圆方程知识点总结典型例题
圆与方程典型例题

圆的方程考点一:求圆的方程1.过两点P (2,2)、Q (4,2),且圆心在直线x -y =0上的圆的标准方程是( )A .(x -3)2+(y -3)2=2B .(x +3)2+(y +3)2=2C .(x -3)2+(y -3)2= 2D .(x +3)2+(y +3)2= 22.求经过点A (10,5)、B (-4,7),半径为10的圆的方程.3. 求以A (2,2)、B (5,3)、C (3,-1)为顶点的三角形的外接圆的标准方程.4. 已知A (3,-2),B (-5,4),则以AB 为直径的圆的方程是( )A .(x -1)2+(y +1)2=25B .(x +1)2+(y -1)2=25C .(x -1)2+(y +1)2=100D .(x +1)2+(y -1)2=1005.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的范围是( )A .a <-2或a >23B .-23<a <2 C .-2<a <0 D .-2<a <23 6.220x y x y R +-++=表示一个圆,则R 的取值范围是( ) A .(],2-∞ B .(),2-∞ C .1,2⎛⎫-∞ ⎪⎝⎭ D .1,2⎛⎤-∞ ⎥⎝⎦ 7. 已知方程x 2+y 2+2mx -2y +m 2+5m =0表示圆,求:(1)实数m 的取值范围; (2)圆心坐标和半径.8.ABC ∆的三个顶点坐标分别为()()()1,5,2,2,5,5A B C ---,求其外接圆的方程.7.一圆经过点)3,4(-P ,圆心在直线012=+-y x 上,且半径为5,求该圆的标准方程。
点关于直线对称8.圆12-)1(22=+-)(y x 关于直线02=--y x 对称的圆的方程为( ) 9.圆14)3(22=++-)(y x 关于直线0=+y x 对称的圆的方程是( ) A.14)3(22=-++)(y x B.13)4(22=++-)(y x C.13)4(22=-++)(y x D.14)3(22=-+-)(y x10.经过两点P (-2,4)、Q (3,-1),且在x 轴上截得的弦长为6的圆的方程.11.已知直线01=-+y x 与圆心为C 的圆4a -)1(22=+-)(y x 相交于B A ,两点,若ABC ∆为等边三角形,则实数=a ( )A.6-B.6C.6±D.61±12.圆心在x 轴上,半径长为2,且过点),(12-的圆的方程为( ) A.2)1(22=++y x B.2222=++)(y x C.2)3(22=++y x C.2)1(22=++y x 或2)3(22=++y x13.点P (1,-2)和圆C :x 2+y 2+m 2x +y +m 2=0的位置关系是______ 外14.圆(x +2)2+y 2=5关于原点(0,0)对称的圆的方程是( )A .(x -2)2+y 2=5B .x 2+(y -2)2=5C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=5周长最小15.圆过点)4,1(),2,1(--B A ,求:(1)周长最小的圆的方程(2)圆心在直线042=--y x 上的圆的方程。
圆系方程-高中数学知识点讲解

圆系方程
1.圆系方程
【知识点的知识】
所谓圆系方程指的是所有的圆都有相同的圆心,但圆的半径不同的圆的总和,还可以是圆的半径相同,但圆心
不同,我们把满足这两种情况的圆的总和就叫做圆系方程;除了圆系,还有直线系(过某一定点)等等.
【例题解析】
例:已知圆系方程x2+y2+2kx+(4k+10)y+5k2+20k=0(k∈R),是否存在斜率为 2 的直线l 被圆系方程表示的任意一圆截得的弦长是定值45?如果存在,试求直线l 的方程;如果不存在,请说明理由.
解:假设存在满足条件的直线方程为y=2x+m,
圆的方程配方可得:(x+k)2+(y+2k+5)2=25.
所以圆心到直线的距离d =1
5|―2푘+2푘+5+푚|=
|5+푚|
,
5
|5+푚|
由垂径定理可得:(2=52―(25)2,
5)
解得m=0 或m=﹣10,
故存在满足条件的直线方程,方程为y=2x 或y=2x﹣10.
这个题可以看出,遇到圆系方程的题,只需知道其概念就可以了,关键还是看圆心、半径、圆心到直线的距离这三个因素,常用的方法就是待定系数法.
【考点分析】
本考点也是在初中就已经学过,对于高考来说,算是个冷门,但也偶尔会考,还是希望大家了解这些基本的概念,争取不漏死角.
1/ 1。
圆的方程数学知识点与练习

圆的方程●圆的方程的三种形式 (1)圆的标准方程(x-a)2+(y-b)2=r 2,方程表示圆心为(a,b),半径为r 的圆. (2)圆的一般方程对于方程x 2+y 2+Dx+Ey+F=0①当D 2+E 2-4F >0时,表示圆心为(-D 2,-E 2),半径为12②当D 2+E 2-4F=0时,表示一个点(-D 2,-E2);③当D 2+E 2-4F <0时,它不表示任何图形.(3)圆的参数方程x a rcos ,y b rsin θθ=+⎧⎨=+⎩,圆心(a,b ),半径r >0,θ∈R. ●点与圆的位置关系圆的标准方程(x-a )2+(y-b)2=r 2,圆心A (a,b ),半径r ,若点M (x 0,y 0)在圆上,则(x 0-a)2+(y 0-b)2=r 2; 若点M (x 0,y 0)在圆外,则(x 0-a)2+(y 0-b)2>r 2; 若点M (x 0,y 0)在圆内,则(x 0-a)2+(y 0-b)2<r 2. ●确定圆的方程的方法(1)确定圆的方程的主要方法是待定系数法.如果选择标准方程,一般步骤为: ①根据题意,设所求圆的标准方程为(x-a )2+(y-b)2=r 2; ②根据已知条件,建立关于a 、b 、r 的方程组;③解方程组,并把它们代入所设的方程中,整理后,就得到所求方程. 求圆的标准方程时,尽量利用圆的几何性质,可以大大地减少计算量. (2)如果已知条件中圆心的位置不能确定,可考虑选择圆的一般方程,圆的一般方程也含有三个独立的参数,因此,必须具备三个独立的条件,才能确定圆的一般方程,其方法仍采用待定系数法.设所求圆的方程为x 2+y 2+Dx+Ey+F=0,由三个条件得到关于D 、E 、F 的一个三元一次方程组,解方程组,求出参数D 、E 、F 的值即可.(3)以A (x 1,y 1),B(x 2,y 2)为直径的两端点的圆的方程为(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0. (4)在求圆的方程时,常用到圆的以下几个性质: ①圆心在过切点且与切线垂直的直线上; ②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线. ●与圆有关的最值问题(1)求与圆有关的最值问题多采用几何法,就是利用一些代 数式的几何意义进行转化.如①形如m=y bx a--的最值问题,可转化为动直线斜率的最值问题;②形如t=ax+by 的最值问题,可转化为直线在y 轴上的截距的最值问题;③形如m=(x-a)2+(y-b)2的最值问题,可转化为两点间的距离平方的最值问题. (2)特别要记住下面两个代数式的几何意义:yx表示点(x,y )与原点(0,0)连线的直线斜率表示点(x,y )与原点的距离. 1.方程x 2+y 2+4mx-2y+5m=0表示圆的充要条件是( )A.14<m<1 B.m>1 C.m<14D.m<14或m>1解析:若方程表示圆,则(4m)2+(-2)2-4×5m>0,解得m<14或m>1.答案:D2.若点(4a-1,3a+2)不在圆(x+1)2+(y-2)2=25的外部,则a的取值范围是( )A.|a|B.|a|<1C.|a|D.|a|≤1解析:点(4a-1,3a+2)不在圆(x+1)2+(y-2)2=25的外部,则(4a-1+1)2+(3a+2-2)2≤25,即|a|≤1. 答案:D3.圆(x+2)2+y2=5关于直线y=x对称的圆的方程为( )A.(x-2)2+y2=5B.x2+(y-2)2=5C.(x+2)2+(y+2)2=5D.x2+(y+2)2=5解析:圆(x+2)2+y2=5的圆心(-2,0)关于y=x对称的点的坐标为(0,-2),所以,所求圆的方程是x2+(y+2)2=5.答案:D4.已知x、y满足x2+y2-4x-6y+12=0,则x2+y2的最小值为__________.解析:点(x,y)在圆(x-2)2+(y-3)2=1上,故点(x,y)到原点距离的平方即x2+y2的最小值为2答案:5.已知圆x2+y2+kx+2y=-k2,当该圆的面积取最大值时,圆心坐标为__________.答案:(0,-1)自我诊断①若圆x2+y2+(a2-1)x+2ay-a=0关于直线x-y+1=0对称,则实数a的值为__________.答案:3自我诊断②以点A(-3,0),B(0,-3),C(157,247)为顶点的三角形与圆x2+y2=R2(R>0)没有公共点,则圆半径R的取值范围是())∪,+∞) B.( ) )∪(3,+∞)D.(,3)2解析:如图,若圆与△ABC没有公共点,需考虑两种情况,①圆在三角形内部;②圆在三角形外部.当圆在三角形内部时,圆与BC;当圆在三角形外部时,圆过点C,所以选A.答案:A题型一圆的方程的求法【例1】根据下列条件求圆的方程:(1)经过点P(1,1)和坐标原点,并且圆心在直线2x+3y+1=0上;(2)圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2);(3)过三点A(1,12),B(7,10),C(-9,2).规律方法:求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质而求出圆的基本量;(2)代数法,即设出圆的方程,用待定系数法求解. 创新预测1根据下列条件求圆的方程:(1)已知一圆过P(4,-2)、Q(-1,3)两点,且在y轴上截得的线段长为(2,圆心在直线y=2x上,圆被直线x-y=0截得的弦长为题型二与圆有关的最值问题【例2】已知实数x、y满足方程x2+y2-4x+1=0.(1)求yx的最大值和最小值;(2)求y-x的最大值和最小值;(3)求x2+y2的最大值和最小值.规律方法:化x、y满足的关系式为(x-2)2+y2=3,明确yx、y-x、x2+y2的几何意义,数形结合求解.创新预测2已知实数x、y满足方程x2+y2-4x+1=0.(1)求y2x1++的最大值和最小值.(2)求x-2y的最大值和最小值.(3)求点P(x,y)到直线3x+4y+12=0的距离的最大值和最小值.题型三与圆有关的轨迹问题【例3】设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM、ON为两边作平行四边形MONP,求点P的轨迹.\规律方法:求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:直接法,直接根据题目提供的条件列出方程;定义法,根据圆、直线等定义列方程;几何法,利用圆与圆的几何性质列方程;代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.创新预测3 已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点. (1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求PQ中点的轨迹方程.题型四与圆有关的实际应用问题【例4】有一种大型商品,A、B两地都有出售,且价格相同,某地居民从两地之一购得商品后运回的费用是:A地每千米的运费是B地每千米运费的3倍.已知A、B两地距离为10 km,顾客选择A地或B地购买这件商品的标准是:包括运费和价格的总费用较低.求P地居民选择A地或B地购货总费用相等时,点P所在曲线的形状,并指出曲线上、曲线内、曲线外的居民应如何选择购物地点.规律方法:审清题意,根据题意求轨迹方程.求方程前必须建立平面直角坐标系,否则曲线就不能转化为方程,坐标系选取得当,可使运算过程简单,所得方程也较简单.创新预测4 设有一个半径为3 km的圆形村落,A、B两人同时从村落中心出发,A向东而B向北前进.A出村后不久,改变前进方向,沿着切于村落边界的方向前进,后来恰好与B相遇.设A、B 两人的速度都一定,其比为3∶1,问:两人在何处相遇?精品作业自我测评·技能备考一、选择题:每小题6分,共36分.1.(2009·许昌模拟)P(x,y)是圆x2+y2=1与直线x+y+2m=0(m>0)的公共点,则直线008=0的倾斜角的最大值为( )A.45°B.60°C.90°D.135°答案:A2.(2009·天津汉沽模拟)已知两点A(-2,0),B(0,2),点C 是圆x 2+y 2-2x=0上任意一点,则△ABC 面积的最小值是( )C.3-2D.32 答案:A3.(2009·山东临沂模拟)若直线ax+2by-2=0(a >0,b >0)始终平分圆x 2+y 2-4x-2y-8=0的周长,则1a +2b的最小值为( )A.1B.5 答案:D4.(2008·山东)已知圆的方程为x 2+y 2-6x-8y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )答案:B5.(2009·湖北沙市模拟)直线l:4x-3y-12=0与x、y轴的交点分别为A、B,O为坐标原点,则△AOB内切圆的方程为( )A.(x-1)2+(y+1)2=1B.(x-1)2+(y-1)2=1C.(x-1)2+(y+1)2D.(x-1)2+(y+1)2=2 答案:A解析:A(3,0),B(0,-4),O(0,0),∴内切圆的半径r=OA OB AB2+-=1,由图象知,圆心为(1,-1),∴方程为(x-1)2+(y+1)2=1,故选A.6.(2009·西南师大附中模拟)已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA、PB是圆C:x2+y2-2y=0的两条切线,A、B是切点,若四边形PACB的最小面积是2,则k的值为( )A.3B.2C.22D.2 答案:D二、填空题:每小题6分,共18分.7.(2009·江苏江宁高级中学3月模拟)直线ax+by=1过点A(b,a),则以坐标原点O为圆心,OA 长为半径的圆的面积的最小值是______.答案:π解析:直线过点A(b,a),∴ab=12,圆面积S=πr2=π(a2+b2)≥2πab=π.8.(2009·广东华南师大附属中学测试)从圆(x-1)2+(y-1)2=1外一点P(2,3)向这个圆引切线,则切线长为____________.答案:2解析:圆心(1,1),则|PC|2=5,∴切线长9.(2009·浙江金华模拟)已知圆O的方程为x2+y2=4,P是圆O上的一个动点,若OP的垂直平分线总是被平面区域|x|+|y|≥a覆盖,则实数a的取值范围是_____________.答案:a≤1解析:易知OP的垂直平分线即为单位圆的切线,当a≤0时,平面区域即坐标平面,显然满足题意;当a>0时,由图象易知0<a≤1,综上,a≤1.三、解答题:10、11题每题15分,12题16分,共46分.10.(2009·江苏通州调研)如图,在平面直角坐标系xOy中,A(a,0)(a>0),B(0,a),C(-4,0),D(0,4),设△AOB的外接圆圆心为E.(1)若⊙E与直线CD相切,求实数a的值.(2)设点P在⊙E上,使△PCD的面积等于12的点P有且只有三个,试问:这样的⊙E是否存在?若存在,求出⊙E的标准方程;若不存,说明理由.11.(2009·江苏盐城模拟)已知以点C(t,2t)(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.(1)求证:△OAB的面积为定值;(2)设直线y=-2x+4与圆C交于点M、N,若OM=ON,求圆C的方程.\12.设O 为坐标原点,曲线x 2+y 2+2x-6y+1=0上有两点P 、Q ,满足关于直线x+my+4=0对称,又满足OP ·OQ =0.(1)求m 的值;(2)求直线PQ 的方程.。
典型例题:圆的一般方程

4.1.2 圆的一般方程【例1】判断二元二次方程224441290x y x y +-++=是否表示圆的方程?如果是,请求出圆的圆心及半径.【例2】求经过(4,2),(1,3)A B -两点,且在两坐标轴上的四个截距之和为4的圆的方程.【例3】设圆的方程为224x y +=,过点(0,1)M 的直线l 交圆于点A B 、,O 是坐标原点,点P为AB 的中点,当l 绕点M 旋转时,求动点P 的轨迹方程.参考: 例1【分析】用配方法将其变形化成圆的标准形式或运用圆的一般方程的判断方法求解.【解】圆的方程可化为22131224x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,圆心为13,22⎛⎫- ⎪⎝⎭,半径为12r =. 【点拨】要注意对于224441290x y x y +-++=来说,这里的91,3,4D E F =-==,而不是D=-4,E=12,F=9.例2:【分析】设出圆的一般方程,用待定系数法求解.【解】设所求圆的方程为220x y Dx Ey F ++++=. 当0x =时,20y Ey F ++=,则122E y y +=-; 当0y =时,20x Dx F ++=,则122Dx x +=-.则1644201930()()422D E F D E F D E⎧⎪++++=⎪+-++=⎨⎪⎪-+-=⎩, 解得352D E F =-⎧⎪=-⎨⎪=⎩.∴ 圆的方程为223520x y x y +--+=. 【点拨】用待定系数法的一般步骤是“设(设含待定系数的方程)→列(利用条件列出系数所满足的方程组)→求(解方程组)→写(写出所求方程)”. 当已知圆上三点或两点时,选用圆的一般方程形式较为简单. 当易知圆心和半径时,选用圆的标准方程形式易求解.例3:【分析【动点P 为AB 的中点,所以点P 是由点A B 、而决定,另外点A B 、又由点(0,1)M 的直线l 来决定,找到最初的“动”是解决问题的关键.【解】设点P 的坐标为(,)x y ,1122(,)(,)A x y B x y 、.因A B 、在圆上,所以222211224,4x y x y +=+=. 两式相减得222212120x x y y -+-=. 所以12121212()()()()0.x x x x y y y y -++-+=当12x x ≠时,有12121212()0.y y x x y y x x -+++⋅=-①并且12121212,2,21.x x x y y y y y y x x x ⎧+=⎪⎪+⎪=⎨⎪-⎪-=⎪-⎩ ②将②代入①并整理得2211()24x y +-=③. 当12x x =时,点A B 、的坐标为(0,2),(0,-2),这时点P 的坐标为(0,0)也满足③,所以点P 的轨迹方程为2211()24x y +-=. 【点拨】将所求点P 坐标设为(,)x y ,相应的已知点Q 的坐标设为00(,)x y ,再用x y 、表示00x y 、.即00(,)(,)x g x y y h x y =⎧⎨=⎩,然后代入已知点Q 满足的方程00()0f x y =,,消去00x y 、得到所求曲线的方程,体现设而不求思想.本题是将12121212,,22x x y y y y x x ++--看作整体进行代换.。
高中数学圆的方程典型例题总结归纳

高中数学圆的方程典型例题例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.设圆的标准方程为222)()(r b y a x =-+-.∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点. ∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(r a ra解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x .解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r . 故所求圆的方程为20)1(22=++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 说明:此题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴21422=++-k k 解得43=k 所以()4243+-=x y 即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存有.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存有的情况,要注意补回漏掉的解.此题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还能够使用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.类型三:弦长、弧问题例9、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为解:依题意得,弦心距3=d ,故弦长2222=-=d r AB ,从而△OAB 是等边三角形,故截得的劣弧所对的圆心角为3π=∠AOB .类型四:直线与圆的位置关系.例13 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意.又123=-=-d r .∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个.解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设所求直线为043=++m y x ,则1431122=++=m d ,∴511±=+m ,即6-=m ,或16-=m ,也即06431=-+y x l :,或016432=-+y x l :.设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则 34363433221=+-⨯+⨯=d ,143163433222=+-⨯+⨯=d .∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个.说明:对于此题,若不留心,则易发生以下误解:设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .∴圆1O 到01143=-+y x 距离为1的点有两个.显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1.到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,所以题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断. 类型五:圆与圆的位置关系例15:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条。
专题55:圆与方程知识点与典型例题(解析版)

专题55:圆与方程知识点与典型例题(解析版)1、圆的方程(1)圆的标准方程:222()()x a y b r -+-=,其中(,)a b 为圆心,r 为半径(2)圆的一般方程:22220(40)x y Dx Ey F D E F ++++=+->,其中圆心为(,)22D E --只有当22,x y 的系数化为1时才能用上述公式) 注意:已知圆上两点求圆方程时,运用圆心在这两点的垂直平分线上这个条件可简化计算。
1.圆C 的圆心坐标为()0,0,且圆C 经过点()3,4M ,求圆C 的方程.1.2225x y +=. 【分析】求出圆的半径,即可得圆标准方程. 【详解】解:圆C 5=,所求圆的方程为2225x y +=. 故答案为:2225x y +=. 【点睛】本题考查求圆的标准方程,解题关键是确定圆心坐标和半径.2.求过点(1,1),(1,1)A B --,且圆心在直线20x y +-=上的圆的方程.2.22(1)(1)4x y -+-=. 【解析】试题分析:由,A B 的坐标计算可得AB 的垂直平分线方程y x =,进而得到:20y xx y =⎧⎨+-=⎩,解可得,x y 的值,即可得圆心坐标,而圆的半径22r ==,代入圆的标准方程计算即可得到答案.解析:由已知得线段AB 的中点坐标为()0,0,所以()11111AB k --==---所以弦AB 的垂直平分线的斜率为1k =, 所以AB 的垂直平分线方程为y x = 又圆心在直线20x y +-=上,所以20y xx y =⎧⎨+-=⎩ 解得11x y =⎧⎨=⎩即圆心为()1,1圆的半径为22r ==所以圆的方程为()()22114x y -+-=. 3.写出下列方程表示的圆的圆心和半径:(1)2210x y +=; (2)2221x y ;(3)()22325x y ++=; (4)()()22259x y ++-=.3.(1)圆心坐标为()0,0,; (2)圆心坐标为()2,0-,半径为1; (3)圆心坐标为()0,3-,半径为5; (4)圆心坐标为()2,5-,半径为3. 【分析】圆的标准方程为222()(),0x a y b r r -+-=>,则此圆的圆心坐标为(,)a b ,半径为r ,将(1) (2) (3) (4)分别代入即可得解. 【详解】解:(1)由圆2210x y +=的标准方程可得,该圆的圆心坐标为()0,0,,即圆2210x y +=的圆心坐标为()0,0,; (2) 由圆2221x y 的标准方程可得,该圆的圆心坐标为()2,0-,半径为1,即圆2221x y 的圆心坐标为()2,0-,半径为1;(3) 由圆()22325x y ++=的标准方程可得,该圆的圆心坐标为()0,3-,半径为5, 即圆()22325x y ++=的圆心坐标为()0,3-,半径为5;(4) 由圆()()22259x y ++-=的标准方程可得,该圆的圆心坐标为()2,5-,半径为3,即圆()()22259x y ++-=的圆心坐标为()2,5-,半径为3.【点睛】本题考查了圆的标准方程及由标准方程确定圆的圆心坐标与半径,属基础题. 4.求满足下列条件的圆的方程(1)圆C 的圆心坐标为()0,0,且圆C 经过点()3,4M ,求圆C 的方程. (2)过()()()2,0,4,0,0,2A B C 三点的圆的方程. 4.(1)2225x y +=;(2)()()223310x y -+-=. 【分析】(1)根据圆心坐标和圆上点坐标求解出圆的半径,从而圆的方程可求; (2)采用待定系数法求解出圆的方程. 【详解】(1)因为圆心为()0,0且圆经过点()3,4M,所以圆的半径为5R ==, 所以圆的方程为:2225x y +=;(2)设圆的方程为:()()222x a y b R -+-=,代入点的坐标有:()()()222222222242a b R a b R a b R ⎧-+=⎪⎪-+=⎨⎪+-=⎪⎩,所以33a b R ⎧=⎪=⎨⎪=⎩,所以圆的方程为:()()223310x y -+-=. 【点睛】本题考查圆的方程求解,其中涉及利用圆心和半径求圆的方程、待定系数法求圆的方程,难度较易.2、直线与圆的位置关系(1)直线:0l Ax By C ++=,圆222:()()C x a y b r -+-=,记圆心(,)C a b 到直线l的距离d =①直线与圆相交,则0d r ≤<或方程组的0∆> ②直线与圆相切,则d r =或方程组的0∆= ③直线与圆相离,则d r >或方程组的0∆<(2)直线与圆相交时,半径r ,圆心到弦的距离d ,弦长l,满足:l =(3)直线与圆相切时, ①切线的求法:(Ⅰ)已知切点(圆上的点)求切线,有且只有一条切线,切点与圆心的连线与切线垂直; (Ⅱ)已知切线斜率求切线,有两条互相平行的切线,设切线方程为y kx b =+,利用圆心到切线的距离等于半径列出方程求出b 的值;(Ⅲ)已知过圆外的点00(,)P x y 求圆222:()()C x a y b r -+-=的切线,有两条切线,若切线的斜率存在,设切线方程为:00()y y k x x -=-,利用圆心到切线的距离等于半径列出方程求出k 的值;若切线的斜率不存在,则切线方程为0x x =,验证圆心到切线距离是否等于半径。
高中数学--圆的方程知识点题型归纳

考点三、与圆有关的轨迹问题【例1】动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16【例2】方程y =表示的曲线是()A. 一条射线B. 一个圆C. 两条射线D. 半个圆【例3】在ABC ∆中,若点,C B 的坐标分别是(-2,0)和(2,0),中线AD 的长度是3,则点A 的轨迹方程是()A. 223x y += B. 224x y +=C. ()2290x y y +=≠ D. ()2290x y x +=≠【例4】已知一曲线是与两个定点O (0,0),A (3,0)距离的比为12的点的轨迹.求这个曲线的方程,并画出曲线.【变式1】 方程1x -= )A. 一个圆B. 两个圆C. 一个半圆D. 两个半圆【变式2】动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16【变式3】如右图,过点M (-6,0)作圆C :x 2+y 2-6x -4y +9=0的割线,交圆C 于A 、B 两点,求线段AB 的中点P 的轨迹.【变式4】如图,已知点A (-1,0)与点B (1,0),C 是圆x 2+y 2=1上的动点,连接BC 并延长至D ,使得|CD |=|BC |,求AC 与OD 的交点P 的轨迹方程.方法总结:求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: (1)直接法:根据题目条件,建立坐标系,设出动点坐标,找出动点满足的条件,然后化简.(2)定义法:根据直线、圆等定义列方程. (3)几何法:利用圆与圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.考点四:与圆有关的最值问题【例1】已知圆x 2+y 2+2x -4y +a =0关于直线y =2x +b 成轴对称,则a -b 的取值范围是________【例2】已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.【例3】已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( )A.95B .1 C.45D.135【例4】已知实数x ,y 满足(x -2)2+(y +1)2=1则2x -y 的最大值为________,最小值为________.【变式1】P (x ,y )在圆C :(x -1)2+(y -1)2=1上移动,则x 2+y 2的最小值为________. 【变式2】由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT (T 为切点),当|PT |最小时,点P 的坐标是( )A .(-1,1)B .(0,2)C .(-2,0)D .(1,3)【变式3】已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.【变式4】已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在x +y -2=0上.(1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,P A 、PB 是圆M 的两条切线,A ,B 为切点,求四边形P AMB 面积的最小值.方法总结:解决与圆有关的最值问题的常用方法(1)形如u =y -bx -a 的最值问题,可转化为定点(a ,b )与圆上的动点(x ,y )的斜率的最值问题(2) 形如t =ax +by 的最值问题,可转化为动直线的截距的最值问题; (3)形如(x -a )2+(y -b )2的最值问题,可转化为动点到定点的距离的最值问题. (4)一条直线与圆相离,在圆上找一点到直线的最大(小)值:d r ±(其中d 为圆心到直线的距离)2.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为().A.45π B.34πC.(6-πD.54π 3.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M到直线OP 的距离表示成x 的函数()f x ,则()y f x =在[]0,π上的图像大致为().二、填空题A.B.C.D.1.直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为()1,3,则1l 与2l 的夹角的正切值等于.2.直线1:l y x a =+和2:l y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b +=________.3.在平面直角坐标系xOy 中,直线230x y +-=被圆()()22214x y -++=截得的弦长为. 4.若圆C 的半径为1,其圆心与点()1,0关于直线x y =对称,则圆C 的标准方程为_______. 5.设点()0,1M x ,若在圆O :221x y +=上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是.6.已知直线20ax y +-=与圆心为C 的圆()()2214x y a -+-=相交于,A B 两点,且ABC △为等边三角形,则实数a =_________.。
高中数学圆与方程知识点归纳与常考题型专题练习(附解析)

高中数学圆与方程知识点归纳与常考题型专题练习(附解析)知识点:4.1.1 圆的标准方程1、圆的标准方程:圆心为A(a,b),半径为r 的圆的方程222()()x a y b r -+-=2、点与圆的关系的判断方法:00(,)M x y 222()()x a y b r -+-=(1)>,点在圆外2200()()x a y b -+-2r (2)=,点在圆上2200()()x a y b -+-2r (3)<,点在圆内2200()()x a y b -+-2r 4.1.2 圆的一般方程1、圆的一般方程:,圆心为半径为022=++++F Ey Dx y x2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线:,圆:,圆的半径为,圆心l 0=++c by ax C 022=++++F Ey Dx y x r 到直线的距离为,则判别直线与圆的位置关系的依据有以下几点:)2,2(E D --d (1)当时,直线与圆相离;r d >l C (2)当时,直线与圆相切;r d =l C (3)当时,直线与圆相交;直线、圆的位置关系r d <l C 注意:1.直线与圆的位置关系直线与圆相交,有两个公共点方程组有两组不同实数解d R ⇔<⇔(0)∆>直线与圆相切,只有一个公共点方程组有唯一实数解d R ⇔=⇔(0)∆= 直线与圆相离,没有公共点方程组无实数解d R ⇔>⇔(0)∆<2.求两圆公共弦所在直线方程的方法:将两圆方程相减。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆与方程1. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+.2. 点与圆的位置关系:(1). 设点到圆心的距离为d ,圆半径为r :a.点在圆内 d <r ;b.点在圆上 d=r ;c.点在圆外 d >r(2). 给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-⇔②M 在圆C 上22020)()r b y a x =-+-⇔( ③M 在圆C 外22020)()(r b y a x >-+-⇔ (3)涉及最值:① 圆外一点B ,圆上一动点P ,讨论PB 的最值min PB BN BC r ==- max PB BM BC r ==+② 圆内一点A ,圆上一动点P ,讨论PA 的最值min PA AN r AC ==- max PA AM r AC ==+思考:过此A 点作最短的弦(此弦垂直AC )3. 圆的一般方程:022=++++F Ey Dx y x .(1) 当0422>-+F E D 时,方程表示一个圆,其中圆心⎪⎭⎫⎝⎛--2,2E D C ,半径2422FE D r -+=.(2) 当0422=-+F E D 时,方程表示一个点⎪⎭⎫⎝⎛--2,2E D . (3) 当0422<-+F E D 时,方程不表示任何图形.注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422φAF E D -+.4. 直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+- 圆心到直线的距离22BA C Bb Aa d +++=1)无交点直线与圆相离⇔⇔>r d ; 2)只有一个交点直线与圆相切⇔⇔=r d ;3)有两个交点直线与圆相交⇔⇔<r d ;弦长|AB|=222d r -还可以利用直线方程与圆的方程联立方程组⎩⎨⎧=++++=++022F Ey Dx y x C By Ax 求解,通过解的个数来判断:(1)当0>∆时,直线与圆有2个交点,,直线与圆相交; (2)当0=∆时,直线与圆只有1个交点,直线与圆相切; (3)当0<∆时,直线与圆没有交点,直线与圆相离;5. 两圆的位置关系(1)设两圆2121211)()(:r b y a x C =-+-与圆2222222)()(:r b y a x C =-+-,圆心距221221)()(b b a a d -+-= ① 条公切线外离421⇔⇔+>r r d ; ② 条公切线外切321⇔⇔+=r r d ; ③ 条公切线相交22121⇔⇔+<<-r r d r r ; ④ 条公切线内切121⇔⇔-=r r d ; ⑤ 无公切线内含⇔⇔-<<210r r d ;外离 外切 相交 内切 (2)两圆公共弦所在直线方程圆1C :221110x y D x E y F ++++=, 圆2C :222220x y D x E y F ++++=,则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程. 补充说明:① 若1C 与2C 相切,则表示其中一条公切线方程; ② 若1C 与2C 相离,则表示连心线的中垂线方程.(3)圆系问题过两圆1C :221110x y D x E y F ++++=和2C :222220x y D x E y F ++++=交点的圆系方程为()22221112220x y D x E y F x y D x E y F λ+++++++++=(1λ≠-) 补充:① 上述圆系不包括2C ;② 2)当1λ=-时,表示过两圆交点的直线方程(公共弦)③ 过直线0Ax By C ++=与圆220x y Dx Ey F ++++=交点的圆系方程为()220x y Dx Ey F Ax By C λ+++++++=6. 过一点作圆的切线的方程: (1) 过圆外一点的切线: ①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,即 ⎪⎩⎪⎨⎧+---=-=-1)()(2110101R x a k y b R x x k y y 求解k ,得到切线方程【一定两解】例1. 经过点P(1,—2)点作圆(x+1)2+(y —2)2=4的切线,则切线方程为 。
(2) 过圆上一点的切线方程:圆(x —a )2+(y —b )2=r 2,圆上一点为(x 0,y 0), 则过此点的切线方程为(x 0—a )(x —a )+(y 0—b )(y —b )= r 2特别地,过圆222r y x =+上一点),(00y x P 的切线方程为200r y y x x =+.例2.经过点P(—4,—8)点作圆(x+7)2+(y+8)2=9的切线,则切线方程为 。
7.切点弦(1)过⊙C :222)()(r b y a x =-+-外一点),(00y x P 作⊙C 的两条切线,切点分别为B A 、,则切点弦AB 所在直线方程为:200))(())((r b y b y a x a x =--+--8. 切线长:若圆的方程为(x a )2(y b )2=r 2,则过圆外一点P (x 0,y 0)的切线长为d =22020b)(+)(r y a x ---.9. 圆心的三个重要几何性质:① 圆心在过切点且与切线垂直的直线上; ② 圆心在某一条弦的中垂线上;③ 两圆内切或外切时,切点与两圆圆心三点共线。
10. 两个圆相交的公共弦长及公共弦所在的直线方程的求法例.已知圆C 1:x 2+y 2—2x =0和圆C 2:x 2+y 2+4 y =0,试判断圆和位置关系,若相交,则设其交点为A 、B ,试求出它们的公共弦AB 的方程及公共弦长。
一、求圆的方程例1 (06重庆卷文) 以点)1,2(-为圆心且与直线0543=+-y x 相切的圆的方程为( )(A)3)1()2(22=++-y x (B)3)1()2(22=-++y x(C)9)1()2(22=++-y x (D)9)1()2(22=-++y x二、位置关系问题例2 (06安徽卷文) 直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值范围是( )(A))12,0(- (B))12,12(+- (C))12,12(+--(D))12,0(+三、切线问题例3 (06重庆卷理) 过坐标原点且与圆0252422=++-+y x y x 相切的直线方程为( ) (A)x y 3-=或x y 31=(B)x y 3=或x y 31-= (C)x y 3-=或x y 31-= (D)x y 3=或x y 31=四、弦长问题例4 (06天津卷理) 设直线03=+-y ax 与圆4)2()1(22=-+-y x 相交于B A 、两点,且弦AB 的长为32,则=a .五、夹角问题例5 (06全国卷一文) 从圆012222=+-+-y y x x外一点)2,3(P 向这个圆作两条切线,则两切线夹角的余弦值为( )(A)21 (B)53(C)23 (D) 0六、圆心角问题例6 (06全国卷二) 过点)2,1(的直线l 将圆4)2(22=+-y x 分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率=k.七、最值问题例7 (06湖南卷文) 圆0104422=---+y x y x 上的点到直线14-+y x 0=的最大距离与最小距离的差是( )(A) 30 (B) 18 (C)26 (D)25八、综合问题例8 (06湖南卷理) 若圆0104422=---+y x y x上至少有三个不同的点到直线0:=+by ax l 的距离为22,则直线l 的斜率k 取值范围_______________圆的方程1.方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R )表示圆方程,则t 的取值范围是A.-1<t <71 B.-1<t <21C.-71<t <1 <t <2 2. 一圆与y 轴相切,圆心在直线x -3y =0上,且直线y =x 截圆所得弦长为27,求此圆的方程.3.方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的曲线关于x +y =0成轴对称图形,则( ) +E =0B. +F =0 +F =0 D. D +E +F =04.(2004年全国Ⅱ,8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有( )条 条 条 条 5.(2005年黄冈市调研题)圆x 2+y 2+x -6y +3=0上两点P 、Q 关于直线kx -y +4=0对称,则k =____________.6.(2004年全国卷Ⅲ,16)设P 为圆x 2+y 2=1上的动点,则点P 到直线3x -4y -10=0的 距离的最小值为____________.7.已知实数x 、y 满足方程x 2+y 2-4x +1=0.求(1)xy的最大值和最小值;(2)y -x 的最小值; (3)x 2+y 2的最大值和最小值.经过两已知圆的交点的圆系 例1. 求经过两已知圆:06422=--+x y x和06422=--+y y x 的交点且圆心的横坐标为3的圆的方程。
例2. 设圆方程为:016448)4012()42()4()4(22=--+++++++λλλλλy x y x 其中λ≠-4求证: 不论λ为何值,所给圆必经过两个定点。
直线与圆的位置关系例1:求由下列条件所决定圆422=+y x 的圆的切线方程;(1) 经过点)1,3(P ,(2)经过点)0,3(Q ,(3)斜率为1-直线和圆1.自点(-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射线所在直线与圆074422=+--+y x y x 相切,求光线L 所在直线方程.2.求圆心在直线x y +=上,且过两圆22210240x y x y +-+-=,22x y +2280x y ++-=交点的圆的方程.3.(2002北京文,16)圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y+8=0距离的最小值为.弦长【例题】已知直线l∶x+2y-2=0与圆C∶x2+y2=2相交于A、B两点,求弦长AB.。