Verilog的150个经典设计实例
Verilog硬件描述语言(7)设计实例

[例5]. 3-8译码器设计实例(利用赋 值语句设计组合逻辑) module decoder(out,in); output [7:0] out; input [2:0] in; assign out = 1‘b1<<in;/**** 把最低位的1 左移 in(根据从in口输入的值)位,并 赋予out ****/ endmodule
多路器设计方案之三: module mux3( out, a, b, sel); output out; input a, b, sel; reg out; always @( a or b or sel ) begin if( sel ) out = a; else out = b; end endmodule
[例9]. 输出驱动器设计实例 三态输出驱动器设计方案之一: module trist1( out, in, enable); output out; input in, enable; assign out = enable? in: 'bz; endmodule
三态输出驱动器设计方案之二: module trist2( out, in, enable ); output out; input in, enable;
[例3].利用task和电平敏感的always块设 计比较后重组信号的组合逻辑. module sort4(ra,rb,rc,rd,a,b,c,d); parameter t=3; output [t:0] ra, rb, rc, rd; input [t:0] a, b, c, d; reg [t:0] ra, rb, rc, rd; always @(a or b or c or d) //用电平敏感的always块描述组合逻辑
ASIC设计实例(verilog)

ASIC设计实例 ASIC设计实例
设计一个交通灯信号控制电路。 要求输入为1KHz的时钟和复位信号,输出为 红、绿、黄三个信号(高电平为亮)。 具体描述:复位信号(低电平)有效,红、 绿、黄灯灭;接着进行如下循环:绿灯亮60 秒,黄灯闪烁10秒(闪烁周期是1秒),红 灯亮60秒。
设计端口及需求: 设计端口及需求:
always @(posedge clk) //??(50MHz->1KHz) begin if(~reset) begin count<=0; clk_scan<=0; end else begin if(count==25000) begin count<=0; clk_scan<=~clk_scan; end else count<=count+1; end end
always @(posedge clk_scan,negedge reset) //第5位 begin if (~reset) five<=0; else begin if (one==9 && two==9 && three==9 && four==9 && five==9) five<= 0; else begin if (one==9 && two==9 && three==9 && four==9) five<=five+1; end end end
always @(posedge clk_scan,negedge reset) //第4位 begin if (~reset) four<=0; else begin if (one==9 && two==9 && three==9 && four==9) four<= 0; else begin if (one==9 && two==9 && three==9) four<=four+1; end end end
Verilog的135个经典设计实例

Verilog的135个经典设计实例1、立即数放大器:立即数放大器是一种用于将输入电平放大到更高电平的电路,它可以实现任意输入到输出的映射,并且可以在Verilog中使用。
立即数放大器的Verilog实现如下:module immedamp(in, out);input in;output out;reg [3:0] immed;assign out = immed[3];begincase (in)4'b0000: immed = 4'b1000;4'b0001: immed = 4'b1001;4'b0010: immed = 4'b1010;4'b0011: immed = 4'b1011;4'b0100: immed = 4'b1100;4'b0101: immed = 4'b1101;4'b0110: immed = 4'b1110;4'b0111: immed = 4'b1111;4'b1000: immed = 4'b1000;4'b1001: immed = 4'b1001;4'b1010: immed = 4'b1010;4'b1011: immed = 4'b1011;4'b1100: immed = 4'b1100;4'b1101: immed = 4'b1101;4'b1110: immed = 4'b1110;4'b1111: immed = 4'b1111;endcaseendendmodule2、多路复用器:多路复用器是一种用于将多个输入选择转换为单个输出的电路,它可以实现由多种方式选择的输出,并可以使用Verilog实现。
verilog hdl语言100例详解

verilog hdl语言100例详解Verilog HDL语言是一种硬件描述语言,用于描述数字电路和系统的行为和结构。
它是硬件设计工程师在数字电路设计中的重要工具。
本文将介绍100个例子,详细解释Verilog HDL语言的应用。
1. 基本门电路:Verilog HDL可以用于描述基本门电路,如与门、或门、非门等。
例如,下面是一个描述与门电路的Verilog HDL代码:```verilogmodule and_gate(input a, input b, output y);assign y = a & b;endmodule```2. 多路选择器:Verilog HDL也可以用于描述多路选择器。
例如,下面是一个描述2:1多路选择器的Verilog HDL代码:```verilogmodule mux_2to1(input a, input b, input sel, output y);assign y = sel ? b : a;endmodule```3. 寄存器:Verilog HDL可以用于描述寄存器。
例如,下面是一个描述8位寄存器的Verilog HDL代码:```verilogmodule register_8bit(input [7:0] d, input clk, input reset, output reg [7:0] q);always @(posedge clk or posedge reset)if (reset)q <= 0;elseq <= d;endmodule```4. 计数器:Verilog HDL可以用于描述计数器。
例如,下面是一个描述8位计数器的Verilog HDL代码:```verilogmodule counter_8bit(input clk, input reset, output reg [7:0] count);always @(posedge clk or posedge reset)if (reset)count <= 0;elsecount <= count + 1;endmodule```5. 加法器:Verilog HDL可以用于描述加法器。
verilog的15个经典设计实例

begin b=a; c=b; end endmodule
【例 5.11】模为 60 的 BCD 码加法计数器
module count60(qout,cout,data,load,cin,reset,clk);
【例 5.6】用 fork-join 并行块产生信号波形
`timescale 10ns/1ns module wave2; reg wave; parameter cycle=5; initial
fork wave=0;
#(cycle) wave=1; #(2*cycle) wave=0; #(3*cycle) wave=1; #(4*cycle) wave=0; #(5*cycle) wave=1; #(6*cycle) $finish; join initial $monitor($time,,,"wave=%b",wave); endmodule
else
out<=out+1;
end
endmodule
//同步复位 //计数
【例 3.3】4 位全加器的仿真程序
`timescale 1ns/1ns `include "adder4.v" module adder_tp; reg[3:0] a,b; reg cin; wire[3:0] sum; wire cout; integer i,j;
output[7:0] qout;
output cout;
input[7:0] data;
input load,cin,clk,reset;
Verilog 数字系统设计90例

Verilog 数字系统设计90例verilog数字系统设计90例verilog数字系统设计代码90基准合肥工业大学宣城校区微电子科学与工程verilog数字系统设计contents1、二选一多路选择器............................................................................ ..............................12、多路器模块的编写测试平台............................................................................ ..............13、三位加法器............................................................................ ..........................................24、比较器............................................................................ ..................................................25、实例调用―三态门选择器............................................................................ ..................26、同步置位/清零的计数器............................................................................ .....................37、异步清零............................................................................ ..............................................38、case语句实现3-8译码器的部分代码 (3)9、for语句来实现8位数据中低4位左移到高4位........................................................410、for语句计算出13路脉冲信号为高电平的个数........................................................411、生成语句对两个n 位的总线用门级原语进行按位异或...........................................512、用条件生成语句实现参数化乘法器............................................................................ 513、使用case生成语句实现n位加法器.. (61)4、四选一多路器............................................................................ ....................................715、四位计数器............................................................................ ........................................716、使用任务控制交通灯............................................................................ ........................817、cpu总线控制的任务............................................................................ .......................918、自动任务示例............................................................................ ....................................919、用函数实现乘累加器............................................................................ .......................1020、计算32位地址值的偶校验位............................................................................ .........1121、左/右移位寄存器............................................................................ ..............................1222、用函数的递归调用定义阶乘计算............................................................................ ...1223、常量函数............................................................................ ...........................................1324、带符号函数............................................................................ .......................................1325、显示任务............................................................................ ...........................................1426、文件写入操作的例子............................................................................ .......................1427、读取文件的示例1............................................................................. ...........................1528、读取文件的示例2............................................................................. ...........................1529、使用$random生成随机数............................................................................ ................1630、宏定义语句`define....................................................................... .................................1631、带有宏定义的8位加法器............................................................................ ...............1732、用`include语句设计的16位加法器 (1)733、结构化描述方式对四选一多路选择器.......................................................................1834、结构化描述方式实现一位全加器...............................................................................1835、结构化描述方式实例化四个一位全加器实现四位串行进位全加器.......................1836、用户定义原语............................................................................ ...................................1937、四选一的多路选择器的自定义原语设计...................................................................2038、用户定义原语的方式设计电平敏感锁存器...............................................................2039、用户定义原语的方式设计d触发器(时钟下降沿触发)......................................2040、采用实例化前面用定义原语设计的四选一多路选择器(mux)的方法实现十六合肥工业大学宣城校区微电子科学与工程verilog数字系统设计选一的多路选择器............................................................................ (21)41、数据流建模叙述方式:一位全加器............................................................................ ..2242、犯罪行为建模方式设计一位加法器............................................................................ .......2243、混合设计方式设计一位全加器............................................................................ .......2244、数据流叙述方式对四挑选一多路选择器建模...............................................................2345、犯罪行为建模方式设计四挑选一多路选择器.......................................................................2346、用rtl级建模方式设计此电路............................................................................ ......2447、四位全加器............................................................................ .......................................2448、女团逻辑电路............................................................................ ...................................2449、单向三态端口............................................................................ ...................................2550、单向总线缓冲器............................................................................ ...............................2551、双向三态端口............................................................................ ...................................2552、双向总线缓冲器............................................................................ ...............................2653、2挑选1多路选择器............................................................................ ............................2654、多路比较器............................................................................ .......................................2755、拎CX600X端的3-8译码器............................................................................ .................2856、4十一位二进制至格雷码点的转换器............................................................................ ........2957、时序逻辑电路............................................................................ ...................................3058、jk触发器............................................................................ ..........................................3159、d触发器............................................................................ ............................................3260、拎异步登位端的d触发器............................................................................ ...................3261、拎异步置位端的d触发器............................................................................ ...................3262、具有异步置位和登位的d触发器............................................................................ ...3363、具有同步登位的d触发器............................................................................ ...............3364、拎同步置位端的下降沿触发器............................................................................ ........3365、拎异步登位端的和输入CX600X端的下降沿触发器............................................................3466、门锁存器:电平引爆的存储器单元,基本sr门锁存器.................................................3467、透明化门锁存器............................................................................ ........................................3568、基本n十一位同步计数器............................................................................ .......................3569、具有异步登位、同步计数CX600X和可以预置的十进制计数器........................................3570、格雷码计数器............................................................................ ....................................3671、四位移位寄存器............................................................................ ................................3772、8位撬装谢朗特移位寄存器.............................................................................................3773、利用移位寄存器产生顺序脉冲............................................................................ ........3874、可以输入输出信号的2分频信号、4分频信号和8分频信号的分频器.....................3875、分频系数为12的分频器............................................................................ ..................3976、分频系数为6,充电电流为1:5的偶数分频器..............................................................3977、3分频充电电流为1:1的奇数分频器............................................................................ ..4078、分频系数为5、充电电流为1:1的奇数分频器..............................................................4179、分频系数为7、充电电流为1:6的奇数分频器..............................................................4280、带使能端和登位端的时钟同步8十一位寄存器组逻辑....................................................4281、自引爆always 块............................................................................ ...............................4282、1001序列信号检测器............................................................................ .......................4383、米利型非常有限状态机............................................................................ . (47)合肥工业大学宣城校区微电子科学与工程verilog数字系统设计84、自动购饮料机的设计............................................................................ ........................4985、循序数据流切换为一种特定以太网数据流模块的设计................................................5386、设计对数字收集芯片ad0809的掌控USB电路的verilog代码...............................5787、面积优化――设计乘法选择器............................................................................ .........6188、串行化――叙述一个乘法累加器,其位宽位16十一位对8个16位数据进行乘法和加法运算.......................................................................6389、流水线设计――流水线计数使用实例:8位加法器..................................................6490、流水线设计――设计一个为8位全加器(一个就是轻易同时实现,一个使用4级流水线同时实现) (65)合肥工业大学宣城校区微电子科学与工程verilog数字系统设计1、二挑选一多路选择器行为描述:modulemuxtwo(out,a,b,sl);inputa,b,sl;outputout;regout;always@(aorborsl)if(!sl)out=a;elseout=b;endmodule逻辑叙述:modulemuxtwo(out,a,b,sl);inputa,b,sl;outputout;不必写下寄存器wirensl,sela,selb;assignnsl=~sl;assignsela=a&nsl;assignselb=b&sl;assignout=sel a|selb;endmodule门级叙述:modulemuxtwo(out,a,b,sl);inputa,b,sl;outputout;不用写寄存器notu1(nsl,sl);andu2(sela,a,nsl);andu3(selb,b,sl);oru4(out,sela,selb);endmodule2、多路器模块的编写测试平台`include“muxtwo.v”1。
用verilog-a写的一些电路模块的例子

用verilog-a写的一些电路模块的例子以下是几个用Verilog-A 语言编写的电路模块的例子:1. 增益电路模块````include "disciplines.vams"module gain_circuit(va, vb, vout, g);input va, vb;output vout;parameter real g=10.0;analog beginvout = g * (va - vb);endendmodule```这个例子展示了一个简单的增益电路模块,其中输入是两个电压va、vb,输出是vout,增益系数为g。
在模块中使用了Verilog-A 的`analog begin` 语句来定义电路的行为。
2. RC 低通滤波器模块````include "disciplines.vams"module rc_lowpass_filter(vin, vout, r, c);input vin;output vout;parameter real r=1.0, c=1e-6;real v1;analog begini(vin, v1) <+ (vin - v1)/(r*c);vout <+ v1;endendmodule```这个例子展示了一个基于RC 电路的低通滤波器模块,其中输入为vin,输出为vout,RC 电路的参数由r 和c 决定。
在模块中使用了Verilog-A 的`i()` 语句来定义电路的行为。
3. 三角波发生器模块````include "disciplines.vams"module triangle_wave_generator(vout, freq, amp, dc);output vout;parameter real freq=1e3, amp=1.0, dc=0.0;real t;analog begint = $abstime;vout <+ amp * (2 * (t * freq - floor(t * freq + 0.5)) - 1) + dc;endendmodule```这个例子展示了一个简单的三角波发生器模块,其中输出为vout,频率由freq 决定,幅值由amp 决定,直流分量由dc 决定。
verilog实例

一、组合逻辑实验 (2)实验1 3X8 译码器程序 (2)实验 2 二-十进制译码器 (2)实验3 BCD 码—七段数码管显示译码器 (3)实验4 8-3编码器 (4)实验 5 8-3优先编码器 (4)实验6 十—二进制编码器 (5)实验7 三选一数据选择器 (5)实验8 半加器 (6)实验9 全加器 (7)实验10 半减器 (8)实验11 全减器 (8)实验12 多位数值比较器 (9)实验13 奇偶校验 (9)实验14 补码生成 (10)实验15 8位硬件加法器的设计 (10)实验16 4 位并行乘法器 (10)实验17 七人表决器 (10)实验18 格雷码变换 (11)二、时序逻辑实验 (11)实验 1 D 触发器 (11)实验 2 JK 触发器 (12)实验 3 四位移位寄存器 (12)实验 4 异步计数器 (13)实验 5 同步计数器 (14)实验 6 可逆计数器 (15)实验7 步长可变的加减计数器 (16)实验8 含异步清0和同步时钟使能的4位加法计数器 (17)实验9 顺序脉冲发生器 (18)实验10 序列信号发生器 (18)实验11 用状态机实现串行数据检测器 (19)实验12 分频器 (20)实验13 Moore状态机 (21)实验14 Mealy 状态机 (23)实验15 三层电梯 (24)实验16 性线反馈移位寄存器(LFSR)设计 (32)实验17 正负脉宽数控调制信号发生器 (32)三、存储器设计 (34)实验 1 只读存储器(ROM) (34)实验 2 SRAM (34)实验 3 FIFO (35)四、扩展接口实验 (39)实验 1 流水灯 (39)实验 2 VGA彩色信号显示控制器设计 (40)实验 3 PS/2键盘接口实验 (48)实验 4 PS/2鼠标接口实验 (49)五、综合实验 (58)实验 1 函数发生器 (58)实验 2 自动售货机 (61)实验 3 移位相加4位硬件乘法器电路设计 (63)一、组合逻辑实验实验1 3X8 译码器程序//Decoder: 3-to 8 decoder with an enable contmodule decoder(y,en,a) ;output [7:0] y ;input en ;input [2:0] a;reg[7:0] y ;always @ (en or a) // EN 和A 是敏感信号if(!en) // 如果使能信号为低,无效y = 8'b1111_1111 ;elsecase(a)3'b000 : y = 8'b1111_1110 ; // 最低位为低3'b001 : y = 8'b1111_1101 ;3'b010 : y = 8'b1111_1011 ;3'b011 : y = 8'b1111_0111 ;3'b100 : y = 8'b1110_1111 ;3'b101 : y = 8'b1101_1111 ;3'b110 : y = 8'b1011_1111 ;3'b111 : y = 8'b0111_1111 ;default : y = 8'bx ; // 否则为不确定信号endcaseendmodule实验 2 二-十进制译码器//Decoder: binary-to decimal decoder with an enable controlmodule b2d(y,en,a) ;output [7:0] y ;input en ;input [3:0] a;reg[7:0] y ;always @ (en or a) // EN 和A 是敏感信号if(!en) // 如果使能信号为低,无效y = 8'b1111_1111;elsebeginif(a>9)y<=a+6; //这里完成了二进制到十进制的译码,elsey<=a;end//为了方便在平台上进行观察验证///这里把数据的个位和十位分别用4 个LED 进行显示,均为二进制Endmodule实验3 BCD 码—七段数码管显示译码器module decode4_7(decodeout,a);output[6:0] decodeout;input[3:0] a;reg[6:0] decodeout;always @(a)begincase(a) //用case 语句进行译码abcdefg4'h0:decodeout=7'b1111110;4'h1:decodeout=7'b0110000;4'h2:decodeout=7'b1101101;4'h3:decodeout=7'b1111001;4'h4:decodeout=7'b0110011;4'h5:decodeout=7'b1011011;4'h6:decodeout=7'b1011111;4'h7:decodeout=7'b1110000;4'h8:decodeout=7'b1111111;4'h9:decodeout=7'b1111011;4'ha:decodeout=7'b1110111;4'hb:decodeout=7'b0011111;4'hc:decodeout=7'b1001110;4'hd:decodeout=7'b0111101;4'he:decodeout=7'b1001111;4'hf:decodeout=7'b1000111;default: decodeout=7'bx;endcaseendendmodule实验4 8-3编码器//a 8-3 codermodule coder(dout,din);output[2:0] dout;input [7:0] din;reg [2:0] dout;always @(din)case(din)8'b1111_1110 : dout<=3'b000;8'b1111_1101 : dout<=3'b001;8'b1111_1011 : dout<=3'b010;8'b1111_0111 : dout<=3'b011;8'b1110_1111 : dout<=3'b100;8'b1101_1111 : dout<=3'b101;8'b1011_1111 : dout<=3'b110;8'b0111_1111 : dout<=3'b111;default: dout<=3'bx;endcaseendmodule实验 5 8-3优先编码器module encoder(d0,d1,d2,d3,d4,d5,d6,d7,x,y,v); output x,y,v;input d0,d1,d2,d3,d4,d5,d6,d7;reg x,y,v;always @ (d0 or d1 or d2 or d3 or d4 or d5 or d6 or d7) if (d7 == 0){x,y,v} = 3'b111 ;else if (d6 == 0){x,y,v} = 3'b110 ;else if (d5 == 0){x,y,v} = 3'b101 ;else if (d4 == 0){x,y,v} = 3'b100 ;else if (d3 == 0){x,y,v} = 3'b011 ;else if (d2 == 0){x,y,v} = 3'b010 ;else if (d1 == 0){x,y,v} = 3'b001 ;else if (d0 == 0){x,y,v} = 3'b000 ;else{x,y,v} = 3'bxxx ;endmodule实验6 十—二进制编码器// decimal to binary encodermodule encoder(y,a);output [4:0] y;input [4:0] a; // input [4] 为十位,[3:0]为个位?reg [4:0] y;always @ (a) // A 是敏感信号beginif(a>9)y<=a-6; //这里完成了十进制到二进制的编码,elsey<=a;end//为了方便在平台上进行观察验证///这里把数据的个位用4 个2 进制数据表示,十位用1bit 进行显示;endmodule实验7 三选一数据选择器module mux3to1(dout,a,b,c,sel);output[1:0] dout;input [1:0] a,b,c;input[1:0] sel;reg [1:0] dout;// RTL modelingalways @(a or b or c or sel)case(sel)2'b00 : dout<=a;2'b01 : dout<=b;2'b10 : dout<=c;default :dout<=2'bx;endcaseendmodule//数据流方式描述的1 位半加器module halfadder (sum,cout,a,b); input a,b;output sum,cout;assign sum=a^b;assign cout=a&b;// carry out; endmodule附录:各种不同的描述方式:1,调用门元件实现的1 位半加器module half_add1(a,b,sum,cout); input a,b;output sum,cout;and (cout,a,b);xor (sum,a,b);endmodule2,采用行为描述的1 位半加器module half_add3(a,b,sum,cout); input a,b;output sum,cout;reg sum,cout;always @(a or b)begincase ({a,b}) //真值表描述2'b00: begin sum=0; cout=0; end2'b01: begin sum=1; cout=0; end2'b10: begin sum=1; cout=0; end2'b11: begin sum=0; cout=1; end endcaseendendmodule3,采用行为描述的1 位半加器module half_add4(a,b,sum,cout); input a,b;output sum,cout;reg sum,cout;always @(a or b)beginsum= a^b;cout=a&b;endendmodule// 1 bit full adder 1 位全加器module full_add(a,b,cin,sum,cout);input a,b,cin;output sum,cout;assign {cout,sum}=a+b+cin;endmodule附录:各种不同的描述方式实现的1位全加器1,调用门元件实现的1 位全加器module full_add1(a,b,cin,sum,cout);input a,b,cin;output sum,cout;wire s1,m1,m2,m3;and (m1,a,b),(m2,b,cin),(m3,a,cin);xor (s1,a,b),(sum,s1,cin);or (cout,m1,m2,m3);endmodule2 数据流描述的1 位全加器module full_add2(a,b,cin,sum,cout);input a,b,cin;output sum,cout;assign sum = a ^ b ^ cin;assign cout = (a & b)|(b & cin)|(cin & a);endmodule3 行为描述的1 位全加器module full_add4(a,b,cin,sum,cout);input a,b,cin;output sum,cout;reg sum,cout; //在always 块中被赋值的变量应定义为reg 型reg m1,m2,m3;always @(a or b or cin)beginsum = (a ^ b) ^ cin;m1 = a & b;m2 = b & cin;m3 = a & cin;cout = (m1|m2)|m3;endendmodule4 混合描述的1 位全加器module full_add5(a,b,cin,sum,cout);input a,b,cin;output sum,cout;reg cout,m1,m2,m3; //在always 块中被赋值的变量应定义为reg 型wire s1;xor x1(s1,a,b); //调用门元件always @(a or b or cin) //always 块语句beginm1 = a & b;m2 = b & cin;m3 = a & cin;cout = (m1| m2) | m3;endassign sum = s1 ^ cin; //assign 持续赋值语句endmodule实验10 半减器module half_sub(diff,sub_out,x,y);output diff,sub_out;input x,y;reg diff,sub_out;//行为描述always@(x or y)case ({x,y})2'b00 : begin diff= 0; sub_out = 0;end2'b01 : begin diff= 1; sub_out = 1;end2'b10 : begin diff= 1; sub_out = 0;end2'b11 : begin diff= 0; sub_out = 0;enddefault: begin diff= x; sub_out =x;endendcaseendmodule实验11 全减器module full_sub(diff,sub_out,x,y,sub_in);output diff,sub_out;input x,y,sub_in;reg diff,sub_out;//行为描述always@(x or y or sub_in)case ({x,y,sub_in})3'b000 : begin diff= 0; sub_out = 0;end3'b001 : begin diff= 1; sub_out = 1;end3'b010 : begin diff= 1; sub_out = 1;end3'b011 : begin diff= 0; sub_out = 1;end3'b100 : begin diff= 1; sub_out = 0;end3'b101 : begin diff= 0; sub_out = 0;end3'b110 : begin diff= 0; sub_out = 0;end3'b111 : begin diff= 1; sub_out = 1;enddefault: begin diff= x; sub_out =x;endendcaseendmodule实验12 多位数值比较器module comp(ABB,AEB,ASB,A,B,I1,I2,I3);output ABB,AEB,ASB; // ABB 表示A>B AEB 表示A=B, ASB 表示A<B;input [1:0] A,B;input I1,I2,I3; // I1表示上一级的A>B I2 表示上一级的A=B, I3 表示上一级的A<B; reg ABB,AEB,ASB;//行为描述always@(A or B or I1 or I2 or I3)if(A>B){ABB,AEB,ASB}=3'b100;else if(A<B){ABB,AEB,ASB}=3'b001;else // A=B,但是考虑到前一级的情况begin if(I1) //I1 表示上一级的A>B{ABB,AEB,ASB}=3'b100;else if(I3){ABB,AEB,ASB}=3'b001;//I3 表示上一级的A<B;else{ABB,AEB,ASB}=3'b010;endendmodule实验13 奇偶校验//奇偶校验位产生器module parity(even_bit,odd_bit,input_bus);output even_bit,odd_bit;input[7:0] input_bus;assign odd_bit = ^ input_bus; //产生奇校验位assign even_bit = ~odd_bit; //产生偶校验位endmodule实验14 补码生成module compo(d_out,d_in);output [7:0] d_out;input [7:0]d_in;reg [7:0] d_out;always @(d_in)if (d_in[7]==1'b0) // 正数,最高位为符号位,0说明是正数,正数补码是其本身d_out=d_in;else // 负数d_out={d_in[7],~d_in[6:0]+1'b1}; //最高位符号位不变,数据位加一构成其补码endmodule实验15 8位硬件加法器的设计//8 位硬件加法器module add8b(cout,sum,a,b,cin);output[7:0] sum;output cout;input[7:0] a,b;input cin;assign {cout,sum}=a+b+cin;endmodule实验16 4 位并行乘法器//4 位并行乘法器module mult(outcome,a,b);parameter size=4;input[size:1] a,b; //两个操作数output[2*size:1] outcome; //结果assign outcome=a*b; //乘法运算符endmodule实验17 七人表决器// for 语句描述的七人投票表决器module voter7(pass,vote);output pass; // 通过为高电平,否则为低电平input[6:0] vote; // 7个投票输入#通过为高,否定为低reg[2:0] sum;integer i;reg pass;always @(vote)beginsum=0;for(i=0;i<=6;i=i+1) //for 语句if(vote[i]) sum=sum+1;if(sum[2]) pass=1; //若超过4 人赞成,则pass=1else pass=0;endendmodule实验18 格雷码变换module BIN2GARY (EN ,DATA_IN ,DA TA_OUT );input EN ;input [3:0] DATA_IN ;output [3:0] DATA_OUT ;assign DATA_OUT [0] = (DA TA_IN [0] ^ DA TA_IN [1] ) && EN ; assign DATA_OUT [1] = (DA TA_IN [1] ^ DATA_IN [2] ) && EN ; assign DATA_OUT [2] = (DA TA_IN [2] ^ DATA_IN [3] ) && EN ; assign DATA_OUT [3] = DATA_IN [3] && EN ;endmodule二、时序逻辑实验实验 1 D 触发器module myDFF(q,qn,d,clk,set,reset);input d,clk,set,reset;output q,qn;reg q,qn;always @(posedge clk)beginif (reset) beginq <= 0; qn <= 1; //同步清0,高电平有效endelse if (set) beginq <=1; qn <=0; //同步置1,高电平有效else beginq <= d; qn <= ~d;endendendmodule实验 2 JK 触发器//带异步清0、异步置1 的JK 触发器module JK_FF(CLK,J,K,Q,RS,SET);input CLK,J,K,SET,RS;output Q;reg Q;always @(posedge CLK or negedge RS or negedge SET) beginif(!RS) Q <= 1'b0;else if(!SET) Q <= 1'b1;else case({J,K})2'b00 : Q <= Q;2'b01 : Q <= 1'b0;2'b10 : Q <= 1'b1;2'b11 : Q <= ~Q;default: Q<= 1'bx;endcaseendendmodule实验 3 四位移位寄存器//4 位移位寄存器module shifter(din,clk,clr,dout);input din,clk,clr;output[3:0] dout;reg[3:0] dout;always @(posedge clk)beginif (clr) dout<= 4'b0; //同步清0,高电平有效elsebegindout <= dout << 1; //输出信号左移一位dout[0] <= din; //输入信号补充到输出信号的最低位endendmodule// 分频器部分,获得便于试验观察的时钟信号module clk_div(clk_out,clk_in);input clk_in;output clk_out;reg clk_out;reg[25:0] counter; //50_000_000=1011_1110_1011_1100_0010_0000_00parameter cnt=50_000_000; /// 50MHz is the sys clk,50_000_000=2FAF080 always @(posedge clk_in)begincounter<=counter+1;if(counter==cnt/2-1)beginclk_out<=!clk_out;counter<=0;endendendmodule实验 4 异步计数器//行为描述方式实现的4 位异步计数器module counter(clk,clr,q0,q1,q2,q3);input clk,clr;output q0,q1,q2,q3;reg q0,q1,q2,q3;//reg q0_t,q1_t,q2_t,q3_t;reg q0_r,q1_r,q2_r,q3_r;always @(posedge clk or negedge clr)if(!clr) q0_r<=0;elseq0_r<=!q0_r;always @(posedge q0_r or negedge clr)if(!clr) q1_r<=0;elseq1_r<=!q1_r;always @(posedge q1_r or negedge clr)if(!clr) q2_r<=0;elseq2_r<=!q2_r;always @(posedge q2_r or negedge clr)if(!clr) q3_r<=0;elseq3_r<=!q3_r;assign {q0,q1,q2,q3}={q0_r,q1_r,q2_r,q3_r};endmodule// 分频器部分,获得便于试验观察的时钟信号module clk_div(clk_out,clk_in);input clk_in;output clk_out;reg clk_out;reg[25:0] counter; //50_000_000=1011_1110_1011_1100_0010_0000_00 parameter cnt=50_000_000; /// 50MHz is the sys clk,50_000_000=2FAF080 always @(posedge clk_in)begincounter<=counter+1;if(counter==cnt/2-1)beginclk_out<=!clk_out;counter<=0;endendendmodule实验 5 同步计数器Verilog HDL 程序//带异步清0的同步计数器module counter(Q,CR,CLK);input CLK,CR;output[3:0] Q;reg [3:0]Q;always @(posedge CLK or negedge CR)beginif(!CR) Q <= 4'b0000;elsebeginif (Q==15)Q<=0;else Q<=Q+1;endendendmodule// 分频器部分,获得便于试验观察的时钟信号module clk_div(clk_out,clk_in);input clk_in;output clk_out;reg clk_out;reg[25:0] counter; //50_000_000=1011_1110_1011_1100_0010_0000_00 parameter cnt=50_000_000; /// 50MHz is the sys clk,50_000_000=2FAF080 always @(posedge clk_in)begincounter<=counter+1;if(counter==cnt/2-1)beginclk_out<=!clk_out;counter<=0;endendendmodule实验 6 可逆计数器//同步清零的可逆计数器module counter(Q,CLK,CR,UD);input CLK,CR,UD;output[3:0] Q;reg [3:0]cnt;initialbegincnt<=4'b0000;endassign Q = cnt;always @(posedge CLK )beginif(!CR) cnt <= 4'b0000; //同步清0,低电平有效else beginif (UD) cnt = cnt + 1; //加法计数else cnt = cnt - 1; //减法计数endendendmodule// 分频器部分,获得便于试验观察的时钟信号module clk_div(clk_out,clk_in);input clk_in;output clk_out;reg clk_out;reg[25:0] counter; //50_000_000=1011_1110_1011_1100_0010_0000_00parameter cnt=50_000_000; /// 50MHz is the sys clk,50_000_000=2FAF080 always @(posedge clk_in)begincounter<=counter+1;if(counter==cnt/2-1)beginclk_out<=!clk_out;counter<=0;endendendmodule实验7 步长可变的加减计数器//同步清零的步长可变加减计数器module counter(Q,CLK,CR,UD,STEP);input CLK,CR,UD;input [1:0] STEP;output[3:0] Q;reg [3:0]cnt;initialbegincnt<=4'b0000;endassign Q = cnt;always @(posedge CLK)beginif(!CR) cnt <= 4'b0000; //同步清0,低电平有效else beginif (UD) cnt = cnt + STEP; //加法计数else cnt = cnt - STEP; //减法计数endendendmodule// 分频器部分,获得便于试验观察的时钟信号module clk_div(clk_out,clk_in);input clk_in;output clk_out;reg clk_out;reg[25:0] counter; //50_000_000=1011_1110_1011_1100_0010_0000_00 parameter cnt=50_000_000; /// 50MHz is the sys clk,50_000_000=2FAF080 always @(posedge clk_in)begincounter<=counter+1;if(counter==cnt/2-1)beginclk_out<=!clk_out;counter<=0;endendendmodule实验8 含异步清0和同步时钟使能的4位加法计数器//实验八含异步清0 和同步时钟使能的4 位加法计数器module counter(clk,clear,en,qd);input clk,clear,en;output[3:0] qd;reg[3:0] cnt;always @(posedge clk or negedge clear)beginif (!clear) cnt <= 4'h0; //异步清0,低电平有效else if (en) //同步使能cnt<= cnt + 1; //加法计数endassign qd = cnt;endmodule// 分频器部分,获得便于试验观察的时钟信号module clk_div(clk_out,clk_in);input clk_in;output clk_out;reg clk_out;reg[25:0] counter; //50_000_000=1011_1110_1011_1100_0010_0000_00parameter cnt=50_000_000; /// 50MHz is the sys clk,50_000_000=2FAF080 always @(posedge clk_in)begincounter<=counter+1;if(counter==cnt/2-1)beginclk_out<=!clk_out;counter<=0;endendendmodule实验9 顺序脉冲发生器module pulsegen(q0,q1,q2,clk,rd);input clk, rd;output q0,q1,q2;reg q0,q1,q2;reg [2:0] x,y;always @(posedge clk)if(rd)beginy<=0;x<=3'b001; // give a initial valueendelsebeginy<=x;x<={x[1:0],x[2]};endassign {q0,q1,q2}=y;endmodule// 分频器部分,获得便于试验观察的时钟信号module clk_div(clk_out,clk_in);input clk_in;output clk_out;reg clk_out;reg[25:0] counter; //50_000_000=1011_1110_1011_1100_0010_0000_00 parameter cnt=50_000_000; /// 50MHz is the sys clk,50_000_000=2FAF080 always @(posedge clk_in)begincounter<=counter+1;if(counter==cnt/2-1)beginclk_out<=!clk_out;counter<=0;endendendmodule实验10 序列信号发生器module sequencer(y,clk,clr);input clk,clr;reg [7:0] yt;parameter s0=8'b1000_0000, // state 0s1=8'b1100_0001, // state 1s2=8'b1110_0000, // state 2s3=8'b0001_0000,s4=8'b1111_1000,s5=8'b0000_0011,s6=8'b1111_0011,s7=8'b0000_0001; //state 7always @(posedge clk)beginif(clr)yt<=s0; // clear to state 0elsebegincase(yt)s0: yt<=s1; //change from state 0 to state 1s1 : yt<=s2; //s2 : yt<=s3; // state 2-->3s3 : yt<=s4;s4 : yt<=s5;s5 : yt<=s6;s6 : yt<=s7;s7 : yt<=s0; //state 7 to state 0default: yt<=s0; //default state 7 to s0endcaseendendassign y=yt;endmodule实验11 用状态机实现串行数据检测器module detector(got,instr,clk);output got;input instr,clk;reg [2:0] cstate,nextstate;reg got;parameter s0=0,s1=1,s2=2,s3=3,s4=4,s5=5,s6=6,s7=7; // 8 statesalways @(posedge clk) // 定义起始状态begincstate<=nextstate;endalways @(cstate or instr) // 定义状态转换begincase(cstate)s0 : begin got<=0;if(instr) nextstate<=s1; //detected the 1st bit of 1110010,i.e.,1,to s1else nextstate<=s0; // if not ,stay hereends1 : begin got<=0;if(instr) nextstate<=s2; //detected the 2nd bit of 1110010,i.e.,1,to s2else nextstate<=s0; // notends2 : begin got<=0;if(instr) nextstate<=s3; //detected the 3rd bit of 1110010,i.e.,1else nextstate<=s0; // notends3 : begin got<=0;if(!instr) nextstate<=s4; //detected the 4th bit of 1110010,i.e.,0else nextstate<=s2; // not ,stayends4 : begin got<=0;if(!instr) nextstate<=s5; //detected the 5th bit of 1110010,i.e.,0else nextstate<=s1; // notends5 : begin got<=0;f(instr) nextstate<=s6; //detected the 6th bit of 1110010,i.e.,1else nextstate<=s0; // notends6 : begin got<=0;if(!instr) nextstate<=s7; //detected the 7th bit of 1110010,i.e.,0else nextstate<=s2; // notends7 : begin got<=1; // got the sequenceif(instr) nextstate<=s1; //detected the 1st bit of 1110010,i.e.,1,chagne to s1 else nextstate<=s0; // not ,change to s0endendcaseendendmodule实验12 分频器// 分频器部分,获得便于试验观察的时钟信号,在实验台上进行观察module clk_div(clk_out,clk_in);input clk_in;output clk_out;reg clk_out;reg[25:0] counter; //50_000_000=1011_1110_1011_1100_0010_0000_00 parameter cnt=50_000_000; /// 50MHz is the sys clk,50_000_000=2FAF080 always @(posedge clk_in)begincounter<=counter+1;if(counter==cnt/2-1)beginclk_out<=!clk_out;counter<=0;endendendmodule// 分频器部分用于设计仿真,10 分频module clk_diver(clk_out,clk_in);input clk_in;output clk_out;reg clk_out;reg[4:0] counter; //parameter cnt=10; /// 10分频always @(posedge clk_in)begincounter<=counter+1;if(counter==cnt/2-1)beginclk_out<=!clk_out;counter<=0;endendendmodule实验13 Moore状态机module moore(dataout,clk,datain,reset);output[3:0] dataout;input [1:0] datain;input clk,reset;parameter s0=2'b00, //采用格雷码编码s1=2'b01,s2=2'b11,s3=2'b10;reg [1:0]cstate,nstate;reg [3:0] dataout;always @(posedge clk or posedge reset)//时序逻辑进程if(reset) //异步复位cstate<=s0;else //--当检测到时钟上升沿时执行CASE 语句begincstate<=nstate;endalways @(cstate or datain)begincase(cstate)s0:begin if(datain==0) nstate<=s1;else nstate<=s0;ends1:begin if(datain==1) nstate<=s2;else nstate<=s1;ends2:begin if(datain==2) nstate<=s3;else nstate<=s2; ends3:begin if(datain==3) nstate<=s0;else nstate<=s3; end//由信号state 将当前状态值带出此进程,进入组合逻辑进程endcaseendalways @(cstate) //组合逻辑进程begincase(cstate)// -- 确定当前状态值s0:dataout<=4'b0001; //对应状态s0的数据输出为"0001"s1:dataout<=4'b0010;s2:dataout<=4'b0100;s3:dataout<=4'b1000;endcaseendendmodule// 分频器部分,获得便于试验观察的时钟信号module clk_div(clk_out,clk_in);input clk_in;output clk_out;reg clk_out;reg[25:0] counter; //50_000_000=1011_1110_1011_1100_0010_0000_00parameter cnt=50_000_000; /// 50MHz is the sys clk,50_000_000=2FAF080 always @(posedge clk_in)begincounter<=counter+1;if(counter==cnt/2-1)beginclk_out<=!clk_out;counter<=0;endendendmodule实验14 Mealy 状态机module mealy(dataout,clk,datain,reset);output[3:0] dataout;input [1:0] datain;input clk,reset;parameter s0=2'b00, //采用格雷码编码s1=2'b01,s2=2'b11,s3=2'b10;reg [1:0]cstate,nstate;reg [3:0] dataout;always @(posedge clk or posedge reset)//时序逻辑进程if(reset) //异步复位cstate<=s0;else //--当检测到时钟上升沿时执行CASE 语句begincstate<=nstate;endalways @(cstate or datain)begincase(cstate)s0:begin if(datain==0) nstate<=s1;else nstate<=s0;ends1:begin if(datain==1) nstate<=s2;else nstate<=s1;ends2:begin if(datain==2) nstate<=s3;else nstate<=s2; ends3:begin if(datain==3) nstate<=s0;else nstate<=s3; end//由信号state 将当前状态值带出此进程,进入组合逻辑进程endcaseendalways @(cstate or datain) //组合逻辑进程begincase(cstate)// -- 确定当前状态值s0:begin if (datain==0)dataout<=4'b0001;else dataout<=4'b0000;end//对应状态s0,输入datain 为0 时,数据输出为"0001",即输出由当前状态和输入同时控制;s1:begin if (datain==1)dataout<=4'b0010;else dataout<=4'b0101;ends2:begin if (datain==2)dataout<=4'b0100;else dataout<=4'b0011;ends3:begin if (datain==3)dataout<=4'b1000; else dataout<=4'b0110;endendcaseendendmodule实验15 三层电梯module lift_3 (buttonclk, liftclk, reset, f1upbutton, f2upbutton, f2dnbutton, f3dnbutton,stop1button, stop2button, stop3button,position, doorlight,udsig,fdnlight,fuplight);input buttonclk; //input liftclk; //电梯运行时钟input reset; // resetinput f1upbutton; //from 1st floor to upstairsinput f2upbutton; //from 2nd floor to upstairsinput f2dnbutton; //from 2nd floor to downstairsinput f3dnbutton; //from 3rd floor to downstairsinput stop1button; // signal to stop the lift on floor 1input stop2button; // stop on floor 2input stop3button; // stop on floor 3output [2:1] fuplight;reg[2:1] fuplight; //regoutput [3:2] fdnlight;reg[3:2] fdnlight;reg[3:1] stoplight;reg[1:0] position;output doorlight; // close or open 开关指示灯reg doorlight;output udsig; // up or down signalreg udsig;parameter[3:0] stopon1 = 0; /// state machineparameter[3:0] dooropen = 1;parameter[3:0] doorclose = 2;parameter[3:0] doorwait1 = 3;parameter[3:0] doorwait2 = 4;parameter[3:0] doorwait3 = 5;parameter[3:0] doorwait4 = 6;parameter[3:0] up = 7;parameter[3:0] down = 8;parameter[3:0] stop = 9;reg[3:0] mylift; //reg clearup;reg cleardn;reg[1:0] pos;always @(posedge reset or posedge liftclk)beginif (reset == 1'b1) ///asyn resetbeginmylift = stopon1 ; // defalut positon :floor 1clearup = 1'b0 ; // clear upcleardn = 1'b0 ; //clear downendelsebegincase (mylift) // FSMstopon1 : /// stop on floor 1begindoorlight = 1'b1 ;position = 1 ; //the lift positon flagpos = 1; //mylift = doorwait1 ;enddoorwait1 :beginmylift = doorwait2 ; // 2nd secondsenddoorwait2 :beginclearup = 1'b0 ; //cleardn = 1'b0 ;mylift = doorwait3 ; // 3rd sec.senddoorwait3 :beginmylift = doorwait4 ; //4th secondenddoorwait4 :beginmylift = doorclose ; //enddoorclose : // after 4 seconds ,close the doorbegindoorlight = 1'b0 ;if (udsig == 1'b0) // going upbeginif (position == 3) // on floor 3beginif (stoplight == 3'b000 & fuplight == 2'b00 & fdnlight == 2'b00) //no requestsbeginudsig = 1'b1 ; ///mylift = doorclose ;endelsebeginudsig = 1'b1 ;mylift = down ; // if not ,must be going downendendelse if (position == 2) // on floor 2beginif (stoplight == 3'b000 & fuplight == 2'b00 & fdnlight == 2'b00) //no requestsbeginudsig = 1'b0 ; //still going upmylift = doorclose ; //closingendelse if ((stoplight[3]) == 1'b1 | ((stoplight[3])== 1'b0 & (fdnlight[3]) == 1'b1))begin //inside req to stop onf.3 ,or req. to go down from f.3udsig = 1'b0 ; //still going upmylift = up ;endelsebegin // must be going down whatever happensudsig = 1'b1 ;mylift = down ;endendelse if (position == 1) // on floor 1beginif (stoplight == 3'b000 & fuplight == 2'b00 & fdnlight == 2'b00) //no req.beginudsig = 1'b0 ;mylift = doorclose ; // waiting for the going up reqendelsebeginudsig = 1'b0 ; // must be going upmylift = up ;endendendelse if (udsig == 1'b1) // if going downbeginif (position == 1) //beginif (stoplight == 3'b000 & fuplight == 2'b00 & fdnlight == 2'b00)beginudsig = 1'b0 ; // no reqmylift = doorclose ;//waiting for the req to go upendelsebeginudsig = 1'b0 ; // going up at any casemylift = up ;endendelse if (position == 2)beginif (stoplight == 3'b000 & fuplight == 2'b00 & fdnlight == 2'b00)beginudsig = 1'b1 ;mylift = doorclose ;endelse if ((stoplight[1]) == 1'b1 | ((stoplight[1]) == 1'b0 & (fuplight[1]) == 1'b1))beginudsig = 1'b1 ; //downmylift = down ;endelsebeginudsig = 1'b0 ; //mylift = up ;endendelse if (position == 3)///beginif (stoplight == 3'b000 & fuplight == 2'b00 & fdnlight == 2'b00)beginudsig = 1'b1 ;mylift = doorclose ;endelsebeginudsig = 1'b1 ;mylift = down ;endendendendup : ///going up stairsbeginposition = position + 1 ; // under the lift clockpos = pos + 1; //if (pos < 3 & ((stoplight[pos]) == 1'b1 | (fuplight[pos]) == 1'b1))begin//destination isn't the top,to stop there or going up from theremylift = stop ; // stop the liftendelse if (pos == 3 & ((stoplight[pos]) == 1'b1 | (fdnlight[pos]) == 1'b1))begin// has been on f.3, and stop here request or go dowm reqmylift = stop ; //next state : stopendelsebeginmylift = doorclose ; //endenddown : // go downbeginposition = position - 1 ;pos = pos - 1;if (pos > 1 & ((stoplight[pos]) == 1'b1 | (fdnlight[pos]) == 1'b1))beginmylift = stop ; // stop hereendelse if (pos == 1 & ((stoplight[pos]) == 1'b1 | (fuplight[pos]) == 1'b1))beginmylift = stop ;endelsebeginmylift = doorclose ; // no req to stop or go up,closedendendstop : //beginmylift = dooropen ; //next state to openenddooropen :begindoorlight = 1'b1 ;if (udsig == 1'b0) //going upbeginif (position <= 2 & ((stoplight[position]) == 1'b1 | (fuplight[position]) == 1'b1))beginclearup = 1'b1 ;endelsebeginclearup = 1'b1 ;cleardn = 1'b1 ;endendelse if (udsig == 1'b1)beginif (position >= 2 & ((stoplight[position]) == 1'b1 | (fdnlight[position]) == 1'b1))begincleardn = 1'b1 ;endelsebeginclearup = 1'b1;cleardn = 1'b1 ;endendmylift = doorwait1 ;endendcaseendendalways @(posedge reset or posedge buttonclk) // 控制按键信号灯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
module adder4(cout,sum,ina,inb,cin);output[3:0] sum;output cout;input[3:0] ina,inb;input cin;assign {cout,sum}=ina+inb+cin;endmodule【例3.2】4位计数器module count4(out,reset,clk);output[3:0] out;input reset,clk;reg[3:0] out;always @(posedge clk)beginif (reset) out<=0; //同步复位else out<=out+1; //计数endendmodule【例3.3】4位全加器的仿真程序`timescale 1ns/1ns`include "adder4.v"module adder_tp; //测试模块的名字reg[3:0] a,b; //测试输入信号定义为reg型reg cin;wire[3:0] sum; //测试输出信号定义为wire型wire cout;integer i,j;adder4 adder(sum,cout,a,b,cin); //调用测试对象always #5 cin=~cin; //设定cin的取值initialbegina=0;b=0;cin=0;for(i=1;i<16;i=i+1)#10 a=i; //设定a的取值endinitialbeginfor(j=1;j<16;j=j+1)#10 b=j; //设定b的取值endinitial//定义结果显示格式begin$monitor($time,,,"%d + %d + %b={%b,%d}",a,b,cin,cout,sum);#160 $finish;endendmodule【例3.4】4位计数器的仿真程序`timescale 1ns/1ns`include "count4.v"module coun4_tp;reg clk,reset; //测试输入信号定义为reg型wire[3:0] out; //测试输出信号定义为wire型parameter DELY=100;count4 mycount(out,reset,clk); //调用测试对象always #(DELY/2) clk = ~clk; //产生时钟波形initialbegin//激励信号定义clk =0; reset=0;#DELY reset=1;#DELY reset=0;#(DELY*20) $finish;end//定义结果显示格式initial $monitor($time,,,"clk=%d reset=%d out=%d", clk, reset,out); endmodule【例3.5】“与-或-非”门电路module AOI(A,B,C,D,F); //模块名为AOI(端口列表A,B,C,D,F) input A,B,C,D; //模块的输入端口为A,B,C,Doutput F; //模块的输出端口为Fwire A,B,C,D,F; //定义信号的数据类型assign F= ~((A&B)|(C&D)); //逻辑功能描述endmodule【例5.1】用case语句描述的4选1数据选择器module mux4_1(out,in0,in1,in2,in3,sel);output out;input in0,in1,in2,in3;input[1:0] sel;reg out;always @(in0 or in1 or in2 or in3 or sel) //敏感信号列表case(sel)2'b00: out=in0;2'b01: out=in1;2'b10: out=in2;2'b11: out=in3;default: out=2'bx;endcaseendmodule【例5.2】同步置数、同步清零的计数器module count(out,data,load,reset,clk);output[7:0] out;input[7:0] data;input load,clk,reset;reg[7:0] out;always @(posedge clk) //clk上升沿触发beginif (!reset) out = 8'h00; //同步清0,低电平有效else if (load) out = data; //同步预置else out = out + 1; //计数endendmodule【例5.3】用always过程语句描述的简单算术逻辑单元`define add 3'd0`define minus 3'd1`define band 3'd2`define bor 3'd3`define bnot 3'd4module alu(out,opcode,a,b);output[7:0] out;reg[7:0] out;input[2:0] opcode; //操作码input[7:0] a,b; //操作数always@(opcode or a or b) //电平敏感的always块begincase(opcode)`add: out = a+b; //加操作`minus: out = a-b; //减操作`band: out = a&b; //求与`bor: out = a|b; //求或`bnot: out=~a; //求反default: out=8'hx; //未收到指令时,输出任意态endcaseendendmodule【例5.4】用initial过程语句对测试变量A、B、C赋值`timescale 1ns/1nsmodule test;reg A,B,C;initialbeginA = 0;B = 1;C = 0;#50 A = 1; B = 0;#50 A = 0; C = 1;#50 B = 1;#50 B = 0; C = 0;#50 $finish ;endendmodule【例5.5】用begin-end串行块产生信号波形`timescale 10ns/1nsmodule wave1;reg wave;parameter cycle=10;initialbeginwave=0;#(cycle/2) wave=1;#(cycle/2) wave=0;#(cycle/2) wave=1;#(cycle/2) wave=0;#(cycle/2) wave=1;#(cycle/2) $finish ;endinitial $monitor($time,,,"wave=%b",wave); endmodule【例5.6】用fork-join并行块产生信号波形`timescale 10ns/1nsmodule wave2;reg wave;parameter cycle=5;initialforkwave=0;#(cycle) wave=1;#(2*cycle) wave=0;#(3*cycle) wave=1;#(4*cycle) wave=0;#(5*cycle) wave=1;#(6*cycle) $finish;joininitial $monitor($time,,,"wave=%b",wave); endmodule【例5.7】持续赋值方式定义的2选1多路选择器module MUX21_1(out,a,b,sel);input a,b,sel;output out;assign out=(sel==0)?a:b;//持续赋值,如果sel为0,则out=a ;否则out=b endmodule【例5.8】阻塞赋值方式定义的2选1多路选择器module MUX21_2(out,a,b,sel);input a,b,sel;output out;reg out;always@(a or b or sel)beginif(sel==0) out=a; //阻塞赋值else out=b;endendmodule【例5.9】非阻塞赋值module non_block(c,b,a,clk);output c,b;input clk,a;reg c,b;always @(posedge clk)beginb<=a;c<=b;endendmodule【例5.10】阻塞赋值module block(c,b,a,clk);output c,b;input clk,a;reg c,b;always @(posedge clk)beginb=a;c=b;endendmodule【例5.11】模为60的BCD码加法计数器module count60(qout,cout,data,load,cin,reset,clk);output[7:0] qout;output cout;input[7:0] data;input load,cin,clk,reset;reg[7:0] qout;always @(posedge clk) //clk上升沿时刻计数if (reset) qout<=0; //同步复位else if(load) qout<=data; //同步置数else if(cin)beginif(qout[3:0]==9) //低位是否为9,是则beginqout[3:0]<=0; //回0,并判断高位是否为5if (qout[7:4]==5) qout[7:4]<=0;elseqout[7:4]<=qout[7:4]+1; //高位不为5,则加1endelse//低位不为9,则加1qout[3:0]<=qout[3:0]+1;endendassign cout=((qout==8'h59)&cin)?1:0; //产生进位输出信号endmodule【例5.12】BCD码—七段数码管显示译码器module decode4_7(decodeout,indec);output[6:0] decodeout;input[3:0] indec;reg[6:0] decodeout;always @(indec)begincase(indec) //用case语句进行译码4'd0:decodeout=7'b1111110;4'd1:decodeout=7'b0110000;4'd2:decodeout=7'b1101101;4'd3:decodeout=7'b1111001;4'd4:decodeout=7'b0110011;4'd5:decodeout=7'b1011011;4'd6:decodeout=7'b1011111;4'd7:decodeout=7'b1110000;4'd8:decodeout=7'b1111111;4'd9:decodeout=7'b1111011;default: decodeout=7'bx;endcaseend【例5.13】用casez描述的数据选择器module mux_casez(out,a,b,c,d,select); output out;input a,b,c,d;input[3:0] select;reg out;always @(select or a or b or c or d) begincasez(select)4'b???1: out = a;4'b??1?: out = b;4'b?1??: out = c;4'b1???: out = d;endcaseendendmodule【例5.14】隐含锁存器举例module buried_ff(c,b,a);output c;input b,a;reg c;always @(a or b)beginif((b==1)&&(a==1)) c=a&b;endendmodule【例5.15】用for语句描述的七人投票表决器module voter7(pass,vote);output pass;input[6:0] vote;reg[2:0] sum;integer i;reg pass;always @(vote)beginsum=0;for(i=0;i<=6;i=i+1) //for语句if(vote[i]) sum=sum+1;if(sum[2]) pass=1; //若超过4人赞成,则pass=1else pass=0;endendmodule【例5.16】用for语句实现2个8位数相乘module mult_for(outcome,a,b);parameter size=8;input[size:1] a,b; //两个操作数output[2*size:1] outcome; //结果reg[2*size:1] outcome;integer i;always @(a or b)beginoutcome=0;for(i=1; i<=size; i=i+1) //for语句if(b[i]) outcome=outcome +(a << (i-1));endendmodule【例5.17】用repeat实现8位二进制数的乘法module mult_repeat(outcome,a,b);parameter size=8;input[size:1] a,b;output[2*size:1] outcome;reg[2*size:1] temp_a,outcome;reg[size:1] temp_b;always @(a or b)beginoutcome=0;temp_a=a;temp_b=b;repeat(size) //repeat语句,size为循环次数beginif(temp_b[1]) //如果temp_b的最低位为1,就执行下面的加法outcome=outcome+temp_a;temp_a=temp_a<<1; //操作数a左移一位temp_b=temp_b>>1; //操作数b右移一位endendendmodule【例5.18】同一循环的不同实现方式module loop1; //方式1integer i;initialfor(i=0;i<4;i=i+1) //for语句begin$display(“i=%h”,i);endendmodulemodule loop2; //方式2integer i;initial begini=0;while(i<4) //while语句begin$display ("i=%h",i);i=i+1;endendendmodulemodule loop3; //方式3integer i;initial begini=0;repeat(4) //repeat语句begin$display ("i=%h",i);i=i+1;endendendmodule【例5.19】使用了`include语句的16位加法器`include "adder.v"module adder16(cout,sum,a,b,cin);output cout;parameter my_size=16;output[my_size-1:0] sum;input[my_size-1:0] a,b;input cin;adder my_adder(cout,sum,a,b,cin); //调用adder模块endmodule//下面是adder模块代码module adder(cout,sum,a,b,cin);parameter size=16;output cout;output[size-1:0] sum;input cin;input[size-1:0] a,b;assign {cout,sum}=a+b+cin;endmodule【例5.20】条件编译举例module compile(out,A,B);output out;input A,B;`ifdef add //宏名为addassign out=A+B;`elseassign out=A-B;`endifendmodule【例6.1】加法计数器中的进程module count(data,clk,reset,load,cout,qout);output cout;output[3:0] qout;reg[3:0] qout;input[3:0] data;input clk,reset,load;- 11 -always @(posedge clk) //进程1,always过程块beginif (!reset) qout= 4'h00; //同步清0,低电平有效else if (load) qout= data; //同步预置else qout=qout + 1; //加法计数endassign cout=(qout==4'hf)?1:0; //进程2,用持续赋值产生进位信号endmodule【例6.2】任务举例module alutask(code,a,b,c);input[1:0] code;input[3:0] a,b;output[4:0] c;reg[4:0] c;task my_and; //任务定义,注意无端口列表input[3:0] a,b; //a,b,out名称的作用域范围为task任务内部output[4:0] out;integer i;beginfor(i=3;i>=0;i=i-1)out[i]=a[i]&b[i]; //按位与endendtaskalways@(code or a or b)begincase(code)2'b00: my_and(a,b,c);/* 调用任务my_and,需注意端口列表的顺序应与任务定义中的一致,这里的a,b,c 分别对应任务定义中的a,b,out */2'b01: c=a|b; //或2'b10: c=a-b; //相减2'b11: c=a+b; //相加endcaseendendmodule- 12 -【例6.3】测试程序`include "alutask.v"module alu_tp;reg[3:0] a,b;reg[1:0] code;wire[4:0] c;parameter DELY = 100;alutask ADD(code,a,b,c); //调用被测试模块initial begincode=4'd0; a= 4'b0000; b= 4'b1111;#DELY code=4'd0; a= 4'b0111; b= 4'b1101;#DELY code=4'd1; a= 4'b0001; b= 4'b0011;#DELY code=4'd2; a= 4'b1001; b= 4'b0011;#DELY code=4'd3; a= 4'b0011; b= 4'b0001;#DELY code=4'd3; a= 4'b0111; b= 4'b1001;#DELY $finish;endinitial $monitor($time,,,"code=%b a=%b b=%b c=%b", code,a,b,c);endmodule【例6.4】函数function[7:0] get0;input[7:0] x;reg[7:0] count;integer i;begincount=0;for (i=0;i<=7;i=i+1)if (x[i]=1'b0) count=count+1;get0=count;endendfunction【例6.5】用函数和case语句描述的编码器(不含优先顺序)module code_83(din,dout);input[7:0] din;output[2:0] dout;- 13 -function[2:0] code; //函数定义input[7:0] din; //函数只有输入,输出为函数名本身casex (din)8'b1xxx_xxxx : code = 3'h7;8'b01xx_xxxx : code = 3'h6;8'b001x_xxxx : code = 3'h5;8'b0001_xxxx : code = 3'h4;8'b0000_1xxx : code = 3'h3;8'b0000_01xx : code = 3'h2;8'b0000_001x : code = 3'h1;8'b0000_000x : code = 3'h0;default: code = 3'hx;endcaseendfunctionassign dout = code(din) ; //函数调用endmodule【例6.6】阶乘运算函数module funct(clk,n,result,reset);output[31:0] result;input[3:0] n;input reset,clk;reg[31:0] result;always @(posedge clk) //在clk的上升沿时执行运算beginif(!reset) result<=0; //复位else beginresult <= 2 * factorial(n); //调用factorial函数endendfunction[31:0] factorial; //阶乘运算函数定义(注意无端口列表)input[3:0] opa; //函数只能定义输入端,输出端口为函数名本身reg[3:0] i;beginfactorial = opa ? 1 : 0;for(i= 2; i <= opa; i = i+1) //该句若要综合通过,opa应赋具体的数值factorial = i* factorial; //阶乘运算end- 14 -endfunctionendmodule【例6.7】测试程序`define clk_cycle 50`include "funct.v"module funct_tp;reg[3:0] n;reg reset,clk;wire[31:0] result;initial//定义激励向量beginn=0; reset=1; clk=0;for(n=0;n<=15;n=n+1)#100 n=n;endinitial $monitor($time,,,"n=%d result=%d",n,result);//定义输出显示格式always # `clk_cycle clk=~clk; //产生时钟信号funct funct_try(.clk(clk),.n(n),.result(result),.reset(reset));//调用被测试模块endmodule【例6.8】顺序执行模块1module serial1(q,a,clk);output q,a;input clk;reg q,a;always @(posedge clk)beginq=~q;a=~q;endendmodule【例6.9】顺序执行模块2module serial2(q,a,clk);output q,a;- 15 -input clk;reg q,a;always @(posedge clk)begina=~q;q=~q;endendmodule【例6.10】并行执行模块1module paral1(q,a,clk);output q,a;input clk;reg q,a;always @(posedge clk)beginq=~q;endalways @(posedge clk)begina=~q;endendmodule【例6.11】并行执行模块2module paral2(q,a,clk);output q,a;input clk;reg q,a;always @(posedge clk)begina=~q;endalways @(posedge clk)beginq=~q;endendmodule【例7.1】调用门元件实现的4选1 MUX - 16 -module mux4_1a(out,in1,in2,in3,in4,cntrl1,cntrl2);output out;input in1,in2,in3,in4,cntrl1,cntrl2;wire notcntrl1,notcntrl2,w,x,y,z;not(notcntrl1,cntrl2),(notcntrl2,cntrl2);and (w,in1,notcntrl1,notcntrl2),(x,in2,notcntrl1,cntrl2),(y,in3,cntrl1,notcntrl2),(z,in4,cntrl1,cntrl2);or (out,w,x,y,z);endmodule【例7.2】用case语句描述的4选1 MUXmodule mux4_1b(out,in1,in2,in3,in4,cntrl1,cntrl2);output out;input in1,in2,in3,in4,cntrl1,cntrl2;reg out;always@(in1 or in2 or in3 or in4 or cntrl1 or cntrl2)case({cntrl1,cntrl2})2'b00:out=in1;2'b01:out=in2;2'b10:out=in3;2'b11:out=in4;default:out=2'bx;endcaseendmodule【例7.3】行为描述方式实现的4位计数器module count4(clk,clr,out);input clk,clr;output[3:0] out;reg[3:0] out;always @(posedge clk or posedge clr)beginif (clr) out<=0;else out<=out+1;endendmodule- 17 -【例7.4】数据流方式描述的4选1 MUXmodule mux4_1c(out,in1,in2,in3,in4,cntrl1,cntrl2);output out;input in1,in2,in3,in4,cntrl1,cntrl2;assign out=(in1 & ~cntrl1 & ~cntrl2)|(in2 & ~cntrl1 & cntrl2)| (in3 & cntrl1 & ~cntrl2)|(in4 & cntrl1 & cntrl2);endmodule【例7.5】用条件运算符描述的4选1 MUXmodule mux4_1d(out,in1,in2,in3,in4,cntrl1,cntrl2);output out;input in1,in2,in3,in4,cntrl1,cntrl2;assign out=cntrl1 ? (cntrl2 ? in4:in3):(cntrl2 ? in2:in1);endmodule【例7.6】门级结构描述的2选1MUXmodule mux2_1a(out,a,b,sel);output out;input a,b,sel;not (sel_,sel);and(a1,a,sel_),(a2,b,sel);or (out,a1,a2);endmodule【例7.7】行为描述的2选1MUXmodule mux2_1b(out,a,b,sel);output out;input a,b,sel;reg out;always @(a or b or sel)beginif(sel) out = b;else out = a;endendmodule【例7.8】数据流描述的2选1MUXmodule MUX2_1c(out,a,b,sel);output out;- 18 -input a,b,sel;assign out = sel ? b : a;endmodule【例7.9】调用门元件实现的1位半加器module half_add1(a,b,sum,cout);input a,b;output sum,cout;and(cout,a,b);xor(sum,a,b);endmodule【例7.10】数据流方式描述的1位半加器module half_add2(a,b,sum,cout);input a,b;output sum,cout;assign sum=a^b;assign cout=a&b;endmodule【例7.11】采用行为描述的1位半加器module half_add3(a,b,sum,cout);input a,b;output sum,cout;reg sum,cout;always @(a or b)begincase ({a,b}) //真值表描述2'b00: begin sum=0; cout=0; end2'b01: begin sum=1; cout=0; end2'b10: begin sum=1; cout=0; end2'b11: begin sum=0; cout=1; endendcaseendendmodule【例7.12】采用行为描述的1位半加器module half_add4(a,b,sum,cout);input a,b;output sum,cout;- 19 -reg sum,cout;always @(a or b)beginsum= a^b;cout=a&b;endendmodule【例7.13】调用门元件实现的1位全加器module full_add1(a,b,cin,sum,cout);input a,b,cin;output sum,cout;wire s1,m1,m2,m3;and (m1,a,b),(m2,b,cin),(m3,a,cin);xor(s1,a,b),(sum,s1,cin);or(cout,m1,m2,m3);endmodule【例7.14】数据流描述的1位全加器module full_add2(a,b,cin,sum,cout);input a,b,cin;output sum,cout;assign sum = a ^ b ^ cin;assign cout = (a & b)|(b & cin)|(cin & a);endmodule【例7.15】1位全加器module full_add3(a,b,cin,sum,cout);input a,b,cin;output sum,cout;assign {cout,sum}=a+b+cin;endmodule【例7.16】行为描述的1位全加器module full_add4(a,b,cin,sum,cout);input a,b,cin;output sum,cout;- 20 -reg sum,cout; //在always块中被赋值的变量应定义为reg型reg m1,m2,m3;always @(a or b or cin)beginsum = (a ^ b) ^ cin;m1 = a & b;m2 = b & cin;m3 = a & cin;cout = (m1|m2)|m3;endendmodule【例7.17】混合描述的1位全加器 module full_add5(a,b,cin,sum,cout);input a,b,cin;output sum,cout;reg cout,m1,m2,m3; //在always块中被赋值的变量应定义为reg型wire s1;xor x1(s1,a,b); //调用门元件always @(a or b or cin) //always块语句beginm1 = a & b;m2 = b & cin;m3 = a & cin;cout = (m1| m2) | m3;endassign sum = s1 ^ cin; //assign持续赋值语句endmodule【例7.18】结构描述的4位级连全加器 `include "full_add1.v"module add4_1(sum,cout,a,b,cin);output[3:0] sum;output cout;input[3:0] a,b;input cin;full_add1 f0(a[0],b[0],cin,sum[0],cin1); //级连描述full_add1 f1(a[1],b[1],cin1,sum[1],cin2);full_add1 f2(a[2],b[2],cin2,sum[2],cin3);- 21 -full_add1 f3(a[3],b[3],cin3,sum[3],cout);endmodule【例7.19】数据流描述的4位全加器module add4_2(cout,sum,a,b,cin);output[3:0] sum;output cout;input[3:0] a,b;input cin;assign {cout,sum}=a+b+cin;endmodule【例7.20】行为描述的4位全加器module add4_3(cout,sum,a,b,cin);output[3:0] sum;output cout;input[3:0] a,b;input cin;reg[3:0] sum;reg cout;always @(a or b or cin)begin{cout,sum}=a+b+cin;endendmodule【例8.1】$time与$realtime的区别`timescale 10ns/1nsmodule time_dif;reg ts;parameter delay=2.6;initialbegin#delay ts=1;#delay ts=0;#delay ts=1;#delay ts=0;endinitial $monitor($time,,,"ts=%b",ts); //使用函数$time - 22 -endmodule【例8.2】$random函数的使用`timescale 10ns/1nsmodule random_tp;integer data;integer i;parameter delay=10;initial $monitor($time,,,"data=%b",data);initial beginfor(i=0; i<=100; i=i+1)#delay data=$random; //每次产生一个随机数endendmodule【例8.3】1位全加器进位输出UDP元件primitive carry_udp(cout,cin,a,b);input cin,a,b;output cout;table//cin a b : cout //真值表0 0 0 : 0;0 1 0 : 0;0 0 1 : 0;0 1 1 : 1;1 0 0 : 0;1 0 1 : 1;1 1 0 : 1;1 1 1 : 1;endtableendprimitive【例8.4】包含x态输入的1位全加器进位输出UDP元件primitive carry_udpx1(cout,cin,a,b);input cin,a,b;output cout;table// cin a b : cout //真值表0 0 0 : 0;- 23 -0 1 0 : 0;0 0 1 : 0;0 1 1 : 1;1 0 0 : 0;1 0 1 : 1;1 1 0 : 1;1 1 1 : 1;0 0 x : 0; //只要有两个输入为0,则进位输出肯定为00 x 0 : 0;x 0 0 : 0;1 1 x : 1; //只要有两个输入为1,则进位输出肯定为11 x 1 : 1;x 1 1 : 1;endtableendprimitive【例8.5】用简缩符“?”表述的1位全加器进位输出UDP元件primitive carry_udpx2(cout,cin,a,b);input cin,a,b;output cout;table// cin a b : cout //真值表? 0 0 : 0; //只要有两个输入为0,则进位输出肯定为00 ? 0 : 0;0 0 ? : 0;? 1 1 : 1; //只要有两个输入为1,则进位输出肯定为11 ? 1 : 1;1 1 ? : 1;endtableendprimitive【例8.6】3选1多路选择器UDP元件primitive mux31(Y,in0,in1,in2,s2,s1);input in0,in1,in2,s2,s1;output Y;table//in0 in1 in2 s2 s1 : Y0 ? ? 0 0 : 0; //当s2s1=00时,Y=in01 ? ? 0 0 : 1;? 0 ? 0 1 : 0; //当s2s1=01时,Y=in1- 24 -? 1 ? 0 1 : 1;? ? 0 1 ? : 0; //当s2s1=1?时,Y=in2? ? 1 1 ? : 1;0 0 ? 0 ? : 0;1 1 ? 0 ? : 1;0 ? 0 ? 0 : 0;1 ? 1 ? 0 : 1;? 0 0 ? 1 : 0;? 1 1 ? 1 : 1;endtableendprimitive【例8.7】电平敏感的1位数据锁存器UDP元件primitive latch(Q,clk,reset,D);input clk,reset,D;output Q;reg Q;initial Q = 1'b1; //初始化table// clk reset D : state : Q? 1 ? : ? : 0 ; //reset=1,则不管其他端口为什么值,输出都为00 0 0 : ? : 0 ; //clk=0,锁存器把D端的输入值输出0 0 1 : ? : 1 ;1 0 ? : ? : - ; //clk=1,锁存器的输出保持原值,用符号“-”表示endtableendprimitive【例8.8】上升沿触发的D触发器UDP元件primitive DFF(Q,D,clk);output Q;input D,clk;reg Q;table//clk D : state : Q(01) 0 : ? : 0; //上升沿到来,输出Q=D(01) 1 : ? : 1;(0x) 1 : 1 : 1;(0x) 0 : 0 : 0;(?0) ? : ? : -; //没有上升沿到来,输出Q保持原值? (??) : ? : - ; //时钟不变,输出也不变- 25 -endprimitive【例8.9】带异步置1和异步清零的上升沿触发的D触发器UDP元件primitive DFF_UDP(Q,D,clk,clr,set);output Q;input D,clk,clr,set;reg Q;table// clk D clr s et : state : Q(01) 1 0 0 : ? : 0;(01) 1 0 x : ? : 0;? ? 0 x : 0 : 0;(01) 0 0 0 : ? : 1;(01) 0 x 0 : ? : 1;? ? x 0 : 1 : 1;(x1) 1 0 0 : 0 : 0;(x1) 0 0 0 : 1 : 1;(0x) 1 0 0 : 0 : 0;(0x) 0 0 0 : 1 : 1;? ? 1 ? : ? : 1; //异步复位? ? 0 1 : ? : 0; //异步置1n ? 0 0 : ? : -;? * ? ? : ? : -;? ? (?0) ? : ? : -;? ? ? (?0): ? : -;? ? ? ? : ? : x;endtableendprimitive【例8.12】延迟定义块举例module delay(out,a,b,c);output out;input a,b,c;and a1(n1,a,b);or o1(out,c,n1);specify(a=>out)=2;(b=>out)=3;(c=>out)=1;- 26 -endmodule【例8.13】激励波形的描述'timescale 1ns/1nsmodule test1;reg A,B,C;initialbegin//激励波形描述A = 0;B = 1;C = 0;#100 C = 1;#100 A = 1; B = 0;#100 A = 0;#100 C = 0;#100 $finish;endinitial $monitor($time,,,"A=%d B=%d C=%d",A,B,C); //显示endmodule【例8.15】用always过程块产生两个时钟信号module test2;reg clk1,clk2;parameter CYCLE = 100;alwaysbegin{clk1,clk2} = 2'b10;#(CYCLE/4) {clk1,clk2} = 2'b01;#(CYCLE/4) {clk1,clk2} = 2'b11;#(CYCLE/4) {clk1,clk2} = 2'b00;#(CYCLE/4) {clk1,clk2} = 2'b10;endinitial $monitor($time,,,"clk1=%b clk2=%b",clk1,clk2);endmodule【例8.17】存储器在仿真程序中的应用module ROM(addr,data,oe);output[7:0] data; //数据信号input[14:0] addr; //地址信号input oe; //读使能信号,低电平有效- 27 -reg[7:0] mem[0:255]; //存储器定义parameter DELAY = 100;assign #DELAY data=(oe==0) ? mem[addr] : 8'hzz;initial $readmemh("rom.hex",mem); //从文件中读入数据endmodule【例8.18】8位乘法器的仿真程序`timescale 10ns/1nsmodule mult_tp; //测试模块的名字reg[7:0] a,b; //测试输入信号定义为reg型wire [15:0] out; //测试输出信号定义为wire型integer i,j;mult8 m1(out,a,b); //调用测试对象//激励波形设定initialbegina=0;b=0;for(i=1;i<255;i=i+1)#10 a=i;endinitialbeginfor(j=1;j<255;j=j+1)#10 b=j;endinitial//定义结果显示格式begin$monitor($time,,,"%d * %d= %d",a,b,out);#2560 $finish;endendmodulemodule mult8(out, a, b); //8位乘法器源代码parameter size=8;input[size:1] a,b; //两个操作数output[2*size:1] out; //结果assign out=a*b; //乘法运算符- 28 -endmodule【例8.19】8位加法器的仿真程序`timescale 1ns/1nsmodule add8_tp; //仿真模块无端口列表reg[7:0] A,B; //输入激励信号定义为reg型reg cin;wire[7:0] SUM; //输出信号定义为wire型wire cout;parameter DELY = 100;add8 AD1(SUM,cout,A,B,cin); //调用测试对象initial begin//激励波形设定A= 8'd0; B= 8'd0; cin=1'b0;#DELY A= 8'd100; B= 8'd200; cin=1'b1;#DELY A= 8'd200; B= 8'd88;#DELY A= 8'd210; B= 8'd18; cin=1'b0;#DELY A= 8'd12; B= 8'd12;#DELY A= 8'd100; B= 8'd154;#DELY A= 8'd255; B= 8'd255; cin=1'b1;#DELY $finish;end//输出格式定义initial $monitor($time,,,"%d + %d + %b = {%b, %d}",A,B,cin,cout,SUM); endmodulemodule add8(SUM,cout,A,B,cin); //待测试的8位加法器模块output[7:0] SUM;output cout;input[7:0] A,B;input cin;assign {cout,SUM}=A+B+cin;endmodule【例8.20】2选1多路选择器的仿真`timescale 1ns/1nsmodule mux_tp;reg a,b,sel;wire out;- 29 -MUX2_1 m1(out,a,b,sel); //调用待测试模块initialbegina=1'b0; b=1'b0; sel=1'b0;#5 sel=1'b1;#5 a=1'b1; s el=1'b0;#5 sel=1'b1;#5 a=1'b0; b=1'b1; sel=1'b0;#5 sel=1'b1;#5 a=1'b1; b=1'b1; sel=1'b0;#5 sel=1'b1;endinitial $monitor($time,,,"a=%b b=%b sel=%b out=%b",a,b,sel,out);endmodulemodule MUX2_1(out,a,b,sel); //待测试的2选1MUX模块input a,b,sel;output out;not #(0.4,0.3) (sel_,sel); //#(0.4,0.3)为门延时and #(0.7,0.6) (a1,a,sel_);and #(0.7,0.6) (a2,b,sel);or #(0.7,0.6) (out,a1,a2);endmodule【例8.21】8位计数器的仿真`timescale 10ns/1nsmodule count8_tp;reg clk,reset; //输入激励信号定义为reg型wire[7:0] qout; //输出信号定义为wire型parameter DELY=100;counter C1(qout,reset,clk); //调用测试对象always #(DELY/2) clk = ~clk; //产生时钟波形initialbegin//激励波形定义clk =0; reset=0;- 30 -#DELY reset=1;#DELY reset=0;#(DELY*300) $finish;end//结果显示initial $monitor($time,,,"clk=%d reset=%d qout=%d",clk,reset,qout); endmodulemodule counter(qout,reset,clk); //待测试的8位计数器模块output[7:0] qout;input clk,reset;reg[7:0] qout;always @(posedge clk)begin if (reset) qout<=0;else qout<=qout+1;endendmodule【例9.1】基本门电路的几种描述方法(1)门级结构描述module gate1(F,A,B,C,D);input A,B,C,D;output F;nand(F1,A,B); //调用门元件and(F2,B,C,D);or(F,F1,F2);endmodule(2)数据流描述module gate2(F,A,B,C,D);input A,B,C,D;output F;assign F=(A&B)|(B&C&D); //assign持续赋值endmodule(3)行为描述module gate3(F,A,B,C,D);input A,B,C,D;output F;- 31 -reg F;always @(A or B or C or D) //过程赋值beginF=(A&B)|(B&C&D);endendmodule【例9.2】用bufif1关键字描述的三态门module tri_1(in,en,out);input in,en;output out;tri out;bufif1 b1(out,in,en); //注意三态门端口的排列顺序endmodule【例9.3】用assign语句描述的三态门module tri_2(out,in,en);output out;input in,en;assign out = en ? in : 'bz;//若en=1,则out=in;若en=0,则out为高阻态endmodule【例9.4】三态双向驱动器module bidir(tri_inout,out,in,en,b);inout tri_inout;output out;input in,en,b;assign tri_inout = en ? in : 'bz;assign out = tri_inout ^ b;endmodule【例9.5】三态双向驱动器module bidir2(bidir,en,clk);inout[7:0] bidir;input en,clk;reg[7:0] temp;assign bidir= en ? temp : 8'bz;always @(posedge clk)begin- 32 -if(en) temp=bidir;else temp=temp+1;endendmodule【例9.6】3-8译码器module decoder_38(out,in);output[7:0] out;input[2:0] in;reg[7:0] out;always @(in)begincase(in)3'd0: out=8'b11111110;3'd1: out=8'b11111101;3'd2: out=8'b11111011;3'd3: out=8'b11110111;3'd4: out=8'b11101111;3'd5: out=8'b11011111;3'd6: out=8'b10111111;3'd7: out=8'b01111111;endcaseendendmodule【例9.7】8-3优先编码器module encoder8_3(none_on,outcode,a,b,c,d,e,f,g,h);output none_on;output[2:0] outcode;input a,b,c,d,e,f,g,h;reg[3:0] outtemp;assign {none_on,outcode}=outtemp;always @(a or b or c or d or e or f or g or h)beginif(h) outtemp=4'b0111;else if(g) outtemp=4'b0110;else if(f) outtemp=4'b0101;else if(e) outtemp=4'b0100;else if(d) outtemp=4'b0011;else if(c) outtemp=4'b0010;- 33 -else if(b) outtemp=4'b0001;else if(a) outtemp=4'b0000;else outtemp=4'b1000;endendmodule【例9.8】用函数定义的8-3优先编码器module code_83(din, dout);input[7:0] din;output[2:0] dout;function[2:0] code; //函数定义input[7:0] din; //函数只有输入端口,输出为函数名本身if (din[7]) code = 3'd7;else if (din[6]) code = 3'd6;else if (din[5]) code = 3'd5;else if (din[4]) code = 3'd4;else if (din[3]) code = 3'd3;else if (din[2]) code = 3'd2;else if (din[1]) code = 3'd1;else code = 3'd0;endfunctionassign dout = code(din); //函数调用endmodule【例9.9】七段数码管译码器module decode47(a,b,c,d,e,f,g,D3,D2,D1,D0);output a,b,c,d,e,f,g;input D3,D2,D1,D0; //输入的4位BCD码reg a,b,c,d,e,f,g;always @(D3 or D2 or D1 or D0)begincase({D3,D2,D1,D0}) //用case语句进行译码4'd0: {a,b,c,d,e,f,g}=7'b1111110;4'd1: {a,b,c,d,e,f,g}=7'b0110000;4'd2: {a,b,c,d,e,f,g}=7'b1101101;4'd3: {a,b,c,d,e,f,g}=7'b1111001;4'd4: {a,b,c,d,e,f,g}=7'b0110011;4'd5: {a,b,c,d,e,f,g}=7'b1011011;- 34 -。