平面内点的坐标教案
沪科版(2012)初中数学八上 11.1 平面内点的坐标 教案

第11章平面直角坐标系11.1平面内点的坐标(第2课时)教学设计学生自主交流:学生通过自主探究和合作交流得到:各个象限点及坐标轴的符号的特点.(续表)活动二:实践探究交流新知活动2:练一练1.点P(m+2,m-1)在x轴上,则点P的坐标是 .2.点P(m+2,m-1)在y轴上,则点P的坐标是 .3. 点P(x,y)满足 xy=0, 则点P在 .4.若xy=0,则点p(x,y)位于_师生共同完成解答过程:解:(1)(3,0) (2)(0,-3) (3)x轴或y轴上(4)y轴(原点除外)上教师通过分析总结:注意: 1. x轴上的点的纵坐标为0,表示为(x,0),2. y轴上的点的横坐标为0,表示为(0,y)。
原点(0,0)既在x轴上,又在y轴上。
活动3:点到两轴的距离P-1-3-2-1-211223yx(2,-3)本环节是进一步复习和巩固各个象限点及坐标轴的符号的特点,在此基础上拓宽学生的知识面.培养学生合作交流的意识,体会与他人合作的重要性.1123456-1-2-3-4-6 2 3 4 5 6-1-2-3-4-5-5-60 xyA(0,0)(2,-1)(-3,-4)(-4,-3)(-5,0)(-4,4.5)(0,-3)(0,2.5)(4,3.5)BCHTOEF。
上海科学技术出版社初中八年级数学上册全套教案

平面内点的坐标【课时安排】2课时【第一课时】【教学目标】1.通过实际问题抽象出平面直角坐标系及其相关概念,使学生认识平面直角坐标系原点、横轴和纵轴等,会由坐标描点,由点写出坐标;让学生体会到平面上的点与有序实数对之间的对应关系;2.经历画平面直角坐标系,由点写出坐标和由坐标描点的过程,进一步渗透数形结合的数学思想;3.培养学生自主探究与合作交流的学习习惯。
【教学重点】正确认识平面直角坐标系,会准确地由点写出坐标,由坐标描点。
【教学难点】各象限内坐标的符号及各坐标轴上点坐标的特点,平面上的点与有序实数对之间的对应关系。
【教学过程】一、设置问题情境:(一)回顾一下数轴的概念,及实数与数轴有怎样的关系?(学生回答)(二)情境:(多媒体显示)如图所示请指出数轴上A、B两点所表示的数;直线表示一条笔直公路,向东为正方向,原点为学校位置,A、B是位于公路旁两学生家的位置,你能说出它们的位置吗?这说明了什么?引申:确定一个点在直线上的位置,只需要一个数据,这个实数可称为点在数轴上的坐标。
怎样确定平面上一个点的位置呢?二、观察交流,构建新知。
观察、交流、思考:(1)确定平面上一点的位置需要什么条件?(2)既然确定平面上一点的位置需要两个数,那么能否用两条数轴建立模型来表示平面上任一点的位置呢?教师在学生回答的基础上,边操作边讲出:为了确定平面上一个点的位置,我们先在平面内画两条互相垂直并且原点重合的数轴,水平的数轴叫x 轴或横轴,取向右为正方向,垂直的数轴叫y轴或纵轴,取向上为正方向,两轴交点O为原点,这样就建立了平面直角坐标系。
这个平面叫做坐标平面。
有了坐标平面,平面内的点就可以用一个有序实数对来表示。
引导观察:如图中点P可以这样表示:由P向x轴作垂线,垂足M在x 轴上的坐标是-2,点P向y轴作垂线,垂足N在y轴的坐标是3,于是就说点P的横坐标是-2,纵坐标3,把横坐标写在纵坐标前面记作(-2,3),即P点坐标(-2,3)。
平面直角坐标教案5篇

平面直角坐标教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如工作总结、工作计划、作文大全、心得体会、申请书、演讲稿、教案大全、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as work summaries, work plans, essays, experiences, application forms, speeches, lesson plans, and other sample articles. If you want to learn about different data formats and writing methods, please pay attention!平面直角坐标教案5篇一个教案使教师更好地在教学中应对学生的学习差异和特殊需求,老师在编写教案时需要充分考虑学生的学习需求和兴趣点,以下是本店铺精心为您推荐的平面直角坐标教案5篇,供大家参考。
新版沪科版八年级数学上册第11章《平面直角坐标系》教案

第十一章平面直角坐标系11.1平面内点的坐标第1课时平面直角坐标系◇教学目标◇【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念;2.理解坐标平面内的点与有序实数对的一一对应关系;3.能在方格纸中建立平面直角坐标系来描述点的位置.【过程与方法】1.通过画坐标系,由点找坐标等过程,发展学生的数形结合意识、合作交流意识;2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识.【情感、态度与价值观】让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.◇教学重难点◇【教学重点】理解平面直角坐标系的有关知识;在给定的平面直角坐标系中,会根据点的位置写出它的坐标.【教学难点】坐标轴上的数字与坐标系中的坐标之间的关系.◇教学过程◇一、情境导入假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(如图),回答以下问题:(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?二、合作探究1.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分.在了解有关平面直角坐标系的知识后,再返回刚才讨论的问题.结论:如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,则“碑林”的位置是(3,1),“大成殿”的位置是(-2,-2).问题:在(3)的条件下,你能把其他景点的位置表示出来吗?结论:能,钟楼的位置是(-2,1),雁塔的位置是(0,3),影月湖的位置是(0,-5),科技大学的位置是(-5,-7).2.例题讲解典例写出图中多边形ABCDEF各顶点的坐标.此图中各顶点的坐标是否永远不变?你能举个例子吗?[解析]多边形ABCDEF各顶点的坐标分别为A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).不是.当坐标轴的位置发生变动时,各点的坐标相应地变化.若以线段BC所在的直线为x轴,纵轴(y轴)位置不变,如图,则六个顶点的坐标分别为A(-2,3),B(0,0),C(3,0),D(4,3),E(3,6),F(0,6).再思考这个结论是否是永恒的.结论:不是.还能再改变坐标轴的位置,得出不同的坐标.继续进行坐标轴的变换,总结一下共有多少种不同的变换方式.3.想一想在上例中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段测定位置有什么特点?(3)坐标轴上点的坐标有什么特点?【归纳总结】(1)坐标轴上的点的坐标中至少有一个是0;横轴上的点的纵坐标为0,纵轴上的点的横坐标为0.(2)x轴、y轴把坐标平面分成四个象限,但是坐标轴上的点不属于任何一个象限.(3)各个象限内的点的坐标特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).变式训练如图,确定点A,B,C,D,E,F,G的坐标.[解析]点A(-1,-1),点B(0,-3),点C(2,-5),点D(4,-1),点E(3,2),点F(-2,3),点G(2,-2).三、板书设计平面直角坐标系1.平面直角坐标系:横轴、纵轴、横坐标、纵坐标、原点.2.象限的划分.◇教学反思◇学生在实际生活中经常遇到物体位置的问题,可能想不到这些问题与数学的联系,老师在这节课上应引导学生建立平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力,增强学生学习数学的兴趣.。
3.2平面直角坐标系(第1课时)教案

课题:平面直角坐标系●教学目标:知识与技能目标:1.使学生逐步理解平面直角坐标系的有关概念,并会正确地画出平面直角坐标系;2.理解平面内点的坐标的意义,会根据平面内已知点的位置写出它对应的坐标.过程与方法目标:1.通过画坐标系,由点找坐标等过程,发展学生的数形结合意识,合作交流意识;2.通过直角坐标系的教学,向学生渗透数形结合的思想方法.情感态度与价值观目标:1.通过直角坐标系的教学,使学生进一步明确数学理论来源于实践,反过来又能指导实践进一步发展的辩证唯物主义思想.●重点:1.使学生能在平面直角坐标系中,已知点的坐标,能确定这一点的位置;2.已知点的位置,能写出与它对应的坐标.难点:已知点的位置,能写出与它对应的坐标.●教学流程:一、情境引入数轴上的点与实数之间有什么关系?1、数轴上的点A表示数1.反过来,数1就是点A的位置.我们说点1是点A在数轴上的坐标.2、同理可知,点B→-3;点C →2.5;点D →0.数轴上的点与实数之间存在着一一对应的关系.目的:通过回顾数轴上的点与实数之间的关系为新课学习做铺垫.二、自主探究探究1:如图是某市的旅游示意图,在科技大学的小亮如何向来访的朋友介绍该市的几个风景点的位置呢?(1)小红在旅游示意图上画上了方格,标上数字,并用(0,0)表示科技大学的位置,用(5,7)表示中心广场的位置,那么钟楼的位置如何表示?(2,5)表示哪个地点的位置?(5,2)呢?解:钟楼的位置用(3,8)表示,(2,5)表示大成殿的位置,(5,2)表示影月湖的位置.(2)如果小亮和他的朋友在中心广场,并以中心广场为“原点”,做了如图所示的标记,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?解: “碑林”的位置用(3,1)表示,大成殿的位置用(-3,-2)表示.概念引入:像这样,平面上两条互相垂直且有公共原点的数轴组成了平面直角坐标系。
点的坐标:平面上任意一点P,过P分别向x轴和y轴作垂线,垂足在x轴上y轴上对应的数a,b,分别叫做点P的横坐标纵坐标。
【教案一】11.1平面内点的坐标

11.1平面内点的坐标(一)教学目标:【知识目标】1、理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念。
2、认识并能画出平面直角坐标系。
3、能在给定的平面直角坐标系中,由点的位置写出它的坐标。
4、认识象限,熟悉各个象限内点的坐标特征。
【能力目标】1、通过画坐标系,由点找坐标等过程,发展学生的数形结合意识,合作交流意识。
2、通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。
【情感目标】由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。
教学重点:1、理解平面直角坐标系的有关知识。
2、在给定的平面直角坐标系中,会根据点的位置写出它的坐标。
3、由点的坐标观察,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。
教学难点:1、横(或纵)坐标相同的点的连线与坐标轴的关系的探究。
2、坐标轴上点的坐标有什么特点的总结。
教学方法:讨论式学习法教学过程设计:一、导入新课『师』:同学们,你们喜欢旅游吗?假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图,回答以下问题:(图5-6)(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴、分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?在上一节课,我们已经学习了许多确定位置的方法,主要学习用反映极坐标思想的定位方式,和用反映直角坐标思想的定位方式。
在这个问题中大家看用哪种方法比较合适?『生』:用反映直角坐标思想的定位方式。
3.2《平面直角坐标系》(教案)

(五)总结回顾(用时5分钟)
今天的学习,我们了解了平面直角坐标系的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对坐标系的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.2《平面直角坐标系》(教案)
一、教学内容
3.2《平面直角坐标系》:本节课我们将围绕以下内容展开:
1.平面直角坐标系的定义与性质;
2.坐标平面上的点与坐标表示方法;
3.坐标轴上点的坐标特点;
4.两个坐标轴将平面分为的四个象限及其特点;
5.各象限内点的坐标规律;
6.相邻象限内点的坐标关系;
7.平行于坐标轴的直线上的点的坐标规律;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平面直角坐标系的基本概念。平面直角坐标系是由两条互相垂直的数轴组成的,它可以准确地表示平面上的点。它是解析几何的基础,对于解决实际问题非常重要。
2.案例分析:接下来,我们来看一个具体的案例。通过地图上的坐标系,我们可以找到某个地点的精确位置,并计算两点之间的距离。
其次,在新课讲授环节,我发现学生在理解坐标系概念和坐标表示方法方面存在一定难度。在讲解过程中,我尽量使用简洁明了的语言和丰富的实例,帮助他们更好地理解。但我也意识到,对于这部分内容,可能需要更多的时间让学生去消化和吸收。在接下来的教学中,我会适当调整教学节奏,给学生更多思考和提问的机会。
再谈谈实践活动,学生们在分组讨论和实验操作环节表现出了很高的热情。他们通过实际操作,对坐标系有了更直观的认识。但同时,我也注意到部分学生在讨论过程中过于依赖同伴,缺乏独立思考。针对这一问题,我将在后续教学中加强对学生的引导,培养他们的自主学习能力。
111平面内点的坐标讲解

学习目标:1、 通过生活中的实例,认识到可以用有序数对表示点的位置。
2、 会用有序数对确定平面内的点。
注意强调数对的 有序”。
3、 让学生感受到可以用数量表示图形位置,形成形数结合的意识。
重点:理解有序数对的概念,用有序数来表示位置。
难点:理解有序数对是“有序的”,并用它解决实际问题。
预习案一、情境1:在一条笔直的街道边,竖着一排等距离的路灯,小华、小红、小明的位置 如图1所示,你能根据图示确切地描述他们三个人的位置关系吗?j j \\ I I _ I. I >1不知小阴通1情境2:我们到电影院看电影时,每个人都需要一张电影票,你是怎么根据电影票上的 数子找到位置的?1. 有 的两个数a 与b 组成的数对,叫做有序数对,记作2. (a,b)与(b.a)的顺序不同,含义就不同,如(3,4)表示的座位是 (4,3)表示的座次是 。
二、填空1、 有序数对a,b 正确的表示方法是 。
2、 用1, 2, 3可以组成有序数对有 对。
3、 课间操时,小华、小军、小刚的位置如图,小华对小刚说: “如果我的位置用(0, 0)表示,小军的位置用(2, 1)表示, 那么你的位置可以表示成()”A 、 (5, 4)B 、 (4, 5)C 、 (3, 4)D 、 (4, 3)4、在电影票上,将“7排6号”简记为(7, 6),则6排7号可表示为 (8, 6)表示的意义是。
5、 如图的棋盘中,若“帅”位于点(1, 一2)上, “相”位于点(3, 一 1)上,则“炮”位于点 .6、 某阶梯教室共有12排座位,第一排有16个座位,后面每 排都比前一排多1个座位,若每排座位数为 m 排数为n.(3)用含有 n 的代数式表示 mi : .7、某人在车间里工作的时间 t 与工作总量y 组成有序数对(t, y),若他的工作效率是 不变的,其中两组数对分别为(4, 80), (7, y),则y =.8 、 如图所示,A 的位置为(2,6), 小明从 A 出发,经 (2.5) 7(3,5) 7(4,5) 7(4,4) ^(5,4) ^(6,4),小刚也从 A 出发,经(3.6) 7(4,6) 7(4,7) 7(5,7) ^(6,7),则此时两人相距几个格?探究案1、如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?2、 阅读教材第47页的“用经纬度表示地理位置” 一文.3、 你有没有见过用其他的方式来表示位置的?1)如有的电影院分楼上楼下两层,这时就要在电影票上写明是楼上几排几号了;又如 在一些大型会场,往往把场地分为 A 、B C 等区,这时就要在座位票上写明是哪个区、几排 几号了2)、我们规定:沿正北方向顺时针旋转 9角并前进a 个单位,记作(9 , a),那么你能说明下列有序数对所表示的图形的含义吗? (1) (45度,6)(2) (120度,8)(一)有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.1 平面上点的坐标(第1课时)
一、教学内容
本节主要学习平面上点坐标的有关概念,能从平面直角坐标系中写出点的坐标,及能根据坐标确定坐标中点的位置。
二、教学目标
1、通过实际问题抽象出平面直角坐标系及其相关概念,使学生认识平面直角坐标系原点、横轴和纵轴等,会由坐标描点,由点写出坐标;让学生体会到平面上的点与有序实数对之间的对应关系;
2、经历画平面直角坐标系,由点写出坐标和由坐标描点的过程,进一步渗透数形结合的数学思想;
3、培养学生自主探究与合作交流的学习习惯。
三、教学重点
正确认识平面直角坐标系,会准确地由点写出坐标,由坐标描点。
四、教学难点
各象限内坐标的符号及各坐标轴上点坐标的特点,平面上的点与有序实数对之间的对应关系。
五、教学关键:充分体会有序实数对在实际中的应用
六、教学准备:多媒体教学课件、三角尺
七、教学方法:探讨、合作
八、教学过程:
(一)设置问题情境:
1、回顾一下数轴的概念,及实数与数轴有怎样的关系?(学生回答)
2、情境:(多媒体显示)
(1)如图所示请指出数轴上A、B两点所表示的数;直线表一条笔直公路,向东为正方向,原点为学校位置,A、B是位于公路旁两学生家的位置,你能说出它们的位置吗?这说明了什么?
引申:确定一个点在直线上的位置,只需要一个数据,这个实数可称为点在数轴上的坐标。
怎样确定平面上一个点的位置呢?
(2)上电影院看电影,电影票上至少要有几个数据才能确定你的位置?
(3)在教室里,怎样确定一个同学的位置?
(二)观察交流,构建新知
观察、交流、思考,回答教科书第2页的两个问题。
思考:1、确定平面上一点的位置需要什么条件?
2、既然确定平面上一点的位置需要两个数,那么能否用两条数轴建立模
型来表示平面上任一点的位置呢?
教师在学生回答的基础上,边操作边讲出:为了确定平面上一个点的位置,我们先在平面内画两条互相垂直并且原点重合的数轴,水平的数轴叫x轴或横轴,取向右为正方向,垂直的数轴叫y轴或纵轴,取向上为正方向,两轴交点O为原点,这样就建立了平面直角坐标系。
这个平面叫做坐标平面。
有了坐标平面,平面内的点就可以用一个有序实数对来表示。
引导观察:如左图中点P可以这样表示:由P 向
x轴作垂线,垂足M在x轴上的坐标是-2,点P向
y轴作垂线,垂足N在y3,于是就说
点P的横坐标是-2,纵坐标3,把横坐标写在纵坐
标前面记作(-2,3),即P点坐标(-2,3)。
引导练习:写出点A、B、C的坐标。
学生相互交流,得出正确答案。
(强调点的坐标的有序性和正确规范书写)
教师提问:已知平面内任意一点,可以写出它的坐标;反之,给出一点的坐标,你能在上图中描出吗?
试一试:D(1,3) E(-3,2) F(-4,-1)
(注意引导学生进行逆向思维)
教师提问:请同学们想一想:原点O的坐标、x轴和y轴上的点坐标有什么特点?
学生发现:O点坐标(0,0),x轴上点的纵坐标为0,y轴上点横坐标为0。
试一试:描点:G(0,1),H(1,0)(注意区别)
(三)观察思考,探究规律
教师讲解:两条坐标轴把坐标平面分成四个部分:右上部分叫第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限、和第四象限。
坐标轴不属于任何象限。
学生活动:观察、认知上图中各象限内已描出各点的坐标特点:第一、二、三、四象限内的点的坐标符号分别是:(+,+)、(—,+)、(—,—)、(+,—)(四)随堂练习
1、完成教材第3和第4页的1、2两个问题
2、多媒体展示的练习题。
(五)课堂小结:(投影显示,学生归纳)
本节课我们学习了平面直角坐标系。
学习本节我们要掌握以下三方面的知识内容:
1、能够正确画出直角坐标系。
2、能在直角坐标系中,根据坐标找出点,由点求出坐标。
坐标平面内的点和有
序实数对是一一对应的。
3、掌握象限点、x轴及y轴上点的坐标的特征:
第一象限:(+,+)第二象限:(-,+)
第三象限:(-,-)第四象限:(+,-)
x轴上的点的纵坐标为0,表示为(x,0)
y轴上的点的横坐标为0,表示为(0,y)
(六)布置作业
1、习题第1、2题
2补充:点P(m ,4-m)是第二象限的点,求m的取值范围。
3、已知三点A(0,4)、B(-3,0)、C(3,0)现以A、B、C为顶点画平行四边形,写出符合条件的D点坐标。
12.1平面上点的坐标(第2课时)
一、教学内容
本节课继续研究平面上点的坐标,主要内容是通过点连成图形,及坐标特征与应用。
二、教学目标:
1、充分应用平面上点的坐标的有关知识,进一步认识坐标系中的图形;
2、平面上点的坐标特点及运用;
3、进一步体会数形结合思想,培养学生的抽象思维能力和应用能力。
三、教学重点
1、理解平面上点的坐标形成的图形;
2、不同情况下的点的坐标特点。
四、教学难点:对点的坐标特点的运用;
五、教学关键:图形的准确描述和点坐标特征的讲解
六、教学准备:制作多媒体教学课件、三角尺
七、教学方法:探讨、合作、交流
八、教学过程
(一)回顾交流(提问学生,检测所学)
1、有关坐标系概念的复习;
2、如何由点的位置写坐标及由坐标确定点的位置?
3、各象限点有什么特点?
(二)观察交流、构建新知
多媒体展示:
探索思考1:1、点A(3,1)到x轴的距离是()到y轴的距离是()
2、点B(-1,3)到x轴的距离是()到y轴的距离是()
3、点B(a,b)到x轴的距离是()到y轴的距离是()
4、到x轴的距离为2,到y轴的距离是3的点有()个,它们是:
结论:点p(x,y)到x轴距离是|y|,到y轴距离是|x|。
思考2:在直角坐标系中描出点A(2,-3),分别找出它关于x轴、y轴及原点的对称点,并写出这些点的坐标.观察上述写出的各点的坐标,回答:
(1)关于x轴对称的两点的坐标之间有什么关系?
(2)关于?y轴对称的两点的坐标之间有什么关系?
(3)关于原点对称的两点的坐标之间又有什么关系?
教师指出:①关于x轴对称的两个点的横坐标相等,纵坐标互为相反数(简记“横等纵反”);关于y轴对称的两个点的横坐标互为相反数,纵坐标相等(横反纵等);关于原点对称的两个点,横、纵坐标分别互为相反数(横反纵反)。
(紧密结合图形进行讲解);
思考3:在直角坐标平面内,(1)第一、三象限角平分线上点的坐标有什么特点?
(2)第二、四象限角平分线上点的坐标有什么特点?
总结:第一、三象限两坐标轴夹角的平分线上的点(a,b)特点是a=b;第二、四象限两坐标轴夹角的平分线上的点(a,b)特点是a+b=0。
例1 如图1,△ABC的三个顶点的坐标分别是A(2,3),B(4,0),C(-2,0).求△ABC的面积.
例2 如图,平面直角坐标系中,已知点A(-3,-2),B(0,3),C(-3,2).求△ABC的面积.
例3 如图3,平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(-3,-1),B(1,3),C(2,-3).求△ABC的面积.(多媒体展示图形)
(三)针对训练
1、点A(m-1,2m)在第二象限内,求m范围。
若在x轴上呢?在第一、三象限坐标轴的夹角平分线上呢?
2、点A(m,m-1)与点B(3,2m)关于x轴对称,求m值,若关于y轴对称呢?
3、点(-3,4)到x轴、y轴距离各是多少?
(学生积极思考,参与活动,与同伴交流,上台演示)
(四)随堂练习:
1.第7和第8页的1、2题
2.多媒体展示的练习。
(五)课堂小结(多媒体显示,学生自己归纳)
1、如何准确向他人描述某图形?
2、平面上点的坐标特点小结。
(六)布置作业
习题第 3、4、5、6题。