高考总复习直线与圆的方程知识点及习题答案
高考数学直线与圆的方程复习题及答案

高考数学直线与圆的方程复习题及参考答案:一、选择题(每小题只有一个选项是正确的,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2009•重庆市高三联合诊断性考试)将直线l1:y=2x绕原点逆时针旋转60°得直线l2,则直线l2到直线l3:x+2y-3=0的角为 ( )A.30°B.60°C.120°D.150°答案:A解析:记直线l1的斜率为k1,直线l3的斜率为k3,注意到k1k3=-1,l1⊥l3,依题意画出示意图,结合图形分析可知,直线l2到直线l3的角是30°,选A.2.(2009•湖北荆州质检二)过点P(1,2),且方向向量v=(-1,1)的直线的方程为( )A.x-y-3=0B.x+y+3=0C.x+y-3=0D.x-y+3=0答案:C解析:方向向量为v=(-1,1),则直线的斜率为-1,直线方程为y-2=-(x-1)即x+y-3=0,故选C.3.(2009•东城3月)设A、B为x轴上两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程x-y+1=0,则直线PB的方程为 ( )A.2x+y-7=0B.2x-y-1=0C.x-2y+4=0D.x+y-5=0答案:D解析:因kPA=1,则kPB=-1,又A(-1,0),点P的横坐标为2,则B(5,0),直线PB的方程为x+y-5=0,故选D.4.过两点(-1,1)和(0,3)的直线在x轴上的截距为 ( )A.-32B.32C.3D.-3答案:A解析:由两点式,得y-31-3=x-0-1-0,即2x-y+3=0,令y=0,得x=-32,即在x轴上的截距为-32.5.直线x+a2y+6=0和(a-2)x+3ay+2a=0无公共点,则a的值是 ( )A.3B.0C.-1D.0或-1答案:D解析:当a=0时,两直线方程分别为x+6=0和x=0,显然无公共点;当a≠0时,-1a2=-a-23a,∴a=-1或a=3.而当a=3时,两直线重合,∴a=0或-1.6.两直线2x-my+4=0和2mx+3y-6=0的交点在第二象限,则m的取值范围是( )A.-32≤m≤2B.-32C.-32≤m<2D.-32答案:B解析:由2x-my+4=0,2mx+3y-6=0,解得两直线的交点坐标为(3m-6m2+3,4m+6m2+3),由交点在第二象限知横坐标为负、纵坐标为正,故3m-6m2+3<0且4m+6m2+3>0⇒-327.(2009•福建,9)在平面直角坐标系中,若不等式组x+y-1≥0,x-1≤0,ax-y+1≥0,(a为常数)所表示的平面区域的面积等于2,则a的值为 ( )A.-5B.1C.2D.3答案:D解析:不等式组x+y-1≥0,x-1≤0,ax-y+1≥0所围成的区域如图所示.∵其面积为2,∴|AC|=4,∴C的坐标为(1,4),代入ax-y+1=0,得a=3.故选D.8.(2009•陕西,4)过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为( )A.3B.2C.6D.23答案:D解析:∵直线的方程为y=3x,圆心为(0,2),半径r=2.由点到直线的距离公式得弦心距等于1,从而所求弦长等于222-12=23.故选D.9.(2009•西城4月,6)与直线x-y-4=0和圆x2+y2+2x-2y=0都相切的半径最小的圆的方程是 ( )A.(x+1)2+(y+1)2=2B.(x+1)2+(y+1)2=4C.(x-1)2+(y+1)2=2D.(x-1)2+(y+1)=4答案:C解析:圆x2+y2+2x-2y=0的圆心为(-1,1),半径为2,过圆心(-1,1)与直线x-y-4=0垂直的直线方程为x+y=0,所求的圆的圆心在此直线上,排除A、B,圆心(-1,1)到直线x-y-4=0的距离为62=32,则所求的圆的半径为2,故选C.10.(2009•安阳,6)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|OA→+OB→|=|OA→-OB→|,其中O为原点,则实数a的值为 ( )A.2B.-2C.2或-2D.6或-6答案:C解析:由|OA→+OB→|=|OA→-OB→|得|OA→+OB→|2=|OA→-OB→|2,OA→•OB→=0,OA→⊥OB→,三角形AOB为等腰直角三角形,圆心到直线的距离为2,即|a|2=2,a=±2,故选C.11.(2009•河南实验中学3月)若直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则点P(a,b)与圆C的位置关系是 ( )A.点在圆上B.点在圆内C.点在圆外D.不能确定答案:C解析:直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则1a2+b2<1,a2+b2>1,点P(a,b)在圆C外部,故选C.12.(2010•保定市高三摸底考试)从原点向圆x2+(y-6)2=4作两条切线,则这两条切线夹角的大小为 ( )A.π6B.π2C.arccos79D.arcsin229答案:C解析:如图,sin∠AOB=26=13,cos∠BOC=cos2∠AOB=1-2sin2∠AOB=1-29=79,∴∠BOC=arccos79,故选C.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上。
高三总复习直线与圆的方程知识点总结及典型例题

直线与圆的方程一、直线的方程 1、倾斜角:,范围0≤α<π,x l //轴或与x 轴重合时,α=00。
2、斜率: k=tan α α与κ的关系:α=0⇔κ=0已知L 上两点P 1(x 1,y 1) 0<α<02>⇔k πP 2(x 2,y 2) α=κπ⇔2不存在⇒k=1212x x y y -- 022<⇔<<κππ当1x =2x 时,α=900,κ不存在。
当0≥κ时,α=arctank ,κ<0时,α=π+arctank 3、截距(略)曲线过原点⇔横纵截距都为0。
几种特殊位置的直线 ①x 轴:y=0 ②y 轴:x=0 ③平行于x 轴:y=b④平行于y 轴:x=a ⑤过原点:y=kx②任何一个关于x 、y 的二元一次方程都表示一条直线。
5、直线系:(1)共点直线系方程:p 0(x 0,y 0)为定值,k 为参数y-y 0=k (x-x 0) 特别:y=kx+b ,表示过(0、b )的直线系(不含y 轴) (2)平行直线系:①y=kx+b ,k 为定值,b 为参数。
②AX+BY+入=0表示与Ax+By+C=0 平行的直线系 ③BX-AY+入=0表示与AX+BY+C 垂直的直线系(3)过L 1,L 2交点的直线系A 1x+B 1y+C 1+入(A 2X+B 2Y+C 2)=0(不含L2) 6、三点共线的判定:①AC BC AB =+,②K AB =K BC ,③写出过其中两点的方程,再验证第三点在直线上。
二、两直线的位置关系2、L 1 到L 2的角为0,则12121tan k k k k •+-=θ(121-≠k k )3、夹角:12121tan k k k k +-=θ4、点到直线距离:2200BA c By Ax d +++=(已知点(p 0(x 0,y 0),L :AX+BY+C=0)①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0⇒2221B A c c d +-=②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022=+B Ad③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是0221=+++C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --' (2)点关于线的对称:设p(a 、b) 一般方法:如图:(思路1)设P 点关于L 的对称点为P 0(x 0,y 0) 则 Kpp 0﹡K L =-1P, P 0中点满足L 方程解出P 0(x 0,y 0)(思路2)写出过P ⊥L 的垂线方程,先求垂足,然后用中点坐标公式求出P 0(x 0,y 0)的坐标。
高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

直线与圆的方程综合复习(含答案)一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是( C ) A 3B 6C 23D 562.已知过点A(-2,m)和B (m,4)的直线与直线2x+y-1=0平行,则m 的值为( C ) A 0 B 2 C -8 D 103.若直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于( D )A -1或2B 23C 2D -14.若点A (2,-3)是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 (a 1,b 1)和(a 2,b 2)所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=05.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m=12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2y)-3=0相互垂直”的( B )A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B (-5,6),则直线L 的方程为(B ) A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).若直线2l 经过点(0,5)且1l 2l ,则直线2l 的方程为( B )A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为( A )A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是(A )A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( C )A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为(D ), A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )A B 4 C 8 D 914.若直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为( B )A 1B -1C 3D -315.若直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba11+的最小值是( C )A.41B.2C.4D.2116.若直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 ( A )A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,17.设两圆1C ,2C 都和两坐标轴相切,且过点(4,1),则两圆心的距离 ︱1C 2C ︱等于( C )A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 ( C ) A.2B.5C.3D.3519.若直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211ba +≤1 D.2211ba +≥120.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为( B ) A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x+2(2)y =4相交于M 、N 两点,若︱MN ︱≥23,则k 的取值范围是( A )A [-34,0] B [-∞,-34] [0,∞) C [-33,33] D [-23,0] 22.(广东理科2)已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则AB 的元素个数为(C )A .0B .1C .2D .3 23.(江西理科9)若曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。
直线与圆方程知识点总结+习题适合学后练习

___________________________________________________________________________________________ 1.若}43,1,0,2{-∈a ,方程0122222=-+++++a a ay ax y x 表示的圆的个数为_____________ 2.动点P 到点A(8,0)的距离是到点B(2,0)的距离的2倍,那么点的轨迹方程为___________ 3.已知圆的方程为08622=--+y x y x .1121,,,a a a Λ是该圆过点(3,5)的11条弦的长, 若数列1121,,,a a a Λ是等差数列,则 数列1121,,,a a a Λ的公差的最大值为 4.已知y x ,满足122=+y x ,则12--x y 的最小值为第二部分 直线与圆的位置关系一、知识点总结1.判断直线与圆的位置关系有两种方法:①几何法:通过圆心到直线的距离与半径的大小比较来判断,设圆心到直线的距离为d ,圆半径为r , 若直线与圆相离,则__________;若直线与圆相切,则__________;若直线与圆相交,则__________ ②代数法:通过直线与圆的方程联立的方程组的解的个数来判断,即通过判别式来判断, 若0>∆,则__________;若0=∆,则__________;若0<∆,__________ 2.两圆的的位置关系(1)设两圆半径分别为12,r r ,圆心距为d若两圆相外离,则__________,公切线条数为___;若两圆相外切,则__________,公切线条数为__ 若两圆相交,则__________,公切线条数为_____;若两圆内切,则__________,公切线条数为___ 若两圆内含,则__________,公切线条数为_____(2) 设两圆0:111221=++++F y E x D y x C ,0:222222=++++F y E x D y x C , 若两圆相交,则两圆的公共弦所在的直线方程是0)()()(212121=-+-+-F F y E E x D D 3. 相切问题的解法:①利用圆心到切线的距离等于半径列方程求解 ②利用圆心、切点连线的斜率与切线的斜率的乘积为-1③利用直线与圆的方程联立的方程组的解只有一个,即0=∆来求解。
高中数学圆与直线知识点与各类提高习题(附答案)

圆与直线知识点圆的方程:(1)标准方程:(圆心为A(a,b),半径为r )(2)圆的一般方程:()圆心(-,-)半径点与圆的位置关系的判断方法:根据点与圆心的距离与在大小关系判断 直线与圆的位置关系判断方法(1)几何法:由圆心到直线的距离和圆的半径的大小关系来判断。
d=r 为相切,d>r 为相交,d<r 为相离。
适用于已知直线和圆的方程判断二者关系,也适用于其中有参数,对参数谈论的问题。
利用这种方法,可以简单的算出直线与圆相交时的相交弦的长,以及当直线与圆相离时,圆上的点到直线的最远、最近距离等。
(2)代数法:由直线与圆的方程联立得到关于x 或y 的一元二次方程,然后由判别式△来判断。
△=0为相切,△>0为相交,△<0为相离。
利用这种方法,可以很简单的求出直线与圆有交点时的交点坐标。
4.圆与圆的位置关系判断方法(1)几何法:两圆的连心线长为,则判别圆与圆的位置关系的依据有以下几点:1)当时,圆与圆相离;2)当时,圆与圆外切;3)当时,圆与圆相交;4)当时,圆与圆内切; 5)当时,圆与圆内含;(2)代数法:由两圆的方程联立得到关于x 或y 的一元二次方程, 然后由判别式△来判断。
△=0为外切或内切,△>0为相交,△<0为相离或内含。
若两圆相交,两圆方程相减得公共弦所在直线方程。
5. 直线与圆的方程的应用:利用平面直角坐标系解决直线与圆的位置关系222()()x a y b r -+-=022=++++F Ey Dx y x 0422>-+F E D 2D 2E FE D 42122-+d r l 21r r l +>1C 2C 21r r l +=1C 2C <-||21r r 21r r l +<1C 2C ||21r r l -=1C 2C ||21r r l -<1C 2C选择题1.圆1)3()1(22=++-y x 的切线方程中有一个是 ( )A .x -y =0B .x +y =0C .x =0D .y =02.若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( ) A .1 B .13- C .23-D .2-3.设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为 ( )A.4±B.± C.2±D.4.平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是( )A .一条直线B .一个圆C .一个椭圆D .双曲线的一支5.参数方程2tan cot x y θθ=⎧⎨=+⎩(θ为参数)所表示的曲线是( )A .圆B .直线C .两条射线D .线段6.如果直线12,l l 的斜率分别为二次方程2410x x -+=的两个根,那么1l 与2l 的夹角为( )A .3π B .4π C .6π D .8π7.已知{(,)|0}M x y y y ==≠,{(,)|}N x y y x b ==+,若MN ≠∅,则b ∈( )A .[-B .(-C .(-D .[-8.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短路径是( )A .4B .5C .1D .9.若直线220(,0)ax by a b +-=>始终平分圆224280x y x y +---=的周长,则12a b+ 的最小值为( )A .1B .5C .D .3+10.已知平面区域D 由以()3,1A 、()2,5B 、()1,3C 为顶点的三角形内部和边界组成.若在区域D 上有无穷多个点()y x ,可使目标函数my x z +=取得最小值,则=m ( ) A . 2- B .1- C .1D .411、设2000200120012002101101,101101M N ++==++,2000200120012002109109,1010010100P Q ++==++,则M 与N 、P 与Q 的大小关系为 ( ) A.,M N P Q >>B.,M N P Q ><C.,M N P Q <>D.,M N P Q <<12、已知两圆相交于点(1,3)(,1)A B m -和点,两圆圆心都在直线:0l x y c -+=上,则c m +的值等于 A .-1 B .2 C .3 D .013、三边均为整数且最大边的长为11的三角形的个数为 ( ) A.15 B.30 C.36 D.以上都不对14、设0m >)10x y m +++=与圆22x y m +=的位置关系为 ( )A.相切B.相交C.相切或相离D.相交或相切15、已知向量(2co s ,2s i n ),(3co s ,3s i n m n ααββ==若m与n的夹角为60︒,则直线1:cos sin 02l x y αα-+=与圆221:(cos )(sin )2C x y ββ-++=的位置关系是( ) A .相交但不过圆心 B .相交过圆心 C .相切D .相离16、已知圆22:(3)(5)36O x y -++=和点(2,2),(1,2)A B --,若点C 在圆上且ABC ∆的面积为25,则满足条件的点C 的个数是 ( )A.1B.2C.3D.417、若圆2221:()()1C x a y b b -+-=+始终平分圆222:(1)(1)4C x y +++=的周长,则实数b a ,应满足的关系是 ( )A .03222=---b a aB .05222=+++b a aC .0122222=++++b a b aD .01222322=++++b a b a18、在平面内,与点)2,1(A 距离为1, 与点)1,3(B 距离为2的直线共有 ( ) A.1条 B. 2条 C. 3条 D. 4条填空题1、直线2x -y -4=0上有一点P ,它与两定点A (4,-1),B (3,4)的距离之差最大,则P 点坐标是______2、设不等式221(1)x m x ->-对一切满足2m ≤的值均成立,则x 的范围为 。
直线与圆知识点及经典例题(含答案)

圆的方程、直线和圆的位置关系【知识要点】 一、圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一) 圆的标准方程(x a)2 (y b)2『这个方程叫做圆的标准方程。
-____ 2 2 2说明:1、若圆心在坐标原点上,这时 a b 0,则圆的方程就是 x y r 。
2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了 圆,所以,只要a ,b ,r 三个量确定了且r > 0,圆的方程就给定了。
就是说要确定圆的方程,必须具备三个独立的条件-确定a ,b ,r ,可以根据条件,利用待定系数法来解决。
(二) 圆的一般方程2 2 2 2 2 2 2 2将圆的标准方程(x a) (y b) r ,展开可得x y 2ax 2by a b r。
可见,任何一个2圆的方程都可以写成 :X2y Dx Ey F 02 2问题:形如xy DxEy F 0的方程的曲线是不是圆?2 2FD 2E 2 J D ‘ E 4F将方程X y Dx Ey左边配方得:2)2) 2D E0表示以 22为圆2 2(1)当 D E 4F >° 时,方程(1 )与标准方程比较,方程xyDx Ey FD 2E 2 4F心,以2为半径的圆。
DE DE⑵当DmE —4F=Q 时,方fc a +y a +Dx+Ey+F = OR 有实数解汁亍 厂亍 所以表示一个点(亍-計2 2(3)当D 2E 24F v 0时,方程x y Dx Ey F °没有实数解,因而它不表示任何图形。
圆的一般方程的定义:2 2当D 2 E 2 4F >°时,方程x y Dx Ey F °称为圆的一般方程. 圆的一般方程的特点:22(1) X 和y 的系数相同,不等于零;(2) 没有xy 这样的二次项。
(三) 直线与圆的位置关系 1、 直线与圆位置关系的种类 (1)相离---求距离; ⑵相切---求切线; (3)相交---求焦点弦长。
2024年高考数学---直线和圆
D 2
,
E 2
,半径为
1)圆的一般方程的形式特点:
①x2和y2的系数相等且大于0.
②没有含xy的二次项.
③A=C≠0且B=0是二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的必要
不充分条件. 2)已知P(x1,y1),Q(x2,y2),则以PQ为直径的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)
例1 已知△ABC的一个顶点A(2,-4),且∠B,∠C的平分线所在直线的方
程分别为x+y-2=0,x-3y-6=0,则BC边所在直线的方程为
.
解析 由角平分线的性质知点A关于∠B,∠C的平分线所在直线的对称
点均在直线BC上,设点A关于直线x-3y-6=0的对称点为A1(x1,y1),
则有
2)范围:全体实数R.
3)斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为kP1P2 =
y2 y1 x2 x1 .
3.直线方程的形式
名称 点斜式 斜截式 两点式 截距式
一般式
条件
方程
斜率k与点(x0,y0) 斜率k与直线在y轴上的截距b
y-y0=k(x-x0) y=kx+b
k2 1
3
切线方程为-
4 3
x-y-4×
4 3
+3=0,即4x+3y-25=0.综上可知,过点Q的圆M的
切线方程为x=4或4x+3y-25=0.
∵|QM|= (4 1)2 (3 2)2 = 10 ,∴过点Q的圆M的切线长为 | QM |2 r2 =
10 9 =1.
历年高三数学高考考点之直线与圆必会题型及答案
历年高三数学高考考点之<直线与圆>必会题型及答案体验高考1.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A.2x +y +5=0或2x +y -5=0 B.2x +y +5=0或2x +y -5=0 C.2x -y +5=0或2x -y -5=0 D.2x -y +5=0或2x -y -5=0 答案 A解析 设所求直线方程为2x +y +c =0,依题意有|0+0+c |22+12=5,解得c =±5,所以所求直线方程为2x +y +5=0或2x +y -5=0,故选A.2.过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则|MN |等于( ) A.26B.8C.46D.10 答案 C解析 由已知,得AB →=(3,-1),BC →=(-3,-9),则AB →·BC →=3×(-3)+(-1)×(-9)=0,所以AB →⊥BC →,即AB ⊥BC ,故过三点A ,B ,C 的圆以AC 为直径,得其方程为(x -1)2+(y +2)2=25,令x =0得(y +2)2=24,解得y 1=-2-26,y 2=-2+26,所以|MN |=|y 1-y 2|=46,选C.3.一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A.-53或-35B.-32或-23C.-54或-45D.-43或-34答案 D解析 由已知,得点(-2,-3)关于y 轴的对称点为(2,-3),由入射光线与反射光线的对称性,知反射光线一定过点(2,-3).设反射光线所在直线的斜率为k , 则反射光线所在直线的方程为y +3=k (x -2), 即kx -y -2k -3=0.由反射光线与圆相切,则有d =|-3k -2-2k -3|k 2+1=1,解得k =-43或k =-34,故选D.4.已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2的距离为______. 答案255解析 d =|1+1|22+12=255. 5.已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若|AB |=23,则|CD |=________. 答案 4解析 设AB 的中点为M ,由题意知, 圆的半径R =23,|AB |=23, 所以|OM |=3,解得m =-33, 由⎩⎨⎧x -3y +6=0,x 2+y 2=12解得A (-3,3),B (0,23),则AC 的直线方程为y -3=-3(x +3),BD 的直线方程为y -23=-3x ,令y =0,解得C (-2,0),D (2,0), 所以|CD |=4.高考必会题型题型一 直线方程的求法与应用例1 (1)若点P (1,1)为圆(x -3)2+y 2=9的弦MN 的中点,则弦MN 所在直线的方程为( ) A.2x +y -3=0 B.x -2y +1=0 C.x +2y -3=0 D.2x -y -1=0答案 D解析 由题意知圆心C (3,0),k CP =-12.由k CP ·k MN =-1,得k MN =2,所以弦MN 所在直线的方程是2x -y -1=0.(2)已知△ABC 的顶点A (3,-1),AB 边上的中线所在直线方程为6x +10y -59=0,∠B 的平分线所在直线方程为x -4y +10=0,求BC 边所在直线的方程. 解 设B (4y 1-10,y 1),由AB 中点在6x +10y -59=0上,可得:6·4y 1-72+10·y 1-12-59=0,y 1=5,∴B (10,5).设A 点关于x -4y +10=0的对称点为A ′(x ′,y ′),则有⎩⎪⎨⎪⎧x ′+32-4·y ′-12+10=0,y ′+1x ′-3·14=-1⇒A ′(1,7),∵点A ′(1,7),B (10,5)在直线BC 上,∴y -57-5=x -101-10,故BC 边所在直线的方程是2x +9y -65=0. 点评 (1)两条直线平行与垂直的判定①若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1; ②判定两直线平行与垂直的关系时,如果给出的直线方程中存在字母系数,不仅要考虑斜率存在的情况,还要考虑斜率不存在的情况. (2)求直线方程的常用方法①直接法:直接选用恰当的直线方程的形式,写出结果;②待定系数法:先由直线满足的一个条件设出直线方程,使方程中含有一个待定系数,再由题给的另一条件求出待定系数.变式训练1 已知直线l 经过直线3x +4y -2=0与直线2x +y +2=0的交点P ,且垂直于直线x -2y -1=0. (1)求直线l 的方程;(2)求直线l 关于原点O 对称的直线方程.解 (1)由⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0解得⎩⎪⎨⎪⎧x =-2,y =2.所以点P 的坐标是(-2,2),又因为直线x -2y -1=0, 即y =12x -12的斜率为k ′=12,由直线l 与x -2y -1=0垂直可得k l =-1k ′=-2, 故直线l 的方程为:y -2=-2(x +2),即2x +y +2=0.(2)直线l 的方程2x +y +2=0在x 轴、y 轴上的截距分别是-1与-2,则直线l 关于原点对称的直线在x 轴、y 轴上的截距分别是1与2, 所求直线方程为x 1+y2=1,即2x +y -2=0.题型二 圆的方程例2 (1)如图,已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.①圆C 的标准方程为________________.②圆C 在点B 处的切线在x 轴上的截距为________.答案 ①(x -1)2+(y -2)2=2 ②-2-1解析 ①由题意,设圆心C (1,r )(r 为圆C 的半径),则r 2=⎝ ⎛⎭⎪⎫|AB |22+12=2,解得r = 2.所以圆C 的方程为(x -1)2+(y -2)2=2.②方法一 令x =0,得y =2±1,所以点B (0,2+1).又点C (1,2),所以直线BC 的斜率为k BC =-1,所以过点B 的切线方程为y -(2+1)=x -0,即y =x +(2+1). 令y =0,得切线在x 轴上的截距为-2-1.方法二 令x =0,得y =2±1,所以点B (0,2+1).又点C (1,2),设过点B 的切线方程为y -(2+1)=kx ,即kx -y +(2+1)=0.由题意,得圆心C (1,2)到直线kx -y +(2+1)=0的距离d =|k -2+2+1|k 2+1=r =2,解得k =1.故切线方程为x -y +(2+1)=0.令y =0,得切线在x 轴上的截距为-2-1.(2)已知圆C 经过点A (2,-1),并且圆心在直线l 1:y =-2x 上,且该圆与直线l 2:y =-x +1相切. ①求圆C 的方程;②求以圆C 内一点B ⎝ ⎛⎭⎪⎫2,-52为中点的弦所在直线l 3的方程. 解 ①设圆的标准方程为(x -a )2+(y -b )2=r 2,则⎩⎪⎨⎪⎧(2-a )2+(-1-b )2=r 2,b =-2a ,|a +b -1|2=r ,解得⎩⎨⎧a =1,b =-2,r = 2.故圆C 的方程为(x -1)2+(y +2)2=2. ②由①知圆心C 的坐标为(1,-2), 则k CB =-52-(-2)2-1=-12.设直线l 3的斜率为k 3,由k 3·k CB =-1,可得k 3=2. 故直线l 3的方程为y +52=2(x -2),即4x -2y -13=0.点评 求圆的方程的两种方法(1)几何法:通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程.(2)代数法:用待定系数法先设出圆的方程,再由条件求得各系数.变式训练2 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.解 (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4,故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ),连接BN . 在Rt △PBQ 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥PQ , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0. 题型三 直线与圆的位置关系、弦长问题例3 (1)(2015·重庆)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( ) A.2B.42C.6D.210 答案 C解析 根据直线与圆的位置关系求解.由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,∴a =-1,∴A (-4,-1). ∴|AC |2=36+4=40.又r =2,∴|AB |2=40-4=36. ∴|AB |=6.(2)已知圆C :x 2+y 2-2x +4y -4=0.①写出圆C 的标准方程,并指出圆心坐标和半径大小;②是否存在斜率为1的直线m ,使m 被圆C 截得的弦为AB ,且OA ⊥OB (O 为坐标原点).若存在,求出直线m 的方程;若不存在,请说明理由. 解 ①圆C 的标准方程为(x -1)2+(y +2)2=9, 则圆心C 的坐标为(1,-2),半径为3. ②假设存在这样的直线m , 根据题意可设直线m :y =x +b .联立直线与圆的方程⎩⎪⎨⎪⎧x 2+y 2-2x +4y -4=0,y =x +b得2x 2+2(b +1)x +b 2+4b -4=0, 因为直线与圆相交,所以Δ>0, 即b 2+6b -9<0,且满足x 1+x 2=-b -1,x 1x 2=b 2+4b -42,设A (x 1,y 1),B (x 2,y 2), 则y 1=x 1+b ,y 2=x 2+b ,由OA ⊥OB 得OA →·OB →=x 1x 2+y 1y 2=0,所以x 1x 2+(x 1+b )(x 2+b )=2x 1x 2+b (x 1+x 2)+b 2=0, 即b 2+3b -4=0得b =-4或b =1, 且均满足b 2+6b -9<0,故所求的直线m 存在,方程为y =x -4或y =x +1. 点评 研究直线与圆位置关系的方法(1)研究直线与圆的位置关系的最基本的解题方法为代数法,将几何问题代数化,利用函数与方程思想解题.(2)与弦长有关的问题常用几何法,即利用圆的半径r ,圆心到直线的距离d 及半弦长l2,构成直角三角形的三边,利用其关系来处理.变式训练3 已知以点C (t ,2t)(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若|OM |=|ON |,求圆C 的方程. (1)证明 ∵圆C 过原点O ,且|OC |2=t 2+4t2.∴圆C 的方程是(x -t )2+(y -2t )2=t 2+4t2,令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t ,∴S △OAB =12|OA |·|OB |=12×|4t |×|2t |=4,即△OAB 的面积为定值.(2)解 ∵|OM |=|ON |,|CM |=|CN |, ∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =12.∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),|OC |=5, 此时C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),|OC |=5, 此时C 到直线y =-2x +4的距离d =95> 5.圆C 与直线y =-2x +4不相交, ∴t =-2不符合题意,舍去. ∴圆C 的方程为(x -2)2+(y -1)2=5.高考题型精练1.已知x ,y 满足x +2y -5=0,则(x -1)2+(y -1)2的最小值为( ) A.45B.25C.255 D.105 答案 A解析 (x -1)2+(y -1)2表示点P (x ,y )到点Q (1,1)的距离的平方.由已知可得点P 在直线l :x +2y -5=0上,所以|PQ |的最小值为点Q 到直线l 的距离,即d =|1+2×1-5|1+22=255, 所以(x -1)2+(y -1)2的最小值为d 2=45.故选A.2.“m =3”是“直线l 1:2(m +1)x +(m -3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案 A解析 由l 1⊥l 2得2(m +1)(m -3)+2(m -3)=0, ∴m =3或m =-2.∴m =3是l 1⊥l 2的充分不必要条件.3.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为( ) A.32B.22C.33D.4 2 答案 A解析 依题意知AB 的中点M 的集合是与直线l 1:x +y -7=0和l 2:x +y -5=0的距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离, 设点M 所在直线的方程为l :x +y +m =0, 根据平行线间的距离公式得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2.4.(2016·山东)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A.内切B.相交C.外切D.相离 答案 B解析 ∵圆M :x 2+(y -a )2=a 2, ∴圆心坐标为M (0,a ),半径r 1=a , 圆心M 到直线x +y =0的距离d =|a |2,由几何知识得⎝⎛⎭⎪⎫|a |22+(2)2=a 2,解得a =2. ∴M (0,2),r 1=2.又圆N 的圆心坐标N (1,1),半径r 2=1,∴|MN |=(1-0)2+(1-2)2=2,r 1+r 2=3,r 1-r 2=1.∴r 1-r 2<|MN |<r 1+r 2,∴两圆相交,故选B.5.与圆x 2+y 2=1和圆x 2+y 2-8x +7=0都相切的圆的圆心轨迹是( ) A.椭圆B.椭圆和双曲线的一支C.双曲线和一条直线(去掉几个点)D.双曲线的一支和一条直线(去掉几个点) 答案 D解析 设所求圆圆心为M (x ,y ),半径为r , 圆x 2+y 2-8x +7=0⇒(x -4)2+y 2=9,圆心设为C (4,0),由题意得当动圆与两定圆外切时, 即|MO |=r +1,|MC |=r +3,从而|MC |-|MO |=2<|OC |, 因此为双曲线的一支,当动圆与两定圆一个外切一个内切时, 必切于两定圆切点,即M 必在x 轴上, 但需去掉O ,C 及两定圆切点,因此选D.6.(2015·课标全国Ⅱ)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53B.213 C.253 D.43 答案 B解析 由点B (0,3),C (2,3),得线段BC 的垂直平分线方程为x =1,① 由点A (1,0),B (0,3),得线段AB 的垂直平分线方程为y -32=33⎝⎛⎭⎪⎫x -12,②联立①②,解得△ABC 外接圆的圆心坐标为⎝ ⎛⎭⎪⎫1,233,其到原点的距离为12+⎝ ⎛⎭⎪⎫2332=213.故选B.7.(2016·山东)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________. 答案 34解析 由已知得,圆心(5,0)到直线y =kx 的距离小于半径,∴|5k |k 2+1<3,解得-34<k <34,由几何概型得P =34-⎝ ⎛⎭⎪⎫-341-(-1)=34.8.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0). 由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43.故k 的最大值是43.9.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且仅有三个点到直线12x -5y +c =0的距离为1,则实数c 的值为________. 答案 ±13解析 因为圆心到直线12x -5y +c =0的距离为|c |13,所以由题意得|c |13=1,c =±13.10.已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是________________. 答案 (-24,24) 解析 因为已知直线过点(-2,0),那么圆的方程x 2+y 2=2x 配方为(x -1)2+y 2=1,表示的是圆心为(1,0),半径为1的圆, 设过点(-2,0)的直线的斜率为k , 则直线方程为y =k (x +2), 则点到直线距离等于圆的半径1, 有d =|k -0+2k |k 2+1=1,化简得8k 2=1, 所以k =±24, 然后可知此时有一个交点,那么当满足题意的时候, 可知斜率的取值范围是(-24,24),故答案为(-24,24). 11.已知过点A (0,1),且方向向量为a =(1,k )的直线l 与圆C :(x -2)2+(y -3)2=1相交于M ,N 两点.(1)求实数k 的取值范围;(2)若O 为坐标原点,且OM →·ON →=12,求k 的值.解 (1)∵直线l 过点A (0,1)且方向向量为a =(1,k ),∴直线l 的方程为y =kx +1. 由|2k -3+1|k 2+1<1,得4-73<k <4+73.(2)设M (x 1,y 1),N (x 2,y 2),将y =kx +1代入方程(x -2)2+(y -3)2=1,得(1+k 2)x 2-4(1+k )x +7=0,∴x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2,∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8=12,∴4k (1+k )1+k 2=4,解得k =1.12.已知圆M ∶x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点.(1)若Q (1,0),求切线QA ,QB 的方程;(2)求四边形QAMB 面积的最小值;(3)若|AB |=423,求直线MQ 的方程.解 (1)设过点Q 的圆M 的切线方程为x =my +1,则圆心M 到切线的距离为1,∴|2m +1|m 2+1=1,∴m =-43或0,∴切线QA ,QB 的方程分别为3x +4y -3=0和x =1.(2)∵MA ⊥AQ ,∴S 四边形MAQB =|MA |·|QA |=|QA | =|MQ |2-|MA |2=|MQ |2-1 ≥|MO |2-1= 3.∴四边形QAMB 面积的最小值为 3.(3)设AB 与MQ 交于点P ,则MP ⊥AB .∵MB ⊥BQ ,∴|MP |=1-⎝ ⎛⎭⎪⎫2232=13.在Rt △MBQ 中,|MB |2=|MP |·|MQ |,即1=13|MQ |,∴|MQ |=3.设Q (x ,0),则x 2+22=9,∴x =±5,∴Q (±5,0),∴直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.。
2024高考一轮复习数学重难点11九种直线和圆的方程的解题方法(核心考点讲与练含答案
2024高考一轮复习专项重难点11 九种直线和圆的方程的解题方法(核心考点讲与练)能力拓展题型一:直接法求直线方程一、单选题1.(2022·全国·高三专题练习)直线l 经过两条直线10x y -+=和2320x y ++=的交点,且平行于直线240x y -+=,则直线l 的方程为()A .210x y --=B .210x y -+=C .220x y -+=D .220x y +-=2.(2022·全国·高三专题练习(文))若经过点(1,2)P --的直线与圆225x y +=相切,则该直线在y 轴上的截距为()A .52B .5C .52-D .5-3.(2022·浙江·高三专题练习)如图,圆1C 、2C 在第一象限,且与x 轴,直线2:2l y =均相切,则圆心1C 、2C 所在直线的方程为()A .2y x =B .22y x =C .24y x =D .y x=4.(2022·重庆·高三开学考试)若直线l 交圆22:420C x y x y +-+=于A 、B 两点,且弦AB 的中点为()1,0M ,则l 方程为()A .10x y --=B .10x y -+=C .10x y +-=D .10x y ++=二、多选题5.(2022·全国·高三专题练习)过点()2,3A 且在两坐标轴上截距相等的直线方程为()A .320x y -=B .230x y -=C .5x y +=D .1x y -=-6.(2022·全国·高三专题练习)已知(1,2)A ,(3,4)B -,(2,0)C -,则()A .直线0x y -=与线段AB 有公共点B .直线AB 的倾斜角大于135︒C .ABC 的边BC 上的中线所在直线的方程为2y =D .ABC 的边BC 上的高所在直线的方程为470x y -+=7.(2022·全国·高三专题练习)已知直线l 过点P (-1,1),且与直线1:230l x y -+=以及x 轴围成一个底边在x 轴上的等腰三角形,则下列结论正确的是()A .直线l 与直线l 1的斜率互为相反数B .所围成的等腰三角形面积为1C .直线l 关于原点的对称直线方程为210x y +-=D .原点到直线l 8.(2021·全国·模拟预测)已知平面上的线段l 及点P ,任取l 上一点Q ,称线段PQ 长度的最小值为点P 到线段l 的距离,记作(,)d P l .已知线段1:(122)l x y =--≤≤,21:()20l x y =-≤≤,点P 为平面上一点,且满足12(,)(,)d P l d P l =,若点P 的轨迹为曲线C ,A ,B 是第一象限内曲线C 上两点,点(10)F ,且54AF =,BF =)A .曲线C 关于x 轴对称B .点A 的坐标为1,14⎛⎫⎪⎝⎭C .点B 的坐标为35,22⎛⎫⎪⎝⎭D .FAB 的面积为1916题型二:待定系数法求直线方程一、单选题1.(2022·内蒙古·满洲里市教研培训中心模拟预测(理))已知抛物线C :22y px =的焦点F 的坐标为()20,,准线与x 轴交于点A ,点M 在第一象限且在抛物线C 上,则当MA MF取得最大值时,直线MA 的方程为()A .24y x =+B .24y x =--C .y =x +2D .2y x =--2.(2022·全国·高三专题练习)若直线1:2330l x y --=与2l 互相平行,且2l 过点(2,1),则直线2l 的方程为()A .3270x y +-=B .3240x y -+=C .2330x y -+=D .2310x y --=3.(2022·全国·高三专题练习)已知直线:20l ax y a +-+=在x 轴与y 轴上的截距相等,则实数a 的值是()A .1B .﹣1C .﹣2或1D .2或14.(2022·全国·高三专题练习)过点()1,2作直线l ,满足在两坐标轴上截距的绝对值相等的直线l 有()条.A .1B .2C .3D .4二、多选题5.(2021·重庆梁平·高三阶段练习)已知直线l 10y -+=,则下列结论正确的是()A .直线l 的倾斜角是3πB .若直线m:10x +=,则l m ⊥C .点到直线l 的距离是2D .过与直线l 40y --=6.(2022·全国·高三专题练习)下列命题正确的是()A .已知点3(2,)A -,(3,2)B --,若直线(1)1y k x =-+与线段AB 有交点,则34k ≥或4k ≤-B .1m =是直线1l :10mx y +-=与直线2l :()220m x my -+-=垂直的充分不必要条件C .经过点()1,1且在x 轴和y 轴上的截距都相等的直线的方程为20x y +-=D .已知直线1l :10ax y -+=,2l :10x ay ++=,R a ∈,和两点(0,1)A ,(1,0)B -,如果1l 与2l 交于点M ,则MA MB⋅的最大值是1.7.(2022·全国·高三专题练习)下列说法错误..的是()A .若直线210a x y -+=与直线20x ay --=互相垂直,则1a =-B .直线sin 20x y α++=的倾斜角的取值范围是30,,)44[πππ⎡⎤⋃⎢⎥⎣⎦C .()()()()0,1,2,1,3,4,1,2A B CD -四点不在同一个圆上D .经过点()1,1且在x 轴和y 轴上截距都相等的直线方程为20x y +-=8.(2021·全国·高三专题练习)直线l 与圆22(2)2x y -+=相切,且l 在x 轴、y 轴上的截距相等,则直线l 的方程可能是A .0x y +=B .20x y +-+=C .0x y -=D .40x y +-=三、填空题9.(2022·全国·高三专题练习(理))已知抛物线2:4C y x =的焦点为F ,过焦点F 的直线C 交于11(,)A x y ,22(,)B x y 两点,若21154x x -=,则直线AB 的方程为______.10.(2020·黑龙江·哈师大附中高三期末(理))若过点()1,1A 的直线l 将圆()()22:324C x y -+-=的周长分为2:1两部分,则直线l 的斜率为___________.四、解答题11.(2022·全国·高三专题练习)已知圆C :()()22214x y -+-=,直线l :()()423360m x m y m ----=.(1)过点()4,2P -,作圆C 的切线1l ,求切线1l 的方程;(2)判断直线l 与圆C 是否相交,若相交,求出直线l 被圆截得的弦长最短时m 的值及最短弦长;若不相交,请说明理由.12.(2022·全国·高三专题练习)已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为1F ,2F ,且12||2F F =,点3(1,2在椭圆C 上.(1)求椭圆C 的方程;(2)过1F 的直线l 与椭圆C 相交于,A B 两点,且2AF B ∆的面积为7,求以2F 为圆心且与直线l 相切的圆的方程.题型三:已知两直线位置关系求参数值或范围一、单选题1.(2022·四川凉山·三模(理))已知直线1:210l x y -+=,2:10l x ay +-=,且12l l ⊥,点()1,2P 到直线2l 的距离d =()A BC .5D .52.(2022·辽宁·二模)己知直线:0l ax y a ++=,直线:0m x ay a ++=,则l m ∥的充要条件是()A .1a =-B .1a =C .1a =±D .0a =二、多选题3.(2021·重庆一中高三阶段练习)下列说法正确的有()A .若m ∈R ,则“1m =”是“1l :330x my m -+=与2l :()20m x y m +--=平行”的充要条件B .当圆222110x y x +--=截直线l :()1y kx k =+∈R 所得的弦长最短时,1k =-C .若圆1C :222x y t +=+与圆2C :()()22349x y -++=有且仅有两条公切线,则()2,6t ∈D .直线l :tan 412022y x =-︒⋅+的倾斜角为139°4.(2021·广东·高三阶段练习)已知直线l 过点()1,2M 且与圆C :()2225x y -+=相切,直线l 与x 轴交于点N ,点P 是圆C 上的动点,则下列结论中正确的有()A .点N 的坐标为()3,0-B .MNP △面积的最大值为10C .当直线l 与直线10ax y -+=垂直时,2a =D .tan MNP ∠的最大值为43三、填空题5.(2022·陕西·安康市高新中学三模(理))若双曲线()2222:10,0x y C a b a b-=>>的一条渐近线l 与直线:20g ax by a ++=平行,则直线l ,g 间的距离为______.6.(2022·天津·二模)在平面直角坐标系xOy 中,已知圆222:(62)4560C x y m x my m m +---+-=,直线l 经过点(1,2)-,若对任意的实数m ,直线l 被圆C 截得的弦长都是定值,则直线l 的方程为___________.四、解答题7.(2022·全国·高三专题练习)已知曲线32y x x =+-在点0P 处的切线1l 平行于直线410x y --=,且点0P 在第三象限.(1)求0P 的坐标;(2)若直线1l l ⊥,且l 也过切点0P ,求直线l 的方程.8.(2020·江苏·南京师大附中模拟预测)如图,在平面直角坐标系xOy 中,已知圆221:(4)1C x y ++=,圆222:(4)4C x y -+=,A 是第一象限内的一点,其坐标为(,)t t .(1)若1212AC AC →→⋅=-,求t 的值;(2)过A 点作斜率为k 的直线l ,①若直线l 和圆1C ,圆2C 均相切,求k 的值;②若直线l 和圆2C ,圆2C 分别相交于,A B 和,C D ,且AB CD =,求t 的最小值.题型四:求解直线的定点一、单选题1.(2022·山东滨州·二模)已知直线()22:1(32)250l m m x m y m +++---=,圆22:20C x y x +-=,则直线l 与圆C 的位置关系是()A .相离B .相切C .相交D .不确定2.(2022·陕西·榆林市教育科学研究所模拟预测(理))在平面直角坐标系xOy 中,已知圆22:1O x y +=,若曲线12y k x =-+上存在四个点()1,2,3,4i P i =,过动点Pi 作圆O 的两条切线,A ,B 为切点,满足32i iP A PB ⋅= ,则k 的取值范围为()A .4,3∞⎛⎫-- ⎪⎝⎭B .4,03⎛⎫- ⎪⎝⎭C .(,7)(4,13)--∞-- D .4(7,)1)30(,--- 二、多选题3.(2022·湖南·长沙市明德中学二模)已知O 为坐标原点,点()P a b ,在直线()40l kx y k --=∈R :上,PA PB ,是圆222x y +=的两条切线,A B ,为切点,则()A .直线l 恒过定点()04,B .当PAB △为正三角形时,OP =C .当PA PB ⊥时,k 的取值范围为()-∞+∞ ,D .当14PO PA ⋅=时,a b +的最大值为4.(2022·江苏盐城·三模)设直线l :()220mx y m m R --+=∈,交圆C :()()22349x y -+-=于A ,B 两点,则下列说法正确的有()A .直线l 恒过定点()1,2B .弦AB 长的最小值为4C .当1m =时,圆C 关于直线l 对称的圆的方程为:()()22439x y -+-=D .过坐标原点O 作直线l 的垂线,垂足为点M ,则线段MC5.(2022·重庆·高三阶段练习)在平面直角坐标系xOy 中,圆22:1O x y +=,若曲线12y k x =-+上存在四个点()1,2,3,4=i P i ,过动点i P 作圆O 的两条切线,A ,B 为切点,满足32i iP A PB ⋅= ,则k 的值可能为()A .-7B .-5C .-2D .–1三、双空题6.(2022·北京房山·二模)已知圆()()22:121C x y -+-=和直线():1l y k x =+,则圆心坐标为___________;若点P 在圆C 上运动,P 到直线l 的距离记为()d k ,则()d k 的最大值为___________.四、填空题7.(2022·河南焦作·三模(文))已知()f x 是定义在R 上的奇函数,其图象关于点(2,0)对称,当[0,2]x ∈时,2()1(1)f x x =---,若方程()(2)0f x k x --=的所有根的和为6,则实数k 的取值范围是______.五、解答题8.(2022·全国·高三专题练习)O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ =,直线l 过点P 且垂直于OQ ,求证:直线过定点.9.(2022·全国·高三专题练习)在平面直角坐标系xoy 中,如图,已知椭圆22195x y+=的左、右顶点为A 、B ,右焦点为F ,设过点(,)T t m 的直线TA 、TB 与此椭圆分别交于点1(M x ,1)y 、2(N x ,2)y ,其中0m >,10y >,20y <(1)设动点P 满足()()13PF PB PF PB +-=,求点P 的轨迹方程;(2)设12x =,213x =,求点T 的坐标;(3)若点T 在点P 的轨迹上运动,问直线MN 是否经过x 轴上的一定点,若是,求出定点的坐标;若不是,说明理由.题型五:直线相关的对称问题一、单选题1.(2022·全国·高三专题练习(理))集合M 在平面直角坐标系中表示线段的长度之和记为M .若集合(){}22,925A x y xy =≤+≤,(){},B x y y x m ==+,(){},2C x y y kx k ==+-则下列说法中不正确的有()A .若AB ⋂≠∅,则实数m 的取值范围为{m m -≤≤B .存在k ∈R ,使AC ⋂≠∅C .无论k 取何值,都有A C ⋂≠∅D .A C的最大值为42.(2022·全国·高三专题练习)已知平面向量12312312,,,1,,60e e e e e e e e ︒==== .若对区间1,12⎡⎤⎢⎥⎣⎦内的三个任意的实数123,,λλλ,都有11223312312e e e e e e λλλ++++,则向量1e 与3 e 夹角的最大值的余弦值为()A .36-B .C .D .二、多选题3.(2022·全国·模拟预测)已知直线:50l x y -+=,过直线上任意一点M 作圆()22:34C x y -+=的两条切线,切点分别为A ,B ,则有()A .四边形MACB 面积的最小值为B .AMB ∠最大度数为60°C .直线AB 过定点15,22⎛⎫ ⎪⎝⎭D .AB 4.(2022·福建三明·模拟预测)已知直线l :10kx y k --+=与圆C :()()222216x y -++=相交于A ,B 两点,O 为坐标原点,下列说法正确的是()A .AB的最小值为B .若圆C 关于直线l 对称,则3k =C .若2ACB CAB ∠=∠,则1k =或17k =-D .若A ,B ,C ,O 四点共圆,则13k =-三、填空题5.(2022·全国·模拟预测)已知平面内点,05n n A ⎛⎫- ⎪⎝⎭,,05n n B ⎛⎫ ⎪⎝⎭()*n ∈N ,点n C 满足n n n n AC B C ⊥.设n C 到直线()3410x y n n +++=的距离的最大值为n a ,若数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S m <恒成立,则实数m 能取的最小值是______.6.(2022·天津·南开中学模拟预测)已知圆221:(1)(2)4C x y -+-=和圆222:(2)(1)2C x y -+-=交于,A B 两点,直线l 与直线AB 平行,且与圆2C 相切,与圆1C 交于点,M N ,则MN =__________.7.(2022·广东佛山·模拟预测)已知点()1,0A ,()3,0B ,若2PA PB ⋅=,则点P 到直线l :340x y -+=的距离的最小值为____________.四、解答题8.(2022·安徽·蚌埠二中模拟预测(理))在直角坐标系xOy 中,曲线C 的参数方程为22224x t ty t ⎧=-⎨=+⎩(t 为参数).(1)求C 与坐标轴交点的直角坐标;(2)以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 与坐标轴的交点是否共圆,若共圆,求出该圆的极坐标方程;若不共圆,请说明理由.9.(2022·安徽·寿县第一中学高三阶段练习(理))已知直线:sin cos 0l x y a θθ++=,圆()()221:324C x y a +--=,圆2222:340Cx y a a +-+=(1)若4θ=,求直线l 的倾斜角;(2)设直线l 截两圆的弦长分别为12,d d ,当23πθ=时,求12d d ⋅的最大值并求此时a 的值.10.(2022·江西南昌·一模(理))已知面积为ABO (O 是坐标原点)的三个顶点都在抛物线()2:20E y px p =>上,过点(),2P p -作抛物线E 的两条切线分别交y 轴于M ,N 两点.(1)求p 的值;(2)求PMN 的外接圆的方程.题型六:几何法求圆的方程一、多选题1.(2022·广东·模拟预测)三角形的外心、重心、垂心所在的直线称为欧拉线.已知圆O '的圆心在OAB 的欧拉线l 上,O 为坐标原点,点()4,1B 与点()1,4A 在圆O '上,且满足O A O B '⊥',则下列说法正确的是()A .圆O '的方程为224430x y x y +--+=B .l 的方程为0x y -=C .圆O '上的点到l 的最大距离为3D .若点(),x y 在圆O '上,则x y -的取值范围是⎡-⎣二、填空题2.(2022·河北·模拟预测)圆心为(1,2)C -,且截直线350x y ++=所得弦长为的圆的方程为___________.3.(2022·河南·高三阶段练习(文))已知㮋圆1C :()2221024x y b b+=<<的离心率为12,1F 和2F 是1C 的左右焦点,M 是1C 上的动点,点N 在线段1F M 的延长线上,2MN MF =,线段2F N 的中点为P ,则1F P 的最大值为______.4.(2022·天津·高三专题练习)已知圆C 过点(0,1)(2,1)P Q 、两点,且圆心C 在x 轴上,经过点(1,0)M -且倾斜角为钝角的直线l 交圆C 于A ,B 两点,若0CA CB ⋅= (C 为圆心),则该直线l 的斜率为________.5.(2022·全国·高三专题练习)已知圆C :(x -2)2+y 2=2,直线l :y =k (x +2)与x 轴交于点A ,过l 上一点P 作圆C 的切线,切点为T ,若|PA |PT |,则实数k 的取值范围是______________.三、解答题6.(2022·内蒙古呼和浩特·二模(理))拋物线C 的顶点为坐标原点O ,焦点在x 轴上,直线l :2x =交C 于P ,Q 两点,且OP OQ ⊥.已知点M 的坐标为()4,0,M 与直线l 相切.(1)求抛物线C 和M 的标准方程;(2)已知点()8,4N ,点1A ,2A 是C 上的两个点,且直线1NA ,2NA 均与M 相切.判断直线12A A 与M 的位置关系,并说明理由.7.(2022·江苏·南京市第五高级中学一模)已知O 为坐标原点,抛物线E :22x py =(p >0),过点C (0,2)作直线l 交抛物线E 于点A 、B (其中点A 在第一象限),4OA OB ⋅=- 且AC CB λ= (λ>0).(1)求抛物线E 的方程;(2)当λ=2时,过点A 、B 的圆与抛物线E 在点A 处有共同的切线,求该圆的方程8.(2022·全国·高三专题练习)已知平面直角坐标系上一动点(),P x y 到点()2,0A -的距离是点P 到点()10B ,的距离的2倍.(1)求点P 的轨迹方程:(2)若点P 与点Q 关于点()1,4-对称,求P 、Q 两点间距离的最大值;(3)若过点A 的直线l 与点P 的轨迹C 相交于E 、F 两点,()2,0M ,则是否存在直线l ,使BFM S △取得最大值,若存在,求出此时的方程,若不存在,请说明理由.题型七:待定系数法求圆的方程一、单选题1.(2016·天津市红桥区教师发展中心高三学业考试)已知圆M 的半径为1,若此圆同时与x 轴和直线y =相切,则圆M 的标准方程可能是()A .22((1)1x y -+-=B .22(1)(1x y -+=C .22(1)(1x y -++=D .22((1)1x y ++=二、填空题2.(2022·四川眉山·三模(文))已知函数()()()2112819f x x x x =+--.过点()() 1,1A f --作曲线()y f x =两条切线,两切线与曲线()y f x =另外的公共点分别为B 、C ,则ABC 外接圆的方程为___________.3.(2022·安徽·高三阶段练习(文))已知抛物线2:8C x y =,过点(2,2)N -作抛物线C 的两条切线NA ,NB ,切点分别为点A ,B ,以AB 为直径的圆交x 轴于P ,Q 两点,则PQ =_______.4.(2022·天津·高三专题练习)已知抛物线C :24y x =的焦点为F ,抛物线C 上一点A 位于第一象限,且满足3AF =,则以点A 为圆心,AF 为半径的圆的方程为______.三、解答题5.(2022·全国·高三专题练习)已知圆C 经过点A (0,2),B (2,0),圆C 的圆心在圆x 2+y 2=2的内部,且直线3x +4y +5=0被圆C 所截得的弦长为点P 为圆C 上异于A ,B 的任意一点,直线PA 与x 轴交于点M ,直线PB 与y 轴交于点N .(1)求圆C 的方程;(2)若直线y =x +1与圆C 交于A 1,A 2两点,求12BA BA →→;(3)求证:|AN |·|BM |为定值.6.(2021·江西·高三阶段练习(理))已知圆C 过点(2,1)-,(6,3),(2,3)-.(1)求C 的标准方程;(2)若点(,)P x y 在C 上运动,求34x y -的取值范围.7.(2021·全国·模拟预测)已知点()1,1P 在抛物线C :()220y px p =>上,过点P 作圆E :()()22220y x r r +=->的两条切线,切点为A ,B ,延长PA ,PB 交抛物线于C ,D .(1)当直线AB 抛物线焦点时,求抛物线C 的方程与圆E 的方程;(2)证明:对于任意()0,1r ∈,直线CD 恒过定点.8.(2019·云南·二模(理))已知O 是坐标原点,抛物线C :2x y =的焦点为F ,过F 且斜率为1的直线l 交抛物线C 于A 、B 两点,Q 为抛物线C 的准线上一点,且2AQB π∠=.(1)求Q 点的坐标;(2)设与直线l 垂直的直线与抛物线C 交于M 、N 两点,过点M 、N 分别作抛物线C 的切线1l 、2l ,设直线1l 与2l 交于点P ,若OP OQ ⊥,求MON ∆外接圆的标准方程.题型八:几何法求弦长一、单选题1.(2022·全国·模拟预测)已知直线l 过点(A ,则直线l 被圆O :2212x y +=截得的弦长的最小值为()A .3B .6C .D .2.(2022·全国·模拟预测)过点()2,2A ,作倾斜角为π3的直线l ,则直线l被圆22:16O x y +=-弦长为()A.12-B.2C.3D.6-二、多选题3.(2022·广东·模拟预测)已知圆221:(1)1C x y ++=和圆222:(4)4C x y -+=,过圆2C 上任意一点P 作圆1C 的两条切线,设两切点分别为,A B ,则()A .线段ABB .线段ABC .当直线AP 与圆2C 相切时,原点O 到直线AP 的距离为65D .当直线AP 平分圆2C 的周长时,原点O 到直线AP 的距离为45三、填空题4.(2022·河北唐山·三模)直线:0+-=l x m 与圆22:480+--=C x y x 交于A 、B 两点,且6⋅=- CA CB ,则实数m =_______.四、解答题5.(2022·全国·高三专题练习)已知点()()1,0M m m ->,不垂直于x 轴的直线l 与椭圆22:143x y C +=相交于()11,A x y ,()22,B x y 两点.(1)若M 为线段AB 的中点,证明:212112y y x x ->-;(2)设C 的左焦点为F ,若M 在∠AFB 的角平分线所在直线上,且l 被圆224x y +=截得的弦长为l 的方程.6.(2021·湖北·武汉市第六中学高三阶段练习)已知圆O :x 2+y 2=2,过点A (1,1)的直线交圆O 所得的,且与x 轴的交点为双曲线E :2222x y a b -=1的右焦点F (c ,0)(c >2),双曲线E 的离心率为32.(1)求双曲线E 的方程;(2)若直线y =kx +m (k <0,k ≠m >0)交y 轴于点P ,交x 轴于点Q ,交双曲线右支于点M ,N 两点,当满足关系111||||||PM PN PQ +=时,求实数m 的值.7.(2022·全国·高三专题练习)已知椭圆()2222:10x y E a b a b+=>>0y -=过E 的上顶点A 和左焦点1F .(1)求E 的方程;(2)设直线l 与椭圆E 相切,又与圆22:4O x y +=交于M ,N 两点(O 为坐标原点),求OMN 面积的最大值,并求出此时直线l 的方程.题型九:利用点到直线的距离解决圆上点与直线上点的距离问题一、单选题1.(2022·江苏扬州·模拟预测)已知直线():130l a x y -+-=,圆22:(1)5C x y -+=.则“32a =”是“l 与C 相切”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2022·重庆南开中学模拟预测)已知圆2220x y x a +-+=上仅存在一个点到直线30x -+=的距离为1,则实数a 的值为()A .-2B .C .-1D .03.(2022·全国·高三专题练习(文))圆O :222x y +=上点P 到直线l :3410x y +=距离的最小值为()A 1B .2C .2D .04.(2022·安徽·寿县第一中学高三阶段练习(理))过直线34110x y -+=上一动点P 作圆22:2210C x y x y +--+=的两条切线,切点分别为,A B ,则四边形PACB 的面积的最小值为()AB C .3D二、多选题5.(2022·湖南·长郡中学高三阶段练习)已知点P 在圆22:4O x y +=上,点()3,0A ,()0,4B ,则()A .点P 到直线AB 的距离最大值为225B .满足AP BP ⊥的点P 有2个C .过点B 作圆O 的两切线,切点分别为M 、N ,则直线MN 的方程为1y =D .2PA PB +的最小值是6.(2022·重庆·二模)已知点(),P x y 是圆()22:14C x y -+=上的任意一点,直线()):1130l m x y m ++-+=,则下列结论正确的是()A .直线l 与圆C 的位置关系只有相交和相切两种B .圆C 的圆心到直线lC .点P 到直线43160++=x y 距离的最小值为2D .点P 可能在圆221x y +=上三、填空题7.(2022·四川省泸县第二中学模拟预测(理))过直线0x y m --=上动点P 作圆2:(2)(3)1M x y -+-=的一条切线,切点为A ,若使得1PA =的点P 有两个,则实数m 的取值范围为___________.8.(2022·贵州遵义·三模(理))圆22:2O x y +=上点P 到直线3410:x y l +=距离的最小值为__________.四、解答题9.(2022·广东茂名·模拟预测)已知抛物线2:4C y x =的焦点为F ,直线2y x =-与抛物线C 交于A ,B 两点.(1)求FAB 的面积;(2)过抛物线C 上一点Р作圆()22:34M x y -+=的两条斜率都存在的切线,分别与抛物线C 交于异于点P 的两点D ,E .证明:直线DE 与圆M 相切.高考一轮复习专项。
2023年新高考数学大一轮复习专题六解析几何第1讲直线与圆(含答案)
新高考数学大一轮复习专题:第1讲 直线与圆[考情分析] 1.和导数、圆锥曲线相结合,求直线的方程,考查点到直线的距离公式,多以选择题、填空题形式出现,中低难度.2.和圆锥曲线相结合,求圆的方程或弦长、面积等,中高难度.考点一 直线的方程 核心提炼1.已知直线l 1:A 1x +B 1y +C 1=0(A 1,B 1不同时为零),直线l 2:A 2x +B 2y +C 2=0(A 2,B 2不同时为零),则l 1∥l 2⇔A 1B 2-A 2B 1=0,且A 1C 2-A 2C 1≠0,l 1⊥l 2⇔A 1A 2+B 1B 2=0. 2.点P (x 0,y 0)到直线l :Ax +By +C =0(A ,B 不同时为零)的距离d =|Ax 0+By 0+C |A 2+B 2.3.两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0(A ,B 不同时为零)间的距离d =|C 1-C 2|A 2+B 2.例1 (1)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( )A.2B.823C.3D.833答案 B解析 由l 1∥l 2得(a -2)a =1×3,且a ×2a ≠3×6, 解得a =-1,∴l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2间的距离d =⎪⎪⎪⎪⎪⎪6-2312+-12=823. (2)直线ax +y +3a -1=0恒过定点N ,则直线2x +3y -6=0关于点N 对称的直线方程为( )A .2x +3y -12=0B .2x +3y +12=0C .2x -3y +12=0D .2x -3y -12=0答案 B解析 由ax +y +3a -1=0可得a (x +3)+y -1=0,令⎩⎪⎨⎪⎧x +3=0,y -1=0,可得x =-3,y =1,∴N (-3,1).设直线2x +3y -6=0关于点N 对称的直线方程为2x +3y +c =0(c ≠-6). 则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去). ∴所求直线方程为2x +3y +12=0. 易错提醒 解决直线方程问题的三个注意点(1)求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的可能性.(2)要注意直线方程每种形式的局限性,点斜式、两点式、斜截式要求直线不能与x 轴垂直,而截距式方程即不能表示过原点的直线,也不能表示垂直于坐标轴的直线. (3)讨论两直线的位置关系时,要注意直线的斜率是否存在.跟踪演练1 (1)已知直线l 经过直线l 1:x +y =2与l 2:2x -y =1的交点,且直线l 的斜率为-23,则直线l 的方程是( )A .-3x +2y +1=0B .3x -2y +1=0C .2x +3y -5=0D .2x -3y +1=0答案 C解析 解方程组⎩⎪⎨⎪⎧x +y =2,2x -y =1,得⎩⎪⎨⎪⎧x =1,y =1,所以两直线的交点为(1,1). 因为直线l 的斜率为-23,所以直线l 的方程为y -1=-23(x -1),即2x +3y -5=0.(2)已知直线l 1:kx -y +4=0与直线l 2:x +ky -3=0(k ≠0)分别过定点A ,B ,又l 1,l 2相交于点M ,则|MA |·|MB |的最大值为________. 答案252解析 由题意可知,直线l 1:kx -y +4=0经过定点A (0,4),直线l 2:x +ky -3=0经过定点B (3,0).易知直线l 1:kx -y +4=0和直线l 2:x +ky -3=0始终垂直,又M 是两条直线的交点,所以MA ⊥MB ,所以|MA |2+|MB |2=|AB |2=25,故|MA |·|MB |≤252⎝ ⎛⎭⎪⎫当且仅当|MA |=|MB |=522时取“=”.考点二 圆的方程 核心提炼 1.圆的标准方程当圆心为(a ,b ),半径为r 时,其标准方程为(x -a )2+(y -b )2=r 2,特别地,当圆心在原点时,方程为x 2+y 2=r 2. 2.圆的一般方程x 2+y 2+Dx +Ey +F =0,其中D 2+E 2-4F >0,表示以⎝ ⎛⎭⎪⎫-D 2,-E 2为圆心,D 2+E 2-4F 2为半径的圆.例2 (1)(2018·天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为____________. 答案 x 2+y 2-2x =0解析 方法一 设圆的方程为x 2+y 2+Dx +Ey +F =0. ∵圆经过点(0,0),(1,1),(2,0),∴⎩⎪⎨⎪⎧F =0,2+D +E +F =0,4+2D +F =0.解得⎩⎪⎨⎪⎧D =-2,E =0,F =0.∴圆的方程为x 2+y 2-2x =0. 方法二 画出示意图如图所示,则△OAB 为等腰直角三角形, 故所求圆的圆心为(1,0),半径为1, ∴所求圆的方程为(x -1)2+y 2=1, 即x 2+y 2-2x =0.(2)已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.则圆C 的标准方程为________________________. 答案 (x -1)2+(y -2)2=2 解析 设圆心C (a ,b ),半径为r , ∵圆C 与x 轴相切于点T (1,0), ∴a =1,r =|b |.又圆C 与y 轴正半轴交于两点, ∴b >0,则b =r ,∵|AB |=2,∴2=2r 2-1, ∴r =2,故圆C 的标准方程为(x -1)2+(y -2)2=2. 规律方法 解决圆的方程问题一般有两种方法(1)几何法:通过研究圆的性质、直线与圆、圆与圆的位置关系,进而求得圆的基本量和方程. (2)代数法:即用待定系数法先设出圆的方程,再由条件求得各系数.跟踪演练2 (1)(2020·全国Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( ) A.55B.255 C.355 D.455答案 B解析 由题意可知圆心在第一象限,设为(a ,b ). ∵圆与两坐标轴都相切, ∴a =b ,且半径r =a ,∴圆的标准方程为(x -a )2+(y -a )2=a 2. ∵点(2,1)在圆上,∴(2-a )2+(1-a )2=a 2, ∴a 2-6a +5=0,解得a =1或a =5. 当a =1时,圆心坐标为(1,1), 此时圆心到直线2x -y -3=0的距离为d =|2×1-1-3|22+-12=255; 当a =5时,圆心坐标为(5,5), 此时圆心到直线2x -y -3=0的距离为d =|2×5-5-3|22+-12=255. 综上,圆心到直线2x -y -3=0的距离为255.(2)已知A ,B 分别是双曲线C :x 2m -y 22=1的左、右顶点,P (3,4)为C 上一点,则△PAB 的外接圆的标准方程为________________. 答案 x 2+(y -3)2=10解析 ∵P (3,4)为C 上一点,∴9m -162=1,解得m =1,则B (1,0),∴k PB =42=2,PB 的中点坐标为(2,2),PB 的中垂线方程为y =-12(x -2)+2,令x =0,则y =3, 设外接圆圆心为M (0,t ),则M (0,3),r =|MB |=1+32=10, ∴△PAB 外接圆的标准方程为x 2+(y -3)2=10. 考点三 直线、圆的位置关系 核心提炼1.直线与圆的位置关系:相交、相切和相离,判断的方法 (1)点线距离法.(2)判别式法:设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0(A 2+B 2≠0),方程组⎩⎪⎨⎪⎧Ax +By +C =0,x -a 2+y -b2=r 2,消去y ,得到关于x 的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系有五种,即内含、内切、相交、外切、外离.例3 (1)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( ) A .2B .42C .6D .210 答案 C解析 由题意,得圆C 的标准方程为(x -2)2+(y -1)2=4,知圆C 的圆心为C (2,1),半径为2.方法一 因为直线l 为圆C 的对称轴,所以圆心在直线l 上,则2+a -1=0,解得a =-1, 所以|AB |2=|AC |2-|BC |2=[(-4-2)2+(-1-1)2]-4=36,所以|AB |=6.方法二 由题意知,圆心在直线l 上,即2+a -1=0,解得a =-1,再由图知,|AB |=6.(2)(2020·全国Ⅰ)已知⊙M :x 2+y 2-2x -2y -2=0,直线l :2x +y +2=0,P 为l 上的动点,过点P 作⊙M 的切线PA ,PB ,切点为A ,B ,当|PM |·|AB |最小时,直线AB 的方程为( ) A .2x -y -1=0B .2x +y -1=0C .2x -y +1=0D .2x +y +1=0答案 D解析 ⊙M :(x -1)2+(y -1)2=4, 则圆心M (1,1),⊙M 的半径为2. 如图,由题意可知PM ⊥AB ,∴S 四边形PAMB =12|PM |·|AB |=|PA |·|AM |=2|PA |, ∴|PM |·|AB |=4|PA | =4|PM |2-4.当|PM |·|AB |最小时,|PM |最小,此时PM ⊥l . 故直线PM 的方程为y -1=12(x -1),即x -2y +1=0.由⎩⎪⎨⎪⎧x -2y +1=0,2x +y +2=0,得⎩⎪⎨⎪⎧x =-1,y =0,∴P (-1,0).又∵直线x =-1,即PA 与⊙M 相切, ∴PA ⊥x 轴,PA ⊥MA ,∴A (-1,1). 又直线AB 与l 平行,设直线AB 的方程为2x +y +m =0(m ≠2), 将A (-1,1)的坐标代入2x +y +m =0,得m =1. ∴直线AB 的方程为2x +y +1=0. 规律方法 直线与圆相切问题的解题策略直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立关于切线斜率的等式,所以求切线方程时主要选择点斜式.过圆外一点求解切线段长的问题,可先求出圆心到圆外点的距离,再结合半径利用勾股定理计算.跟踪演练3 (1)已知点M 是抛物线y 2=2x 上的动点,以点M 为圆心的圆被y 轴截得的弦长为8,则该圆被x 轴截得的弦长的最小值为( ) A .10B .43C .8D .215答案 D解析 设圆心M ⎝ ⎛⎭⎪⎫a 22,a , 而r 2=⎝ ⎛⎭⎪⎫a 222+⎝ ⎛⎭⎪⎫822=a44+16,∵圆M 与x 轴交于A ,B 两点, ∴|AB |=2r 2-a 2=2a 44+16-a 2=a 4-4a 2+64=a 2-22+60≥60=215.(2)若圆x 2+y 2=4与圆x 2+y 2+ax +2ay -9=0(a >0)相交,公共弦的长为22,则a =________. 答案102解析 联立两圆方程⎩⎪⎨⎪⎧x 2+y 2=4,x 2+y 2+ax +2ay -9=0,可得公共弦所在直线方程为ax +2ay -5=0, 故圆心(0,0)到直线ax +2ay -5=0的距离为 |-5|a 2+4a2=5a(a >0).故222-⎝⎛⎭⎪⎫5a 2=22,解得a 2=52, 因为a >0,所以a =102. 专题强化练一、单项选择题1.过点A (1,2)的直线在两坐标轴上的截距之和为零,则该直线方程为( ) A .y -x =1B .y +x =3C .2x -y =0或x +y =3D .2x -y =0或y -x =1答案 D解析 当直线过原点时,可得斜率为2-01-0=2,故直线方程为y =2x ,即2x -y =0,当直线不过原点时,设方程为x a +y-a=1, 代入点(1,2)可得1a -2a=1,解得a =-1,方程为x -y +1=0,故所求直线方程为2x -y =0或y -x =1.2.若直线x +(1+m )y -2=0与直线mx +2y +4=0平行,则m 的值是( ) A .1B .-2C .1或-2D .-32答案 A解析 由两直线平行的条件可得-2+m +m 2=0, ∴m =-2(舍)或m =1.3.已知圆x 2+y 2+2k 2x +2y +4k =0关于y =x 对称,则k 的值为( ) A .-1B .1C .±1D.0 答案 A解析 化圆x 2+y 2+2k 2x +2y +4k =0为(x +k 2)2+(y +1)2=k 4-4k +1. 则圆心坐标为(-k 2,-1),∵圆x 2+y 2+2k 2x +2y +4k =0关于y =x 对称, ∴直线y =x 经过圆心, ∴-k 2=-1,得k =±1.当k =1时,k 4-4k +1<0,不合题意, ∴k =-1.4.(2020·厦门模拟)已知圆C :x 2+y 2-4x =0与直线l 相切于点P (3,3),则直线l 的方程为( ) A .3x -3y -6=0 B .x -3y -6=0 C .x +3y -4=0 D .x +3y -6=0 答案 D解析 圆C :x 2+y 2-4x =0可化为(x -2)2+y 2=4,则圆心C (2,0), 直线PC 的斜率为k PC =0-32-3=3,∵l ⊥PC ,则直线l 的斜率为k =-1k PC =-33,∴直线l 的点斜式方程为y -3=-33(x -3),化为一般式得x +3y -6=0. 5.(2020·长沙模拟)已知直线l 过点A (a,0)且斜率为1,若圆x 2+y 2=4上恰有3个点到l 的距离为1,则a 的值为( ) A .3 2 B .±3 2 C .±2 D .± 2答案 D解析 直线l 的方程为y =x -a ,即x -y -a =0.圆上恰有三个点到直线l 的距离为1,可知圆心到直线的距离等于半径的一半,即|a |2=1,a =± 2.6.已知点P 为圆C :(x -1)2+(y -2)2=4上一点,A (0,-6),B (4,0),则|PA →+PB →|的最大值为( ) A.26+2 B.26+4 C .226+4 D .226+2 答案 C解析 取AB 的中点D (2,-3), 则PA →+PB →=2PD →,|PA →+PB →|=|2PD →|,又由题意知,圆C 的圆心C 的坐标为(1,2),半径为2, |PD →|的最大值为圆心C (1,2)到D (2,-3)的距离d 再加半径r , 又d =1+25=26,∴d +r =26+2, ∴|2PD →|的最大值为226+4, 即|PA →+PB →|的最大值为226+4.7.(2020·北京市陈经纶中学月考)古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点A ,B 距离之比是常数λ(λ>0,λ≠1)的点M 的轨迹是圆,若两定点A ,B 的距离为3,动点M 满足|MA |=2|MB |,则M 点的轨迹围成区域的面积为( )A .πB.2πC.3πD.4π 答案 D解析 以A 为原点,直线AB 为x 轴建立平面直角坐标系(图略),则B (3,0).设M (x ,y ),依题意有,x 2+y 2x -32+y2=2,化简整理得,x 2+y 2-8x +12=0,即(x -4)2+y 2=4,则M 点的轨迹围成区域的面积为4π.8.(2020·辽宁省大连一中模拟)已知圆C :x 2+y 2=4,直线l :x -y +6=0,在直线l 上任取一点P 向圆C 作切线,切点为A ,B ,连接AB ,则直线AB 一定过定点( )A.⎝ ⎛⎭⎪⎫-23,23 B .(1,2)C .(-2,3) D.⎝ ⎛⎭⎪⎫-43,43 答案 A解析 设点P (x 0,y 0),则x 0-y 0+6=0.过点P 向圆C 作切线,切点为A ,B ,连接AB ,以CP 为直径的圆的方程为x (x -x 0)+y (y -y 0)=0,又圆C :x 2+y 2=4,作差可得直线AB 的方程为xx 0+yy 0=4,将y 0=x 0+6,代入可得(x +y )x 0+6y -4=0,满足⎩⎪⎨⎪⎧x +y =0,6y -4=0⇒⎩⎪⎨⎪⎧x =-23,y =23,故直线AB 过定点⎝ ⎛⎭⎪⎫-23,23.二、多项选择题9.集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|(x -3)2+(y -4)2=r 2},其中r >0,若A ∩B 中有且仅有一个元素,则r 的值是( ) A .3B .5C .7D .9 答案 AC解析 圆x 2+y 2=4的圆心是O (0,0),半径为R =2,圆(x -3)2+(y -4)2=r 2的圆心是C (3,4),半径为r ,|OC |=5,当2+r =5,r =3时,两圆外切,当|r -2|=5,r =7时,两圆内切,它们都只有一个公共点,即集合A ∩B 中只有一个元素. 10.下列说法正确的是( )A .直线x -y -2=0与两坐标轴围成的三角形的面积是2B .点P (0,2)关于直线y =x +1的对称点为P ′(1,1)C .过P 1(x 1,y 1),P 2(x 2,y 2)两点的直线方程为y -y 1y 2-y 1=x -x 1x 2-x 1D .经过点(1,1)且在x 轴和y 轴上截距都相等的直线方程为x +y -2=0 答案 AB解析 选项A 中直线x -y -2=0在两坐标轴上的截距分别为2,-2,所以围成的三角形的面积是2,所以A 正确;选项B 中PP ′的中点⎝⎛⎭⎪⎫0+12,2+12在直线y =x +1上,且P (0,2),P ′(1,1)两点连线的斜率为-1,所以B 正确;选项C 中需要条件y 2≠y 1,x 2≠x 1,所以C 错误;选项D 中还有一条截距都为0的直线y =x ,所以D 错误.11.已知圆C 1:(x +6)2+(y -5)2=4,圆C 2:(x -2)2+(y -1)2=1,M ,N 分别为圆C 1和C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的值可以是( ) A .6B .7C .10D .15 答案 BCD解析 圆C 2关于x 轴的对称圆C 3为(x -2)2+(y +1)2=1,圆心C 3(2,-1),r 3=1,点N 关于x 轴的对称点N ′在圆C 3上,又圆C 1的圆心C 1(-6,5),r 1=2,∴|PM |+|PN |=|PM |+|PN ′|≥|PC 1|-r 1+|PC 3|-r 3=|PC 1|+|PC 3|-3≥|C 1C 3|-3=2+62+-1-52-3=7,∴|PM |+|PN |的取值范围是[7,+∞).12.已知点A 是直线l :x +y -2=0上一定点,点P ,Q 是圆x 2+y 2=1上的动点,若∠PAQ 的最大值为90°,则点A 的坐标可以是( ) A .(0,2) B .(1,2-1) C .(2,0) D .(2-1,1)答案 AC 解析如图所示,坐标原点O 到直线l :x +y -2=0的距离d =212+12=1,则直线l 与圆x 2+y2=1相切,由图可知,当AP ,AQ 均为圆x 2+y 2=1的切线时,∠PAQ 取得最大值,连接OP ,OQ ,由于∠PAQ 的最大值为90°,且∠APO =∠AQO =90°,|OP |=|OQ |=1,则四边形APOQ为正方形,所以|OA |=2|OP |= 2.设A (t ,2-t ),由两点间的距离公式得|OA |=t 2+2-t2=2,整理得t 2-2t =0,解得t =0或t =2,因此,点A 的坐标为(0,2)或(2,0). 三、填空题13.若直线l :x a +y b=1(a >0,b >0)经过点(1,2),则直线l 在x 轴、y 轴上的截距之和的最小值是________. 答案 3+2 2解析 因为直线l :x a +y b=1(a >0,b >0)经过点(1,2),所以1a +2b=1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫1a +2b =3+b a+2ab≥3+22,当且仅当a =2+1,b =2+2时等号成立.所以直线在x 轴、y 轴上的截距之和的最小值是3+2 2.14.已知⊙O :x 2+y 2=1.若直线y =kx +2上总存在点P ,使得过点P 的⊙O 的两条切线互相垂直,则实数k 的取值范围是______________________. 答案 (-∞,-1]∪[1,+∞)解析 ∵⊙O 的圆心为(0,0),半径r =1, 设两个切点分别为A ,B ,则由题意可得四边形PAOB 为正方形, 故有|PO |=2r =2,∴圆心O 到直线y =kx +2的距离d ≤2, 即|2|1+k2≤2,即1+k 2≥2,解得k ≥1或k ≤-1.15.(2020·石家庄长安区期末)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,当△AOB 的面积达到最大时,k =________. 答案 ±1解析 由圆O :x 2+y 2=1,得到圆心坐标为O (0,0),半径r =1,把直线l 的方程y =kx +1(k ≠0),整理为一般式方程得l :kx -y +1=0,圆心O (0,0)到直线AB 的距离d =1k 2+1,弦AB 的长度|AB |=2r 2-d 2=2k 2k 2+1,S △AOB =12×2k 2k 2+1×1k 2+1=|k |k 2+1=1|k |+1|k |,又因为|k |+1|k |≥2|k |·1|k |=2,S △AOB ≤12,当且仅当|k |=1|k |,即k =±1时取等号,S △AOB 取得最大值,最大值为12,此时k =±1.16.已知圆C 1:x 2+y 2=r 2,圆C 2:(x -a )2+(y -b )2=r 2(r >0)交于不同的两点A (x 1,y 1),B (x 2,y 2),给出下列结论:①a (x 1-x 2)+b (y 1-y 2)=0;②2ax 1+2by 1=a 2+b 2;③x 1+x 2=a ,y 1+y 2=b .其中正确的结论是________.(填序号)答案 ①②③解析 公共弦所在直线的方程为2ax +2by -a 2-b 2=0, 所以有2ax 1+2by 1-a 2-b 2=0,②正确; 又2ax 2+2by 2-a 2-b 2=0,所以a (x 1-x 2)+b (y 1-y 2)=0,①正确;AB 的中点为直线AB 与直线C 1C 2的交点,又AB :2ax +2by -a 2-b 2=0,C 1C 2:bx -ay =0.由⎩⎪⎨⎪⎧2ax +2by -a 2-b 2=0,bx -ay =0得⎩⎪⎨⎪⎧x =a2,y =b2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章解析几何初步★知识网络★第1讲 直线的倾斜角与斜率及直线方程★知识梳理★1、直线的倾斜角与斜率:对于一条与x 轴相交的直线,把x 轴所在直线绕着它与直线的交点按照逆时针方向旋转到和直线重合时,所转过的最小正角叫倾斜角;倾斜角的取值范围是[00,1800)直线的倾斜角α与斜率k 的关系:当α090≠时, k 与α的关系是αtan =k ;α090=时,直线斜率不存在;经过两点P 1(x 1,y 1)P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式是1212x x y y k --=;三点C B A ,,共线的充要条件是AC AB k k = 2.直线方程的五种形式:点斜式方程是()y y k x x -=-00;不能表示的直线为垂直于x 轴的直线 斜截式方程为b kx y +=;不能表示的直线为垂直于x 轴的直线两点式方程为121121x x x x y y y y --=--;不能表示的直线为垂直于坐标轴的直线截距式方程为1=+bya x ;不能表示的直线为垂直于坐标轴的直线和过原点的直线. 一般式方程为0=++c by ax . 3.几种特殊直线的方程:①过点),(b a P 垂直于x 轴的直线方程为x=a;过),(b a P 垂直于y 轴的直线方程为y=b ②已知直线的纵截距为b ,可设其方程为b kx y +=; ③已知直线的横截距为a ,可设其方程为a my x +=; ④过原点的直线且斜率是k 的直线方程为y=kx★重难点突破★重点: 理解倾斜角与斜率的对应关系,熟练利用五种形式求直线方程 难点:在求直线方程时,条件的转化和设而不求的运用重难点:结合图形,把已知条件转化为确定直线位置的要素,从而顺利求出直线方程 (1)倾斜角与斜率的对应关系涉及这类问题的题型一般有:(1)已知倾斜角(或范围)求斜率(范围)(2)已知斜率(或范围)求倾斜角(或范围),如:问题1:直线023tan=++y x π的倾斜角α是 A.3π B. 6π C. 32πD. 3π-点拨:转化为: 已知),0[,3tantan παπα∈-=,求α ,答案: C问题2: 求直线023cos =++y x θ的倾斜角的取值范围点拨: 要从αtan =k 和正切函数的单调性来理解倾斜角与斜率的对应关系, ①当)2,0[πα∈时,),0[+∞∈k ,k 随α的增大而增大;②当),2(+∞∈πα时,)0,(-∞∈k ,k 随α的增大而增大.本题可先求出斜率的取值范围,再利用倾斜角与斜率的对应关系,求出倾斜角的取值范围.3k θ=-,故:k ≤≤当03k ≤≤时,直线的倾斜角α满足:06πα≤≤当0k <时,直线的倾斜角α满足56παπ≤<所以,直线的倾斜角的范围:06πα≤≤和56παπ≤< (2)利用直线方程的几何特征确定直线的位置问题3:已知函数)10(,)(≠>=a a a x f x且,当1)(0><x f x 时,,方程 aax y 1+=表示的直线是点拨:这是直线方程中的参数的几何意义问题,可先确定直线的斜率和截距的范围,再确定直线的位置,由已知可得)1,0(∈a ,从而斜率)1,0(∈k ,截距1>b ,故选C (3)选择恰当的形式求直线方程问题4:过点)2,1(--P 的直线分别交x 轴、y 轴的负半轴于B A ,两点,当||||PB PA ⋅最小时,求直线l 的方程。
点拨:设直线方程要从条件和结论两方面考虑,为更好表示||||PB PA ⋅,本题用点斜式设出方解:设直线l 的方程为)1(2+=+x k y ,2,0-==k y x 得,12,0-==k x y 得,)2,0(),0,12(--∴k B kA , ∴4844144||||2222≥++=+⋅+=⋅k k k k PB PA ,当且仅当221k k =,即k=±1时等号成立,但k<0,故直线l 的方程为:x+y+3=0;(4)设直线方程时要考虑是否会有丢解的情况,如:问题5:求过点)4,3(P ,且在y 轴上的截距是在x 轴上的截距的2倍的直线方程。
点拨: 设直线方程都要考虑是否丢解的问题,本题用截距式设直线方程容易漏掉过原点的直线,应警惕。
解:当直线过原点时,方程为x y 34=;当直线不经过原点时,设方程为12=+ay a x ,把)4,3(P 代入得5=a , 102=+∴y x 综上,所求方程为x y 34=或102=+y x ★热点考点题型探析★考点1 直线的倾斜角和斜率题型1 :已知倾斜角(或范围)求斜率(或范围)或已知斜率(或范围)求倾斜角(或范围) [例1 ]已知经过),12,(),2,(--m m B m A 的直线的倾斜角为α,且oo13545<<α,试求实数m 的取值范围。
【解题思路】由倾斜角α的范围得出斜率k 的范围,从而求出参数m 的取值范围. 【解析】01113545=-<>∴<<m k k oo或或α ,1232>--∴m m 或01232=-<--m m m 或,解得:00430=<<<m m m 或或 m ∴的取值范围是)43,(-∞【名师指引】根据正切函数在),0[π上的单调性,要分)90,45(00∈α;090=α)135,90(00∈α三种情况讨论,特别注意090=α时容易遗漏. 题型2 :动直线与线段(曲线段、区域)相交[例2 ]已知直线l :y=kx-2和两点P (1,2)、Q (-4,1),若l 与线段PQ 相交,求k 的取值范围;【解题思路】用运动的观点,结合图形得出倾斜角的范围, [解析]由直线方程y=kx-2可知直线过定点(0,-2),1(2)3(4)04MQ k --==---2(2)410MP k --==-∴要使直线l 与线段PQ 有交点,则k 的取值范围 是k ≥4和k ≤-3/4【名师指引】(1)用“运动的观点”是解决这类问题的根本方法,注意“两条直线相交”和“直线与线段相交”的区别(2)在观察动直线在运动过程中,要特别注意倾斜角是否含有090角,若含有,则斜率的范围是),[],(21+∞⋃-∞k k ,若不含有,则斜率的范围是],[21k k (21,k k 分别为线段端点与直线所过定点连线的斜率)【新题导练】1. 下列多组点中,三点共线的是( )A.(1,4),(-1,2),(3,5)B.(-2,-5),(7,6),(-5,3)C.(1,0),(0,-31),(7,2) D.(0,0),(2,4),(-1,3)【解析】C. 由K AB =K BC 可得2.(广东省四校联合体2007-2008学年度联合考试)若函数f (x )=log 2(x+1)且a >b >c >0,则aa f )(、bb f )(、cc f )(的大小关系是A 、aa f )(>bb f )(>cc f )( B 、cc f )(>bb f )(>aa f )(C 、b b f )(>a a f )(>c c f )(D 、a a f )(>c c f )(>b b f )(【解析】B把aa f )(、bb f )(、cc f )(分别看作函数f (x )=log 2(x+1)图像上的点))(,()),(,()),(,(b f c b f b a f a 与原点连线的斜率,对照草图可得答案3. (华南师大附中2009届高三综合测试(一))已知直线3443x ty t=+⎧⎨=-+⎩(t 为参数),则下列说法错误的是( )A .直线的倾斜角为3arctan4B .直线必经过点11(1,)2-C .直线不经过第二象限D .当t=1时,直线上对应点到点(1,2)的距离为【解析】D. 将直线方程化为02543=--y x ,直线的斜率为43,直线的倾斜角为3arctan 4,将点11(1,)2-代入,满足方程,斜率为正,截距为负,直线不经过第二象限 4. 若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a += 扫过A 中的那部分区域的面积为 [解析] 如图,当a 从-2连续变化到1时,动直线x y a += 扫过A 中的那部分(四边形OBCD)区域的面积与区域A(ABO ∆)的面积之比为87,而区域A 的面积为2,故所求的面积为745.在平面直角坐标系中,点AB C ,,的坐标分别为(01)(42)(26),,,,,.如果()P x y ,是ABC △围成的区域(含边界)上的点,则1+x y的取值范围是 [解析] :把1+x y 看作区域上的点与点(-1,0)连线的斜率,结合图形可得结果为]2,52[ 6.已知点A (-2,3),B (3,2),P (0,-2),过P 点的直线 与线段AB 有公共点,求直线 的斜率k 的变化范围; [解析] 25-=PA k ,34=PB k ,画出图形,数形结合可得结果∈k 54(,][,)23-∞-⋃+∞ 考点2 求直线方程题型:根据题目条件,选择方程的形式求直线方程[例3 ] 等腰直角三角形ABC 的直角顶点C 和顶点B 都在直线2x +y –6=0上,顶点A 的坐标是(1, –1),求边AB , AC 所在的直线方程.【解题思路】从确定直线AB , AC 的条件入手,直线AC 满足:经过点A 且垂直于直线2x +y –6=0, 直线AB 满足:经过点A 且与直线2x +y –6=0成4π角,(或|AB|等于点A 到直线2x +y –6=0的距离的2倍)解法1:由条件知直线AC 垂直于直线2x +y –6=0,设直线AC 的方程为x-2y+c=0, 把A (1, –1)代入得c=-3, 故直线AC 的方程为x-2y-3=0,10||555||=∴==AB AC ,设B(x,y),则⎩⎨⎧=-+=++-∴06210)1()1(22y x y x ,解得)2,2(B 或)2,4(-B ,所以直线AB 的方程为043=--y x 或023=++y x解法2: 直线AC 的斜率为21,由点斜式并化简得,直线AC 的方程为x-2y-3=0 考虑直线AB , AC 的夹角为4π,设直线AB , AC 的方向向量分别为),1(),1,2(k n m ==则22)1(5|2||,cos |2=++=><k k n m ,解得3=k 或31-=k ,所以直线AB 的方程为043=--y x 或023=++y x【名师指引】求直线方程的一般步骤:(1)寻找所求直线的满足的两个条件(2)将条件转化,使转化后的条件更利于列出方程组(3)列方程组求解[例4] 过点P (0,1)作直线l ,使它被两直线l 1:2x+y-8=0和l 2:x-3y+10=0所截得的线段被点P 平分的直线的方程. 【解题思路1】:设出直线l 的点斜式方程,分别与直线l 1,l 2建立方程组,求出交点坐标,再用中点坐标公式求出k,即可求出l 的方程;解析1:由题意可知直线l 的斜率存在,设直线l 的方程为y=kx+1联立1280{,y kx x y =++-=解得交点坐标是782(,)22K A K K +++ 联立13100{,y kx x y =+-+=解得交点坐标是7101(,)3131K B K K ---而点P (0,1)是AB 的中点,∴7723102k k ++-=,解得k=-14,故所求的直线方程为: x+4y-4=0;【解题思路2】:设出l,l 1的交点A 坐标(x 1,y 1),通过中点坐标公式求出l 与l 2的交点B 的坐标,然后分别将A,B 两点的坐标带入直线l 1, l 2的方程,联立方程组进行求解; 解析2:设直线l 与已知l 1, l 2的交点A (x 1,y 1),B (x 2,y 2) ∵P 是AB 的中点∴12120212{,x x y y +=+=即21212{,x x y y =-=-带入l 2的方程的,得(-x 1)-3(2-y 1)+10=0,即x 1-3y 1-4=0联立1111340280{x y x y --=+-=解得A(4,0)故所求的直线方程为:041004y x --=--,即x+4y-4=0.【名师指引】(1)解法1思路明显,但运算量较大,解法2使用“设而不求” 减少了运算量 (2)中点弦问题和两条曲线关于某点对称的问题,都可以考虑运用解法2中的“设而不求” 【新题导练】7.已知点A (3,4)(1)经过点A 且在两坐标轴上截距相等的直线方程为: ; (2)经过点A 且与两坐标轴围成的三角形面积是1的直线方程为 : (3)经过点A 且与两坐标轴围成一个等腰直角三角形的直线方程为: ; (4)经过点A 且在x 轴上的截距是在y 轴上的截距的2倍的直线方程为: ; [解析](1)4x -3y =0或x +y -7=0[当直线经过原点时,方程为4x -3y =0,当直线不经过原点时,设方程为1=+aya x ,代入点A 的坐标得直线方程x +y -7=0](2)2x -y -2=0或8x -9y +12=0;[设直线方程为1=+b y a x ,由143=+ba 和2||=ab 求得b a ,的值](3)x -y +1=0或x +y -7=0;[斜率为1或-1,由点斜式易得](4)x +2y -11=0或4x -3y =0;[当直线经过原点时,方程为4x -3y =0,当直线不经过原点时,设直线方程为1=+b y a x ,由143=+ba 和b a 2=求得b a ,的值] 8.已知直线l 经过点(1,4)P ,分别交x 轴,y 轴正半轴于点A ,B ,其中O 为原点,求 △AOB 的面积最小时,直线l 的方程; [解析] 设直线l 的方程为)1(4-=-x k y ,令k y x -==4,0得,令k x y 41,0-==得,)4,0(),0,41(k B kA --∴,∴8|)16()(8|21|)4)(41(|21||||21≥-+-+=--=⋅=∆k k k k OB OA S AOB ,当且仅当kk 16=,即k=±4时等号成立,但k<0,故直线l 的方程为:084=-+y x考点3 对称问题题型1:求点关于某直线的对称点或求两点的对称直线方程 [例5 ] [例5 ]已知直线l :2x-3y+1=0,点A (-1,-2),求: (1)点A 关于直线l 的对称点'A 的坐标;(2)直线m:3x-2y-6=0关于直线l 的对称直线'm 方程; (3)直线l 关于点A(-1,-2)对称的直线'l 的方程; 【解题思路】:求对称直线的方程,方法1是转化为点对称问题,二是用相关点转移法解决; [解析](1)设点A 关于l 的对称点是),('y x A ,⎪⎪⎩⎪⎪⎨⎧=+---⋅-=⋅++∴0122321213212y x x y解得⎪⎪⎩⎪⎪⎨⎧=-=1341333y x )134,1333('-∴A(2)设点)','('y x P 是直线m 上任意一点,)','('y x P 关于直线l 的对称点为),(y x P ⎪⎪⎩⎪⎪⎨⎧=++-+⋅-=⋅--∴012'32'2132''y y x x x x y y 解得:⎪⎪⎩⎪⎪⎨⎧+-=-+=136512'134125'y x y y x x)','('y x P 在直线l 上, 0613651221341253=-+---+∴y x y x 化简得:0102469=+-y x(3)设点),('b a Q 是直线l 上任意一点,点),('b a Q 关于点A(-1,-2)的对称点为),(y x Q , 则⎪⎪⎩⎪⎪⎨⎧-=+-=+2212y b xa ,解得⎩⎨⎧--=--=yb x a 42因点),('b a Q 在直线l 上,01)4(3)2(2=+-----y x , 化简得:0932=--y x【名师指引】(1)要抓住两点关于直线对称的特征来列式;(2)点对称是其它对称问题(曲线的对称等)的基础,务必重点掌握; 题型2:利用对称知识解决有关问题[例6 ] [2008·深一模] 如图,已知(4,0)A 、(0,4)B ,从点(2,0)P 射出的光线经直线AB 反向后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是A .210B .6C .33D .25【解题思路】:利用对称知识,将折线PMN 的长度转化为折线CNMD 的长度[解析] 设点P 关于直线AB 的对称点为)2,4(D ,关于y 轴的对称点为)0,2(-C ,则光线所经过的路程PMN 的长=≥++=++=CD NC MN DM NP MN PM 210【名师指引】本例是运用数形结合解题的典范,关键是灵活利用平面几何知识与对称的性质实现转化,一般地,在已知直线上求一点到两个定点的距离之和的最小值,需利用对称将两条折线由同侧化为异侧,在已知直线上求一点到两个定点的距离之差的最大值,需利用对称,将两条折线由异侧化为同侧,从而实现转化。