平面运动机构的解析分析

合集下载

机械原理第三章 运动分析

机械原理第三章 运动分析

例3-4 含三副构件的六杆机构运动分析
例3-5 已知图示机构各构件的尺寸及原动件1的角速度1,求 C点的速度vc及构件2和构件3的角速度2及 3;求E点的速度 vE 加速度aE 。 解: 1) 列矢量方程,分析 各矢量大小和方向。 2) 定比例尺,作矢量 图。 3) 量取图示尺寸,求 解未知量。 2 C
vB 3 vB 2 vB 3B 2
⊥BC ⊥AB ? lAB1
v ?
m/s mm
1
A
1
B
2
方向: 大小: 定比例尺 作矢量图.
∥BC

3 C 4
vB3B 2 v b2b3
p b3 b2
vB 3 v pb3 3 lBC lBC
顺时针方向
2) 求构件3的角加速度3 列方程:
机械原理 第三章 平面机构的运动分析
§3-1 概述
§3-2 速度瞬心及其在平面机构速度分析中的应用 §3-3 平面机构运动分析的矢量方程图解法 §3-4 平面机构运动分析的复数矢量法 §3-5 平面机构运动分析的杆组法
§3-1 概述
1.机构运动分析的内容 机构尺寸和原动件运动规律已知时,求转动构件上某点 或移动构件的位移、速度、加速度及转动构件的角位移、 角速度、角加速度。 2.机构运动分析的目的
绝对速度相等的重合点。用Pij表示。
若该点绝对速度为零——绝对瞬心。 若该点绝对速度不为零——相对瞬心。 二、瞬心的数目 设N 为组成机构的构件数(含机架),K为瞬心数,则
2 K CN =N ( N 1) / 2
三、瞬心的位置 1.两构件组成转动副 P12
1 2
以转动副相联,瞬心在其中心处。
P12、P13 的位置(绝对瞬心),P23

机械原理-机构运动分析的解析法

机械原理-机构运动分析的解析法

l
1
φ θ
2
l
x
a2 x 2l cos al sin a2 y 2l sin al cos
已知:构件的长度L及运动参数角位置θ 、角速度ω 、 角加速度ε ,1点的运动参量。
求: 3点的运动参量。
解: P 3x P 1 x l cos( ) v3 x v1 x l sin( ) P v3 y v1 y l cos( ) 3y P 1 y l sin( )
运 动 副 点 号
要求赋值
构 件 号
构 件 长 度
角位置角速度角加速 度,位置 速度 加速 度 n1
r1
m>0——实线 M<=0——虚线
不赋值
已知: 外运动副N1的位置P、速度v、加速度a,导路上任意参考点 N2的位置P、 速度v、加速度a,构件1的长度及导路的角位置、角速度、角加速度。 求:内运动副N3的运动参量、构件①的运动参量、 r2、vr2、ar2
P 3x P 1x l1 cos 1 P 3y P 1 y l1 sin 1
P 3y P 2y 2 arctan P P 2x 3x
rrrk(m,n1,n2,n3,k1,k2,r1,r2,t,w,e,p,vp,ap)
装 配 模 式
n3 k1 k2 r2 n2 N3’
}
y
3
l
1
φ
l
2
θ
x
bark(n1,n2,n3,k,r1,r2,gam,t,w,e,p,vp,ap)
关 键 点 号 构 n n 件 1 1 号 n n ∠ n3 n1 2 3 间 间 n2 距 距 离 离 角位置角速度 角加速度,位 置 速度 加速度

第三章第三章平面机构的运动分析平面机构的运动分析

第三章第三章平面机构的运动分析平面机构的运动分析

若既有滚动又有滑 动, 则瞬心在高副接 触点处的公法线上。
三、机构中瞬心位置的确定 (续) ◆ 不直接相联两构件的瞬心位置确定
三心定理:三个彼此作平面平行运动的构 件的三个瞬心必位于同一直线上。 例题:试确定平面四杆机构在图示位置 时的全部瞬心的位置。 解: 机构瞬心数目为: K=6 瞬心P13、P24用 于三心定理来求 P24 P12 P23 2 3 4 P34 P13
e
n n' ①由极点p1向外放射的矢量代表构件相应点的绝对加速 度;
b' 注意:速度影像和加速度影像 只适用于构件。
②连接两绝对加速度矢量矢端的矢量代表构件上相应两 点间的相对加速度,其指向与加速度的下角标相反; ③也存在加速度影像原理。
三、两构件重合点间的速度和加速度的关系
已知图示机构尺寸和原动件1的运动。求重合点C的运动。 1. 依据原理 构件2的运动可以认为是随同构件1的牵连运动和构件2 相对于构件1的相对运动的合成。 2、依据原理列矢量方程式 vc2c1 B 2 C1、C2、C3 C 大小: ? √ ? 方向:⊥ CD ⊥AC ∥AB
vC 2 = vC 1 + vC 2C 1
ω1
1
ac1 4
3 大小: √ ? √ D vc1 √ ? C→D ⊥CD √ 方向:
n k r aC2 = aC3D +atC3D = aC1 +aC2C1 +aC2C1
√ ∥AB
A
a
k C 2 C1
= 2ω1vC 2C1
科氏加速度方向是将vC2C1沿 牵连角速度ω1转过90o的方向。
(1) 速度解题步骤:
★求VC ①由运动合成原理列矢量方程式
v C = v B + v CB

1.机构的运动分析

1.机构的运动分析

第二章机构的运动分析• 2.1 对机构进行运动分析的目的和方法• 2.2 用速度瞬心法进行速度分析• 2.3 相对运动图解法• 2.4 解析法•2.1 对机构进行运动分析的目的和方法一、平面机构运动分析的目的1. 求解机构中某些点的运动轨迹或位移,确定机构的运动空间2.求解机构某些构件的速度、加速度,了解机构的工作性能3.为力分析作前期工作构件的惯性力与其加速度成正比,惯性力矩与其角加速度成正比。

二、运动分析的方法复数法矩阵法矢量法速度瞬心法相对运动图解法(一)图解法(二)解析法(三)实验法2.2 用速度瞬心法进行速度分析2.2.1 瞬心的基本概念2.2.2 用瞬心法进行机构的速度分析2.2.1 瞬心的基本概念一、瞬心概念二、平面机构瞬心的数目三、瞬心位置的确定在任一瞬时,两个作平面相对运动的构件都可以看成是围绕一个瞬时重合点作相对转动。

瞬时重合点若你站在机架上看是等速重合点或同速点瞬时回转中心瞬心一、瞬心A 1(A 2)B 1(B 2)12A2A1V B2B1V P 12平面运动两构件肯定存在一个相对速度为零,绝对速度相同的点.如果你站在机架上看那就是同速点二、平面机构瞬心的数目2(1)2NN N K C -==假设机构中含有N 个构件,每两个构件之间有一个瞬心,则全部瞬心的数目三、瞬心位置的确定1.两个构件之间用运动副连接的瞬心位置2.两个构件之间没有用运动副连接的瞬心位置1.两个构件之间用运动副连接的瞬心位置(1)两个构件用转动副连接时的瞬心位置(2)两个构件用移动副连接时的瞬心位置(3)两构件用平面高副连接时的瞬心位置12 P12P12P121122(1)两个构件用转动副连接时的瞬心位置P 1212∞(2)两个构件用移动副连接时的瞬心位置半径无穷大的转动副(3)两个构件用平面高副连接时的瞬心位置纯滚动连滚带滑2.两构件之间没有用运动副连接时的瞬心位置(1)三心定理(2)瞬心多边形法的步骤(1)三心定理作平面运动的三个构件有三个瞬心,且位于同一直线上。

第2章-平面机构运动分析(解析法)

第2章-平面机构运动分析(解析法)

复数矢量法
复数矢量法是将机构看成一封闭矢量 多边形,并用复数形式表示该机构的封闭 矢量方程式,再将矢量方程式分别对所建 立的直角坐标系取投影。
Hale Waihona Puke 1、铰链四杆机构2、曲柄滑块机构
3、导杆机构
§2-4 用解析法求机构的 位置、速度和加速度
图解法的缺点:
1、分析结果精度低; 2、作图繁琐、费时,不适用于一个运动周期的分析。 3、不便于把机构分析与综合问题联系起来。 随着计算机应用的普及,解析法得到了广泛的应用。 方法:复数矢量法、矩阵法、杆组法等。 思路: 由机构的几何条件,建立机构的位置方程,然后就位置方程对 时间求一阶导数,得速度方程,求二阶导数得到机构的加速度方 程。

机械原理-机构的运动分析

机械原理-机构的运动分析

3、加速度分析
aC aB aCB
a C a C aB a CB a CB
n t n t
a B 12l AB
F
1
1 A B 2 E C
大小 lCD32
?
→A
lCB22 C→B
? ⊥CB
·
G
3
方向 C→D ⊥CD
取极点p’ ,按比例尺a作加速度图
1
4
D
' aC a p 'c ' aCB a b 'cc´
思考题:
P44 3-1
作业:
P44 3-3、3-6、3-8(b)
§3-3 用矢量方程图解法作机构的运动分析
一、矢量方程图解法的基本原理及作图法
1、基本原理 —— 相对运动原理 B(B1B2) 1
B
A
同一构件上两点间的运动关系
2
两构件重合点间的运动方程
vB v A vBA
aB a A aBA aA a

aC a G e´
aCB
n2 ´ n2

n3
aF

加速度图分析小结: 1)p‘点代表所有构件上绝对加速度为零的影像点。 2)由p‘点指向图上任意点的矢量均代表机构图中对应点 的绝对加速度。 3)除 p′点之外,图中任意两个带“ ′”点间的连线 均代表机构图中对应两点间的相对加速度,其指向与加 速度的角标相反。 4)角加速度可用构件上任意两点之间的相对切向加速度 除于该两点之间的距离来求得,方向的判定采用矢量平 aCB b ' c ' 移法。 5)加速度影像原理:在加速度图上,同一构件上各点的 绝对加速度矢量终点构成的多边形与机构图中对应点构 成的多边形相似且角标字母绕行顺序相同。 6)加速度影像原理只能用于同一构件。

机械原理第3章平面机构的运动分析

机械原理第3章平面机构的运动分析
(不包括机架), 所以有 N=n+1 。
机构中构件 3 4 5 ……
总数
瞬心数 3 6 10 ……
p12 p13 p23
p12 p13 p14 p23 p24 p34
p12 p13 p14 p15 p23 p24 p25 p34 p35 p45
4
机械原理
§3-2 用速度瞬心法作机构的速度分析 3. 瞬心位置的确定
∴ω4
= ω2
P12 P24 P14 P24
两方构向件?的若角相速对度瞬与心其P绝24对在瞬两心绝对瞬心P12 、P14 至相对瞬的心延的长距线离上成,反比ω2、ω4 同向;若P24
在P12 、15P14之间,则ω2、ω4 反向。
机械原理
(2)求角速度 高副机构
已知构件2的转速ω2,求构件3的角速度ω3
θ3 = arctan a ± a2 +b2 −c2
(3)
2
b+c
* 正负号对应于机构的两个安装 模式,应根据所采用的模式确定 一个解。
此处取“+”
21
机械原理
22
机械原理
⎧⎨⎩ll22
cosθ2 sin θ 2
= =
l3 l3
cosθ3 − l1 cosθ1 + xD − xA sinθ3 − l1 sinθ1 + yD − yA
2 建立速度、加速度关系式 为线性, 不难求解。
3 上机计算, 绘制位移、速度、加速度线图. * 位移、速度、加速度线图是根据机构位移、速度、加速度
对时间或原动件位移的关系式绘出的关系曲线. ** 建立位移关系式是关键,速度、加速度关系式的建立只是求
导过程。
19
机械原理

平面机构的运动分析

平面机构的运动分析

2.第二种情况——不同构件重合点
A
1 ω1
C
2
B1 (B2 B3 )
VB2 = VB1 VB3 = VB2 + VB3B2 大小: ? ω1LAB ? 方向:⊥BD ⊥AB ∥导路
3
p
D
4
b2 b1 b3
§3-3 用相对运动图解法对机构进行运动分析
anB3 + aτB3 = aB2 + akB3B2 + aτB3B2 大小: ω32 LBD ? ω12 LAB 2 ω2vB3B2 ?
1.同一构件上两点间的速度和加速度关系
构件上C点或B点的运动,可以看
作随其上任一点(基点)A 的牵连运 A
动和绕基点A 的相对转动。
C B
§3-3 用相对运动图解法对机构进行运动分析
2.两构件上重合点间的速度和加速度关系
构件2的运动可以看作是构件2跟 着构件1的牵连运动和构件2相对构件 1的相对运动的合成运动。构件3的运 动可以看作是构件3跟着构件2的牵连 运动和构件3相对构件2的相对运动的 合成运动。
确定瞬心位置分为如下两种情况
1)通过运动副直接相联的两构件的瞬心
两构件组成移动副:
两构件组成转动副:
P12在垂直于导路的无穷远处
P12在转动副的中心
§3-2 用瞬心法对机构进行速度分析
两构件组成纯滚动高副: 纯滚动接触点的相对速度为零,接触点为速度瞬心。
两构件组成滑动兼滚动高副: 瞬心应在过接触点的公法线nn上, 具体位置由其它条件共同来确定。
图环的解速法度的分学析习,要工作求量非常大。
根据运动合成原理能 正确地列出机构的速度和加速度矢量方程 准确地绘出速度和加速度矢量图 根据矢量图解出待求量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面运动机构的解析分析
平面运动机构,又称平面机构,是把空间存在的弯曲运动转换成平面运动的机构。

它由轮,杆,连杆,卡盘和联接件等组成,可以实现运动变换,连接机构并使它们运动起来。

二、原理
平面运动机构的运动原理可以用描述其复杂运动变换的正确力学分析性表示,即依据关节运动的时间和位置特性,建立由它们之间关系的动力学分析。

按动力学研究,运动机构的运动变换可以表示为运动目标函数的求解。

这个函数由各个部分的动力学方程构成,而这些方程的参数由运动结构参数决定。

三、结构
平面运动机构的基本结构为外部驱动的线性滑动,内部铰接的斜杠摆动,以及马达和编码器等控制系统组成。

它由轮,杆,连杆,卡盘等零部件构成,由这些部件通过滑动和摆动或者滚动接触,实现精确、结实的连接,完成运动变换使得机构动起来。

四、应用
平面运动机构在工业机械领域有广泛的应用,主要用于连接某些空间存在的机构,把空间存在的弯曲运动转换成平面运动,实现变幅和变分功能,如滚针位置机构的工作,针对材料的运动机构等。

五、优点
平面运动机构具有结构简单,制造简便,安装调试简单,操作可靠,维护方便等优点,在工业领域受到广泛的认可和应用。

六、缺点
虽然平面运动机构各种优点,但它也有一些缺点,如它的运动受到限制,运动范围受到限制,性能受到限制,精确度受到限制等。

总结
平面运动机构是一种利用空间存在的机构把弯曲运动转换成平面运动的机构,它具有结构简单,制造简便,安装调试简单,操作可靠,维护方便等优点,广泛应用于工业生产领域。

但它也有一定的缺点,要求用户谨慎考虑选择性能要求,保证机构的精准性能。

相关文档
最新文档