在Tm温度以下某一温度Tn,才能使Gs<Gl,也就是在过冷的情况下才可自发地发生结晶。
把Tm-Tn的差值称为液态金属的过冷度影响过冷度的因素:金属材质不同,过冷度大小不同;金属纯度越高,则过冷度越大;当材质和纯度一定时,冷却速度越大,则过冷度越大,实际结晶温度越低。
固态金属熔化时是否会出现过热及原因:会。
原因:与液态金属结晶需要过冷的原因相似,只有在过热的情况下,Gl<Gs,固态金属才会发生自发地熔化。
2-4 试比较均匀形核和非均匀形核的异同点。
答:相同点:1、形核驱动力都是体积自由能的下降,形核阻力都是表面能的增加。
2、具有相同的临界形核半径。
3、所需形核功都等于所增加表面能的1/3。
不同点:1、非均匀形核的△Gk小于等于均匀形核的△Gk,随晶核与基体的润湿角的变化而变化。
2、非均匀形核所需要的临界过冷度小于等于均匀形核的临界过冷度。
3、两者对形核率的影响因素不同。
非均匀形核的形核率除了受过冷度和温度的影响,还受固态杂质结构、数量、形貌及其他一些物理因素的影响。
2-5 说明晶体生长形状与温度梯度的关系。
答:液相中的温度梯度分为:正温度梯度:指液相中的温度随至固液界面距离的增加而提高的温度分布情况。
金属学与热处理原理(第三版)课后答案 全

金属学与热处理课后答案第一章金属键?并用其解释金属的特性答:金属键就是金属阳离子和自由电子之间的强烈的相互作用,可以决定金属的很多物理性质。
金属的延展性就是由于在金属被锻造的时候,只是引起了金属阳离子的重新排布,而由于自由电子可以在整块金属内自由流动,金属键并未被破坏。
再如由于自由电子的存在使金属很容易吸收光子而发生跃迁,发出特定波长的光波,因而金属往往有特定的金属光泽。
金属中的自由电子沿着电场定向运动,导电性;自由电子的运动及正离子的震动,使之具有导热性;温度升高,正离子或原子本身振动的幅度加大,阻碍电子的通过,使电阻升高,具有正的电阻温度系数用双原子模型说明金属中原子为什么会呈现周期性规则排列,并趋于紧密排列答:当大量金属原子结合成固体时,为使体系能量最低,以保持其稳定,原子间必须保持一定的平衡距离,因此固态金属中的原子趋于周期性规则排列。
原子周围最近邻的原子数越多,原子间的结合能越低(因为结合能是负值),把某个原子从平衡位置拿走,克服周围原子对它的作用力所需做的功越大,因此固态金属中的原子总是自发地趋于紧密排列。
3.填表:晶格类型原子数原子半径配位数致密度间隙类型间隙半径间隙数目举例原子堆垛方式体心立方2a438 68% 八面体 a 18 α—Fe ABABAB四面体 a 24面心立方4a4212 74% 八面体 a 13 γ—Fe ABCABC四面体 a 8密排六方6a2112 74% 八面体 a 6 Mg ABABAB四面体8a 194什么是晶体结构?什么是晶格?什么是晶胞?答:晶体结构:指晶体中原子(离子,原子,分子集团)的具体的排列情况,也就是指晶体中这些质点在三维空间内有规律的周期性重复排列;晶格:将阵点用一系列平行的直线连接起来构成的空间格架。
晶胞:构成点阵的最基本单元。
5、作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向6立方晶系的{1 1 1}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习重点:名词、简答、各章课堂强调的重点及书后作业第二章纯金属的结晶一、名词:结晶:金属由液态转变为固态晶体的转变过程.结晶潜热:金属结晶时从液相转变为固相放出的热量。
孕育期:当液态金属过冷至理论结晶温度以下的实际结晶温度时,晶核并末立即出生,而是经过了一定时间后才开始出现第一批晶核。
结晶开始前的这段停留时间称为孕育期。
近程有序:液态金属中微小范围内存在的紧密接触规则排列的原子集团。
远程有序:固态晶体中存在的大范围内的原子有序排列集团。
结构起伏(相起伏):液态金属中不断变化着的近程有序原子集团。
晶胚:过冷液体中存在的有可能在结晶时转变为晶核的尺寸较大的相起伏。
形核率:单位时间单位体积液体中形成的晶核数目。
过冷度:金属的实际结晶温度与理论结晶温度之差。
均匀形核:液相中各个区域出现新相晶核的几率都相同的形核方式。
非均匀形核:新相优先出现于液相中的某些区域的形核方式。
变质处理:在浇注前向液态金属中加入形核剂以促进形成大量的非均匀晶核来细化晶粒的液态金属处理方法。
能量起伏:液态金属中各微观区的能量此起彼伏、变化不定偏离平衡能量的现象。
正温度梯度:液相中的温度随至界面距离的增加而提高的温度分布状况。
负温度梯度:液相中的温度随至界面距离的增加而降低的温度分布状况细晶强化:用细化晶粒来提高材料强度的方法。
晶粒度:晶粒的大小。
缩孔:液态金属凝固,体积收缩,不再能填满原来铸型,如没有液态金属继续补充而出现的收缩孔洞。
二、简答:1. 热分析曲线表征了结晶过程的哪两个重要宏观特征?答:过冷现象、结晶潜热释放现象2. 影响过冷度的因素有那些?如何影响的?答:金属的本性、纯度和冷却速度。
金属不同,过冷度的大小也不同;金属的纯度越高,则过冷度越大;冷却速度越大,则过冷度越大。
3. 决定晶体长大方式和长大速度的主要因素?1)界面结构;2)界面附近的温度分布;3)潜热的释放与逸散4. 晶体长大机制有哪几种?1)二维晶核长大机制;2)螺型位错长大机制;3)垂直长大机制5、结晶过程的普遍规律是什么?答:结晶是形核和晶核长大的过程6、均匀形核的条件是什么?答:①要有结构起伏与能量起伏;②液态金属要过冷,且过冷度必须大于临界过冷度;③结晶必须在一定温度下进行。
7、过冷度对形核率N有何影响?答:开始时,形核率随过冷度的增加而增大,当超过极大值之后,形核率又随过冷度的增加而减小,当过冷度非常大时,形核率接近于零。
8、何谓非均匀形核?答:非均匀形核:新相优先出现于液相中的某些区域的形核方式。
必要条件:9、影响接触角θ的因素?选择什么样的异相质点可以促进非均匀形核?答:晶体与固态杂质的结构(原子排列的几何状态、原子大小、原子间距等)上的相似程度。
选择晶体结构与金属晶核晶体结构相近的表面曲率大的异相质点。
三、综合应用题1、何谓结构起伏?它与过冷度有何关系?临界晶核半径与过冷度有何关系?答:结构起伏:液态金属中不断变化着的近程有序原子集团。
结构起伏与过冷度没有关系。
临界晶核半径与过冷度的关系:过冷度增大,临界晶核半径减小。
2、晶核长大的条件是什么?过冷度对长大方式和长大速度有什么影响?答:晶核长大的条件:1)温度,要有足够高的温度,保证原子具有足够的扩散能力;2)晶核表面结构要能够接纳原子。
过冷度对长大方式的影响:① 粗糙界面在较小的过冷度下即可垂直长大,且长大速度大。
②在很大的过冷度下,光滑界面才能以二维晶核与螺型位错方式长大,且长大速度很慢。
过冷度对长大速度的影响:随着过冷度的增大,长大速度先是增大,达到极大值后,又减小。
3、常温下晶粒大小对金属性能有何影响?根据凝固理论,试述细化晶粒的方法有哪些?答:金属的晶粒越细小,强度和硬度则越高,同时塑性韧性也越好。
细化晶粒的方法:1)控制过冷度,在一般金属结晶时的过冷度范围内,过冷度越大,晶粒越细小;2)变质处理,在浇注前往液态金属中加入形核剂,促进形成大量的非均匀晶核来细化晶粒;3)振动、搅动,对即将凝固的金属进行振动或搅动,一方面是依靠从外面输入能量促使晶核提前形成,另一方面是使成长中的枝晶破碎,使晶核数目增加。
四、书后习题 P592-1 a )证明均匀形核时,形成临界晶粒的k G ∆与其体积V 之间的关系为v k G V G ∆=∆2。
本题可了解掌握 证明:由均匀形核体系自由能的变化∆G =-V ∆G v +σS (1)可知,形成半径为r k 的球状临界晶粒,自由度变化为σπ+∆π-=∆23434k v k k r G r G (2) 对(2)进行微分处理,有k k k v k k dr r d dr G r d dr G d )4()34()(23σπ+∆π-=∆ 2433402⨯σπ+⨯∆π-=k v k r G r ,即2v k G r ∆=σ (3) 将(3)代入(1),有∆G k =-V ∆G v +2v k G r ∆S (4)因V=334k r π=S r k 3,即3V=r k S (5) 将(5)代入(4),有∆G k =-V ∆G v +v G V ∆23=v G V ∆22-2 如果临界晶核是边长为a 的正方形,试求其k G ∆和a 的关系?为什么形成立方晶核的k G ∆比球形晶核要大?本题可了解掌握证明:∆G =-V ∆G v +σS=-a 3∆G v +6a 2σ上式做微分处理,有0=-3a 2∆G v +12a σ,则σ=41a ∆G v 因此 ∆G k =- a 3∆G v +41a ∆G v 6a 2=21a 3∆G v 当形成球型晶核时σπ+∆π-=∆23434r G r G v 球,则有2v k G r ∆=σ,则 v k v k k v k k G r G r r G r G ∆π=∆π+∆π-=∆323322434球 当形成立方晶核时σ+∆-=∆236a G a G v 立,则有4v k G a ∆=σ,则 v k v k k v k k G a G a a G a G ∆=∆+∆-=∆3232146立 液态金属固定,σ值就固定不变了,所以24v k v k G r G a ∆=∆=σ,则有 a k =2r k ,代入v k v k kv k k G a G a a G a G ∆=∆+∆-=∆3232146立,则 v k k G r G ∆=∆34立,又v k k G r G ∆π=∆332球,所以 立k G ∆>球k G ∆2-3、为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否会出现过热度?为什么?掌握答:由热力学可知,在某种条件下,结晶能否发生,取决于固相的自由度是否低于液相的自由度,即∆G=G S -G L <0;只有当温度低于理论结晶温度T m 时,固态金属的自由能才低于液态金属的自由能,液态金属才能自发地转变为固态金属,因此金属结晶时一定要有过冷度。
影响过冷度的因素:1)金属的本性,金属不同,过冷度大小不同;2)金属的纯度,金属的纯度越高,过冷度越大;3)冷却速度,冷却速度越大,过冷度越大。
固态金属熔化时会出现过热度。
原因:由热力学可知,在某种条件下,熔化能否发生,取决于液相自由度是否低于固相的自由度,即∆G = G L -G S <0;只有当温度高于理论结晶温度T m 时,液态金属的自由能才低于固态金属的自由能,固态金属才能自发转变为液态金属,因此金属熔化时一定要有过热度。
2-4 试比较均匀形核与非均匀形核的异同点。
答:相同点:均匀形核与非均匀形核具有相同的临界晶核半径,非均匀形核的临界形核功也等于三分之一表面能。
不同点:非均匀形核的临界形核功小于等于均匀形核的临界形核功,即非均匀形核的过冷度小于等于均匀形核的过冷度。
2-5 说明晶体生长形状与温度的关系?P52答:在正温度梯度下长大,光滑界面呈锯齿状;粗糙界面呈平面;在负温度梯度下长大,一般金属和半金属的界面都呈树枝状,非金属界面呈光滑界面。
2-6 简述铸锭三晶区形成的原因及每个晶区的性能特点?掌握答:形成原因:1)表层细晶区:低温模壁强烈地吸热和散热,使靠近模壁的一薄层液体产生极大地过冷,模壁又可作为非均匀形核的基底,在此一薄层液体中立即产生大量的晶核,并同时向各个方向生长。
晶核数目多,晶核很快彼此相遇,不能继续生长,在靠近模壁处形成一薄层很细的等轴晶粒区。
2)柱状晶区:模壁温度升高导致温度梯度变得平缓;过冷度小,不能生成新晶核,但利于细晶区靠近液相的某些小晶粒长大;远离界面的液态金属过热,不能形核;垂直于模壁方向散热最快,晶体择优生长。
3)中心等轴晶区:柱状晶长到一定程度后,铸锭中部开始形核长大---中部液体温度大致是均匀的,每个晶粒的成长在各方向上接近一致,形成等轴晶。
性能特点:1)表层细晶区:组织致密,力学性能好;2)柱状晶区:组织较致密,存在弱面,力学性能有方向性;3)中心等轴晶区:各晶粒枝杈搭接牢固,无弱面,力学性能无方向性。
2-7 为了得到发达的柱状晶区应该采取什么措施?为了得到发达的等轴晶区应该采取什么措施?其基本原理如何?P57掌握答:为了得到发达的柱状晶区应采取的措施:1)控制铸型的冷却能力,采用导热性好与热容量大的铸型材料,增大铸型的厚度,降低铸型的温度。
2)提高浇注温度或浇注速度。
3)提高熔化温度。
基本原理:1)铸型冷却能力越大,越有利于柱状晶的生长。
2)提高浇注温度或浇注速度,使温度梯度增大,有利于柱状晶的生长。
3)熔化温度越高,液态金属的过热度越大,非金属夹杂物溶解得越多,非均匀形核数目越少,减少了柱状晶前沿液体中的形核的可能,有利于柱状晶的生长。
为了得到发达的等轴晶区应采取的措施:1)控制铸型的冷却能力,采用导热性差与热容量小的铸型材料,增大铸型的厚度,提高铸型的温度。
2)降低浇注温度或浇注速度。
3)降低熔化温度。
基本原理:1)铸型冷却能力越小,越有利于中心等轴晶的生长。
2)降低浇注温度或浇注速度,使温度梯度减小,有利于等轴晶的生长。
3)熔化温度越低,液态金属的过热度越小,非金属夹杂物溶解得越少,非均匀形核数目越多,增加了柱状晶前沿液体中的形核的可能,有利于等轴晶的生长。
第三章1、2节合金相部分一、解答1、根据晶体结构特点可以将相分为哪两大类?答:固溶体、金属化合物2、固溶体的分类1) 按溶质原子在晶格中所占位置分类①置换固溶体,②间隙固溶体2) 按固溶度分类①有限固溶体,②无限固溶体3) 按溶质原子与溶剂原子的相对分布分类①无序固溶体,②有序固溶体3、金属化合物的特点?金属化合物主要有哪三种类型?答:具有较高的熔点和硬度,使合金的强度、硬度、耐磨性及耐热性提高,但塑性韧性有所降低。
金属化合物主要有三种类型:正常价化合物,电子化合物,间隙相和间隙化合物二、综合应用题1、何谓合金?何谓组元?何谓相?何谓固溶体?固溶体的晶体结构有何特点?何谓置换固溶体?影响其固溶度的因素有哪些?掌握答:合金: 由两种或两种以上的金属,或金属与非金属,经熔炼、烧结或其它方法组合而成并具有金属特性的物质。