铸件合金的凝固与收缩
铸件的收缩专题知识

收缩率:实际中,一般以相对收缩量表达金属旳收缩特征, 此相对收缩量称为收缩率。
体收缩率:
V
V0 V1 V0
100% V t0
t1 100%
线收缩率:
l
l0 l1 l0
100% l t0
t1 100%
V , l : 金属在t0 t1 温度范围内的体收缩系 数和线收缩系数
§9-1 缩孔与缩松旳种类
V凝=3.0% 0.9 4.3 C %
V凝=6.9 0.9C %
C W(c)100
由上面公式计算得下表: 从数据来看,随碳含量增大,亚共晶白口铸铁旳凝固收缩率减小。
亚共晶铸铁凝固收缩率
W(C)%
2.0
2.5
3.0
3.5
4.0
白口铸铁
5.7
6.0
6.5
7.1
7.9
1400℃
灰铸铁
4.9
4.2
三、灰铸铁和球铁铸件旳缩孔和缩松
灰铸铁和球墨铸铁凝固特点:
相同点:初生奥氏体枝晶具有很大连接骨架旳能力,使补缩通 道受阻,都有可能产生缩松。
不同点:共晶凝固方式和石墨长大旳机理不同,产生缩孔和缩松 旳倾向性有很大差别。
灰铸铁共晶凝固近似中间凝固方式
共晶凝固方式旳不同
共晶固体区,共晶固-液共存区 (铸件表面有固态外壳)
缩松:尺寸细小而且分散旳孔洞称为分散性缩孔,简称缩松。
缩孔特点:缩孔形状不规则,表面不光滑,能够看到发达旳树 枝晶末梢(与气孔旳区别)。
缩孔与缩松对铸件性能旳影响:降低铸件旳强度;降低受力旳 有效面积,轻易产生应力集中,出现裂纹,降低铸件旳气密性和 物理化学性能。
二、缩孔 1)缩孔旳形成 a.成壳。 b.紧密接触。固态收缩率等于液态与凝固收缩率之和。 c.脱离。液态收缩与凝固收缩超出硬壳旳固态收缩。 d.倒立锥孔和上面凹陷形成。倒形锥孔是因为液态金属在重力旳 作用下补充了下面缩孔。凹面形成是因为外面压力不小于缩孔内部 旳压力或者壳旳强度不够所造成。
冶金质量控制教学课件-凝固过程质量控制—铸件或铸锭中的收缩

缩率。
图11 受机械阻碍的铸件
铸件在铸型中收缩时受到的阻力有以下几种:
1) 铸型表面的摩擦力
铸件收缩时,其表面与铸型表面之间的摩擦力的大 小与铸件重量、铸型表面的平滑程度有关。
液态收缩率用下式表示:
(5)
式中
从式中可以看出,提高浇注温度 t浇,或因合金成分 改变而降低tL,都使v液增加。v液改变时,v液 也 相应改变。
影响液态收缩系数v液 的因素很多,如合金成分、 温度、气体和夹杂物含量等。
实验所得数值往往有很大差别,计算时常取其平均 值。
例如,钢液的v液 在0.4 X 10-4到1.6 X 10-4/℃的 范围内变动,相差四倍,通常取其平均值1.0 X 10-4 /℃。
3.固态收缩
金属的固态体收缩率用下式表示:
(6)
式中
在固态收缩阶段,铸件各个方向上都表现出线尺寸 的缩小。因此,这阶段对铸件的形状和尺寸的精度 影响最大。为方便起见,常用线收缩率表示固态收 缩,即:
式中
(7)
金属的线收缩是铸件中产生应力、变形和裂纹的基 本原因。
4.线收缩的开始温度
2) 固溶体合金(图3 b) l 向熔点较低的成分B方向上,沿曲线1平滑地下降。 3) 有限固溶体合金(图3 c) 关于这类合金的l 的变化规律,可根据前两类合金
进行分析。图3 合金的线来自缩与成分的关系***二、铸钢的收缩
和任何其它合金一样,收缩过程分为液态收缩、凝 固收缩和固态收缩三个阶段。
***三、铸铁的收缩
铸铁和任何铸造合金一样,其收缩过程也分为三个 互相联系的阶段,即液态收缩、凝固收缩和固态收 缩。
铸造金属凝固原理第-缩孔与缩

用不同刚性铸型浇注的球墨铸铁试样比较
14.3 防止铸件产生缩孔和缩松的途径
1 合适的凝固原则:顺序凝固和同时凝固 1 针对该合金的收缩和凝固特点制定正确的铸造工艺原
则,使铸件在凝固过程中建立良好的补缩条件,尽可 能地使缩松转化为缩孔,并使缩孔出现在铸件最后凝 固的地方。这样,在铸件最后凝固的地方安置一定尺 寸的冒口,使缩孔集中于冒口中,或者把浇口开在最 后凝固的地方直接补缩,即可获得健全的铸件。
③ 固态收缩 • 特点 • 在固态收缩阶段,铸件各个方向上都表现出线尺寸的缩小。
因此,这阶段对铸件的形状和尺寸的精度影响最大。
线收缩是铸件中产生应力、变形和裂纹的基本原因。
εV固 =αV固(TS -T0) ×100%
εL =αL (TS -T0) ×100%
④ 线收缩的开始温度 • 纯金属和共晶合金:在金属完全凝固以后开始 • 具有一定结晶温度范围的合金:枝晶数量增多,彼此相连
高碳硅含量灰铸铁 产生缩松合金,简化工艺 壁厚均匀薄件 球铁自补缩时 当应力、裂纹、变形成主要矛盾时。 — 复合凝固原则
③ 实现顺序凝固原则或同时凝固原则的工艺措施: — 正确布置浇注系统的引入位置,确定合理的浇注工艺; — 采用冒口; — 采用补贴; — 采用不同蓄热系数的造型材料或冷铁。
2 浇注系统的引入位置及浇注工艺 ① 浇注系统的引入位置 浇注系统的引入位置与铸件纵向温度分布的关系
构成连续的骨架,合金则开始表现为固态的性质,即开始 线收缩。
⑤ 线收缩与状态图的关系
2 铸钢的收缩
① 液态收缩
特点
εV液 =αV液 (T浇 -TL ) ×100%
提高含C量,TL下降,(T浇 – TL)提高,并且收缩系数αV液提
高(每增加1%C, α增V液大20%) ,故钢液收缩率提高。
铸件产生缩松的原因

铸件产生缩松的原因一、合金凝固特性方面1. 糊状凝固方式•许多铸造合金在凝固过程中呈现糊状凝固方式。
例如,一些铝合金,像ZL101等。
在凝固时,初生相以枝晶形式生长,并且枝晶间存在大量的液相。
由于这种凝固方式下,液固共存区比较宽,在最后凝固的枝晶间区域,补缩通道容易被较早凝固的枝晶阻塞。
液态金属难以补充到这些区域,从而形成缩松。
就好像在一个交通堵塞的城市道路网络中,救援物资(液态金属)难以到达需要的地方(最后凝固的枝晶间)。
2. 凝固收缩率•合金的凝固收缩率较大时容易产生缩松。
以灰铸铁和球墨铸铁为例,球墨铸铁的凝固收缩率比灰铸铁大。
球墨铸铁在凝固过程中,由于石墨球的生长方式与灰铸铁中的片状石墨不同,它会造成更大的体积收缩。
如果铸型的补缩能力不足,就会在铸件内部形成缩松。
一般灰铸铁的凝固收缩率约为1%• 3%,而球墨铸铁可达3%• 6%。
二、浇注系统与冒口设计方面1. 浇注系统不合理•浇注系统的设计如果不能保证液态金属平稳地充满铸型型腔,就可能导致缩松。
例如,当浇注速度过快时,液态金属会产生紊流。
这会卷入气体,使铸件内部产生气孔等缺陷,同时也会影响液态金属的补缩。
像在一些薄壁铸件的浇注中,如果浇注系统不能实现层流浇注,薄壁处的液态金属可能先凝固,阻碍后续液态金属的补缩,从而产生缩松。
2. 冒口设置不当•冒口的作用是对铸件进行补缩。
如果冒口的尺寸过小,其储存的液态金属量不足以补偿铸件的凝固收缩。
比如对于一个较大的铸钢件,如果冒口的体积仅按照小型铸铁件的经验来设计,在铸钢件凝固过程中,冒口内的液态金属很快就会凝固,无法对铸件内部进行有效的补缩,进而产生缩松。
另外,冒口的位置如果不合理,远离铸件最后凝固的部位,也不能很好地发挥补缩作用。
三、铸型方面1. 铸型的透气性差•当铸型的透气性不好时,在铸件凝固过程中,型腔内的气体不能顺利排出。
例如,用湿砂型铸造一些大型铸件时,如果型砂的紧实度过高,透气性就会降低。
合金的凝固收缩是铸件产生应力、变形和冷裂的基本原因

合金的凝固收缩是铸件产生应力、变形和冷裂的基本原因
合金的凝固收缩是指在铸造过程中,由于合金在冷却过程中体积缩小而产生的现象。
这个缩小是由于合金在液态和固态之间的相变过程中,原子或分子的排列方式发生变化引起的。
合金的凝固收缩会导致以下问题:
1. 应力和变形:凝固收缩会导致铸件内部产生拉应力和挤压应力。
当拉应力超过材料的强度限制时,可能会导致铸件的断裂。
同时,凝固收缩还会导致铸件变形,特别是对于复杂形状的铸件来说,这种变形可能会使铸件失去原有的形状和尺寸。
2. 冷裂:凝固收缩还会导致铸件的冷裂。
当铸件凝固收缩时,内部产生的拉应力可能会超过材料的断裂韧性限制,从而导致铸件的冷裂。
为了解决合金的凝固收缩问题,可以采取以下措施:
1. 添加凝固缩小剂:通过添加凝固缩小剂,可以促进铸件凝固过程中的形变和缩小,从而减少凝固收缩产生的应力和变形。
2. 控制凝固速率:通过控制凝固速率,可以影响合金凝固收缩的行为。
较快的凝固速率可以减少凝固收缩的影响。
3. 使用合理的铸造工艺:选择合适的铸造温度、浇注方式和冷却方式等铸造工艺参数,可以降低合金凝固收缩带来的问题。
总之,合金的凝固收缩是造成铸件产生应力、变形和冷裂的基本原因之一,需要通过适当的措施来解决这个问题。
金属铸造工艺中的收缩

金属铸造工艺中的收缩金属铸造工艺中的收缩是指在铸造过程中,液态金属冷却后变为固态金属时所产生的体积收缩现象。
这种收缩是由于金属的晶体结构在凝固时发生变化所引起的。
铸造收缩对于金属铸件的尺寸精度和形状稳定性有着重要影响,如果不加以控制和补偿,将会导致铸件尺寸偏差和形状变形等问题。
金属铸造收缩可以分为凝固收缩和冷却收缩两个阶段。
凝固收缩是指液态金属冷却凝固过程中,由于晶格结构的变化而产生的收缩现象。
冷却收缩是指在凝固完成后,铸件继续冷却至室温的过程中,由于晶格中的位错移动和晶界内的变形引起的更为显著的收缩现象。
凝固收缩主要是由于金属液态到凝固过程中晶体结构的变化所引起的。
在液态状态下,金属原子之间间距较大,自由度较高,当凝固开始时,金属原子逐渐排列成固态晶体结构,晶胞间距缩小,导致体积收缩。
凝固收缩的大小取决于金属的性质、凝固速度和形状等因素。
快速凝固的金属收缩较大,且柱状晶体比等轴晶体的收缩更为显著。
冷却收缩是由于金属铸件在凝固完成后进一步冷却而产生的收缩现象。
晶体的冷却收缩主要是通过位错的移动和晶界内的变形而引起的。
位错是由晶体中的原子错位引起的缺陷,当晶体冷却时,位错开始进行移动和滑动,引起晶体内部的变形,从而导致冷却收缩。
此外,晶粒内的空隙扩散也会导致晶体的冷却收缩。
为了解决金属铸造中的收缩问题,工程师通常会采取一系列的措施。
首先,可以通过控制铸件的几何形状和壁厚来调整收缩。
较大的壁厚和合理的缩放会减少收缩的影响。
其次,可以通过改变金属的成分和凝固方式来控制收缩。
某些合金元素的添加可以改变晶体结构,从而影响收缩。
此外,在凝固过程中采用合适的冷却方法,如水冷和气冷等,也可以有效控制收缩。
除了工艺控制之外,还可以利用数值仿真方法来预测和纠正收缩。
通过建立数值模型,可以模拟并计算铸件在凝固和冷却过程中的收缩情况。
根据模拟结果,可以进一步优化铸件的几何形状和工艺参数,以减少收缩的影响。
总之,金属铸造工艺中的收缩是一个不可忽视的问题。
金属材料铸造性能包括

精心整理1. 金属铸造性能包括:合金的流动性、凝固特性、收缩性、吸气性。
2. 流动性:液态合金本身的流动能力。
3. 流动性不足产生的缺陷:形成的晶粒将充型的通道堵塞,金属液被迫停止流动,于是铸件将产生浇不到或冷隔等缺陷。
4. 5.6. 7. (2)判断热接位置:画等温线、画最大内接圆、用计算机凝固模拟法。
(3)如何消除缩孔:顺序凝固,顺序凝固是在铸件上可能出现缩孔的厚大部位通过安放冒口等工艺措施,使铸件远离冒口的部位先凝固,然后是靠近冒口部位凝固,最后才是冒口本身的凝固。
8. 热应力:(1)热应力使铸件的厚壁或心部受拉伸,薄壁或表层受压缩。
铸件的壁厚差别越大,合金线收缩率越高,弹性模量越大,产生的热应力越大。
(2)去除热应力的方法:采用同时凝固原则可减少铸造内应力,防止铸件的变形和裂纹缺陷,又可免设冒口而省工省料。
9.时效处理:对于不允许发生形变的重要件必须进行时效处理。
自然时效是将铸件置于露天场地半年以上使缓慢的发生变形,使内应力消除。
人10.(3)(((((((11.(4)一定的退让性(内应力、变形、形裂)12.防治措施:添加锯木屑、草木灰、煤粉。
13.什么是铸造工艺图?它包括哪些内容?他在铸件生产的准备阶段起着哪些重要作用?答:铸造工艺图是在零件图上用各种工艺符号及参数表示出铸造工艺方案的图形。
其中包括:浇注位置,铸型分型面,型芯的数量、形状、尺寸及其固定方法,加工余量,收缩率,浇注系统,起模斜度,冒口和冷铁的尺寸和布置等。
铸造工艺图是指导模样设计、生产设备、铸型制造和铸造检验的基本工艺文件。
依据铸造工艺图,结合所选定的造型方法,便可绘制出模样图及合型图。
14.15.16.,此时,90度,竖立后进行浇注。
17.起模斜度:为了使模样便于从砂型中取出,凡平行起模方向的模样表面上所增加的斜度。
18.收缩率:由于合金的线收缩,铸件冷却后的尺寸将比型腔尺寸略有缩小。
模型尺寸=零件尺寸+余量尺寸+收缩率(量)19.铸造圆角:防止应力集中过大,产生开裂,相交的力设计适应的R圆。
第二章 合金的铸造性能

第三节 铸件中常见的缺陷及防止
铸件中的缩孔与缩松 铸件应力 铸件的变形 铸件的裂纹 铸造偏析 铸件中的气孔
一、铸件中的缩孔与缩松
缩孔的形成 缩松的形成 影响缩孔、缩松形成的因素 缩孔和缩松的防止方法
缩孔的形成
定义:液态金属在铸型内凝固过程 中,由于液态收缩和凝固收缩,使 体积缩小,若其收缩得不到补充, 就在铸件最后凝固处形成大而集中 的孔洞称为缩孔。
形成的条件:铸件呈逐层凝固方式 凝固。 易形成缩孔的金属:纯金属或共晶 成分的合金。
缩松的形成
定义:液态金属在铸型内凝固过程中, 由于液态收缩和凝固收缩,使体积缩 小,若其收缩得不到补充,就在铸件 最后凝固处形成细小而分散的孔洞称 为缩松。 形成的条件:铸件呈糊状凝固方式凝 固。 易形成缩松的金属:非共晶成分或有 较宽结晶温度范围的合金。
2.浇注条件
浇注温度:浇注温度越高,流动性
越好。
充型压力:充型压力越大,流动性
越好。
3.铸型结构及填充条件
铸型的蓄热能力:铸型的蓄热能力强, 充型能力差。 铸型温度:铸型温度高,有利于液体 金属充型。 铸型中气体:铸型中气体愈多,充型 的阻力阻力愈大。 铸型结构:铸型结构缩
一 铸造合金的凝固
铸造合金的凝固方式 影响凝固方式的因素
影响铸件凝固方式的主要因素 :
(1)合金的结晶温度范围
(2)铸件的温度梯度
二、铸造合金的收缩
收缩阶段 影响收缩的因素
浇注温度 合金的浇注温度越高,也太收缩量 越大,其总收缩量增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铸件合金的凝固与收缩
合金凝固温度范围和铸件温度梯度会对铸件的凝固方式产生影响,化学成分不同、浇注温度和铸件结构会对逐渐的收缩产生影响。
(一)铸件的凝固方式及影响因素
1.铸件的凝固方式
(1)逐层凝固方式
合金在凝固过程中其断面上固相和液相由一条界线清楚地分开,这种凝固方式称为逐层凝固。
常见合金如灰铸铁、低碳钢、工业纯铜、工业纯铝、共晶铝硅合金及某些黄铜都属于逐层凝固的合金。
(2)糊状凝固方式
合金在凝固过程中先呈糊状而后凝固,这种凝固方式称为糊状凝固。
球墨铸铁、高碳钢、锡青铜和某些黄铜等都是糊状凝固的合金。
(3)中间凝固方式
大多数合金的凝固介于逐层凝固和糊状凝固之间,称为中间凝固方式。
中碳钢、高锰钢、白口铸铁等具有中间凝固方式。
2.凝固方式的影响因素
(1)合金凝固温度范围的影响
合金的液相线和固相交叉在一起,或间距很小,则金属趋于逐层凝固;如两条相线之间的距离很大,则趋于糊状凝固;如两条相线间距离较小,则趋于中间凝固方式。
(2)铸件温度梯度的影响
增大温度梯度,可以使合金的凝固方式向逐层凝固转化;反之,铸件的凝固方式向糊状凝固转化。
(二)铸造合金的收缩
铸造合金从液态冷却到室温的过程中,其体积和尺寸缩减的现象称为收缩。
它主要包括以下三个阶段:
1.液态收缩金属在液态时由于温度降低而发生的体积收缩。
2.凝固收缩熔融金属在凝固阶段的体积收缩。
液态收缩和凝固收缩是铸件产生缩孔和缩松的基本原因。
3.固态收缩金属在固态时由于温度降低而发生的体积收缩。
固态收缩对铸件的形状和尺寸精度影响很
大,是铸造应力、变形和裂纹等缺陷产生的基本原因。
(三)影响合金收缩的因素
1.化学成分不同成分的合金其收缩率一般也不相同。
在常用铸造合金中铸刚的收缩最大,灰铸铁最小。
2.浇注温度合金浇注温度越高,过热度越大,液体收缩越大。
3.铸件结构与铸型条件铸件冷却收缩时,因其形状、尺寸的不同,各部分的冷却速度不同,导致收缩不一致,且互相阻碍,又加之铸型和型芯对铸件收缩的阻力,故铸件的实际收缩率总是小于其自由收缩率。
这种阻力越大,铸件的实际收缩率就越小。
(四)收缩对铸件质量的影响
1.缩孔和缩松
(1)缩孔的形成
缩孔总是出现在铸件上部或最后凝固的部位,其外形特征是:内表面粗糙,形状不规则,多近于倒圆锥形。
通常缩孔隐藏于铸件的内部,有时经切削加工才能暴露出来。
缩孔形成的主要原因是液态收缩和凝固收缩。
(2)缩松的形成
宏观缩松多分布在铸件最后凝固的部位,显微缩松则是存在于在晶粒之间的微小孔洞,形成缩松的主要原因也是液态收缩和凝固收缩所致。
(3)缩孔、缩松的防止措施
a)采用定向凝固的原则所谓定向凝固,是使铸件按规定方向从一部分到另一部分逐渐凝固的过程。
冒口和冷铁的合理使用,可造成铸件的定向凝固,有效地消除缩孔、缩松。
b)合理确定铸件的浇注位置、内浇道位置及浇注工艺浇注位置的选择应服从定向凝固原则;内浇道应开设在铸件的厚壁处或靠近冒口;要合理选择浇注温度和浇注速度,在不增加其它缺陷的前提下,应尽量降低浇注温度和浇注速度。
2.铸造应力、变形和裂纹
在铸件的凝固以及以后的冷却过程中,随温度的不断降低,收缩不断发生,如果这种收缩受到阻碍,就会在铸件内产生应力,引起变形或开裂,这种缺陷的产生,将严重影响铸件的质量。
(1)铸造应力的产生
铸造应力按其产生的原因可分为三种:
a)热应力铸件在凝固和冷却过程中,不同部位由于不均衡的收缩而引起的应力。
b)固态相变应力铸件由于固态相变,各部分体积发生不均衡变化而引起的应力。
c)收缩应力铸件在固态收缩时,因受到铸型、型芯、浇冒口、箱挡等外力的阻碍而产生的应力。
铸件铸出后存在于铸件不同部位的内应力称为残留应力。
(2)铸造应力的防止和消除措施
a)采用同时凝固的原则同时凝固是指通过设置冷铁、布置浇口位置等工艺措施,使铸件温差尽量变小,基本实现铸件各部分在同一时间凝固。
b)提高铸型温度
c)改善铸型和型芯的退让性
d)进行去应力退火
(3)铸件的变形和防止
铸件的变形包括铸件凝固后所发生的变形以及随后的切削加工变形。
防止铸件变形有以下几种方法:
a)采用反变形法可在模样上做出与铸件变形量相等而方向相反的预变形量来抵消铸件的变形,此种方法称为反变形法。
b)进行去应力退火铸件机加工之前应先进行去应力退火,以稳定铸件尺寸,降低切削加工变形程度。
c)设置工艺肋为了防止铸件的铸态变形,可在容易变形的部位设置工艺肋。
(4)铸件的裂纹及防止
a)铸件裂纹的分类及其形貌
铸件一般有热裂和冷裂两种开裂方式。
当固态合金的线收缩受到阻碍,产生的应力若超过该温度下合金的强度,即产生热裂;而冷裂是铸件处于弹性状态时,铸造应力超过合金的强度极限而产生的。
热裂裂纹一般沿晶界产生和发展,其外形曲折短小,裂纹缝内表面呈氧化色;冷裂裂纹常常是穿晶断裂,裂纹细小,外形呈连续直线状或圆滑曲线状,裂纹缝内干净,有时呈轻微氧化色。
b)铸件裂纹的防止
为有效地防止铸件裂纹的发生,应尽可能采取措施减小铸造应力;同时金属在熔炼过程中,应严格控制有可能扩大金属凝固温度范围元素的加入量及钢铁中的硫、磷含量。