高考数学模拟题复习试卷习题资料高考数学试卷文科附详细答案31
高考数学(文科)模拟试卷及答案3套(20210411043625)

3套
模拟试卷一
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)
1.已知集合 U { x N | 0 x 7} ,A {2,5} ,B 1,3,5 ,则 (C u A) B(
)
A . {5}
B . 1,5
C. {2,5}
D . 1,3
2.已知复数 z 满足 z 1 i
当f x
g x 时, log 4 2x x a
log 4
4x 2x
1
,得
2x
xa
4x 1 2x
0,
整理得 a
x
1
x,
2
因为当 x
x
x
2,2 时,函数 y 1
x 单调递减,所以 7 1
x 6,
2
42
所以使方程有唯一解时 a 的取值范围是
7 ,6 .
4
21.【详解】解: (Ⅰ)设
∴动点
的轨迹是以
,
,则
.
又 PBD 为正三角形, PB PD BD 2 2 ,又 Q AB 2 , PA 2 3 ,
PBA , AB PB ,又 Q AB AD ,BC / / AD , AB
2
AB 平面 PBC ,又 Q AB 平面 PAB ,
BC ,PBI BC B ,
平面 PAB 平面 PBC .
( 2)如图,设 BD , AC 交于点 O ,Q BC / / AD ,
bn 1 1 1 1 1 L 2 33 5
1
1
2n 1 2n 1
1
1
n
1
。
2 2n 1 2n 1
c2
18.【详解】证明: ( 1)据题意,得
2024年高考数学模拟试题与答案解析

2024年高考数学模拟试题与答案解析一、选择题1.设集合A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则A∩B={()}A.{x|x=6k,k∈Z}B.{x|x=2k,k∈Z}C.{x|x=3k,k∈Z}D.{x|x=k,k∈Z}【答案】B解析:集合A包含所有2的倍数,集合B包含所有3的倍数。
A ∩B表示同时属于A和B的元素,即同时是2和3的倍数的数,也就是6的倍数。
所以A∩B={x|x=6k,k∈Z},故选B。
2.若函数f(x)=x²-4x+c的图像的对称轴是x=2,则c的值为()A.4B.3C.2D.1【答案】A解析:函数f(x)=x²-4x+c的图像的对称轴是x=-b/2a,即x=2。
根据对称轴的公式,得到-(-4)/(21)=2,解得c=4。
故选A。
3.已知等差数列的前n项和为Sn=n(a1+an)/2,若S3=18,S6-S3=24,则a4的值为()A.6B.8C.10D.12【答案】B解析:根据等差数列的前n项和公式,得到S3=3(a1+a3)/2=18,即a1+a3=12。
又因为S6-S3=24,得到a4+a5+a6=24。
由等差数列的性质,a3+a6=a4+a5。
将a3+a6替换为a4+a5,得到3a4+3a5=48,即a4+a5=16。
解方程组a1+a3=12和a4+a5=16,得到a4=8。
故选B。
二、填空题4.若|x-2|≤3,则|x+1|的取值范围是______【答案】-2≤x≤5解析:由|x-2|≤3,得到-3≤x-2≤3,即-1≤x≤5。
再由|x+1|的图像可知,当-3≤x≤5时,|x+1|的取值范围是-2≤x≤5。
5.已知函数f(x)=2x²-3x+1,求f(1/2)的值。
【答案】3/4解析:将x=1/2代入函数f(x),得到f(1/2)=2(1/2)²-3(1/2)+1=2/4-3/2+1=3/4。
三、解答题6.(1)求证:对任意正整数n,都有n²+2n+1≥n+2。
高考数学(文科)模拟试卷及答案3套

高考数学(文科)模拟试卷及答案3套模拟试卷一第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1.已知复数ii z 1-=,则=||z ( ) .A 2 .B22.C 1 .D 2 2.已知集合}02|{2<-=x x x A ,集合}2,121,0,1{,-=B ,则集合B A I 的子集个数为( ).A 1 .B 2 .C 4 .D 83.已知向量,满足2||||||=-==,则=+||( ).A 72 .B 2 .C 52 .D 324.已知函数x x x f sin 12cos2)(2⎪⎭⎫⎝⎛-=,则函数)(x f 的最小正周期和最大值分别为( ) .A π和1 .B π和21.C π2和1 .D π2和215.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人要走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( ) .A 24里 .B 48里 .C 96里 .D 192里 6.已知函数x x x f +=ln )(,则函数)(x f 在1=x 处的切线方程为( ).A 012=--y x .B 012=++y x .C 02=-y x .D 012=+-y x7.设函数⎩⎨⎧≤+>=-0,120,log )(3x x x x f x,若2)(=a f ,则实数a 的值为( ).A 9 .B 0或9 .C 0 .D 1-或98.已知双曲线1324:22=-y x C 的左右焦点分别为21,F F ,点P 是双曲线C 右支上一点,若||||221PF F F =,︒=∠3021F PF ,则||1PF 的长为( ).A 324+ .B )63(2+ .C 832+ .D 632+9.若数列}12{+n a 是等差数列,其公差1=d ,且53=a ,则10a =( ).A 18 .B217 .C 219 .D 12 10.已知三棱柱111C B A ABC -,棱⊥1AA 面ABC ,ABC ∆是边长为2的等边三角形,且41=AA ,点M 是棱1AA 的中点,则异面直线CM 与AB 所成角的余弦值为( ).A 41 .B 21 .C 42 .D 4311.已知圆1:22=+y x O ,过直线02:=-+y x l 上第一象限内的一动点M 作圆O 的两条切线,切点分别为B A ,,过B A ,两点的直线与坐标轴分别交于Q P ,两点,则OPQ ∆面积的最小值为( ).A 1 .B 21 .C 41 .D 8112.已知函数x x ax x f ln 2)(2++=存在极值,若这些极值的和大于7-,则实数a 的取值范围为( ).A )4,52(-- .B ),4()4,(+∞--∞Y .C )52,4()4,52(Y -- .D )4,(--∞第Ⅱ卷(非选择题 共90分)本试卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.将答案填在机读卡上相应的位置.13.已知0>x ,则xx x 42+-的最小值是 ;14.某班随机抽查了B A ,两组各10名学生的数学成绩,分数制成如图的茎叶图,试比较B A ,两组学生的平均分A x B x ;(用“>”或“<”或“=”连接)15.已知抛物线x y C 4:2=的焦点为F ,倾斜角为3π的直线l 过点F ,且与抛物线C 交于B A ,两点,则AOB ∆的面积为________;16.水平放置一个底面半径为20cm ,高为100cm 的圆柱形水桶(不计水桶厚度),内装高度为50cm 的水,现将一个高为10cm 圆锥形铁器放入水桶中并完全没入水中(圆锥的底面半径小于20cm),圆柱形水桶的水面高度上升了2.5cm,则圆锥形铁器的侧面积为________2cm .三、解答题:本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤. 17. (本小题满分12分)在ABC ∆中,设边c b a ,,所对的角分别为C B A ,,,cb aC A +-=2cos cos . (Ⅰ)求角A 的大小;(Ⅱ)若,2=b ABC ∆的面积为32,求a 的值. 18.(本小题满分12分)在三棱锥BCD A -中,G 是ACD ∆的重心,⊥AB 平面BCD ,且F 在棱AB 上,满足FB AF 2=,22,2====CD BD BC AB ,(1)求证://GF 平面BCD ;(2)求三棱锥BCD G -的体积.19.(本小题满分12分)2020年哈尔滨市第六中学为了响应市政府倡议的“百万青少年上冰雪”活动的号召.开展了丰富的冰上体育兴趣课,为了了解学生对冰球的兴趣,随机从该校高三年级抽取了100名学生进行调查,其中男生和女生中对冰球运动有兴趣的人数比是3: 2,男生有15人对冰球没有兴趣,占男生人数的31. (1)从被调查的对冰球有兴趣的学生中抽取男生3人,女生2人,再从中抽取2人,求抽到的都是女生的概率. ?有兴趣 没兴趣 合计 男 女 合计附表:20()P K k ≥0.150 0.100 0.050 0.025 0.0100k2.072 2.7063.841 5.024 6.635))()()(()(22d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=20.(本小题满分12分)已知函数)0(,2)2(ln )(2>++-+=a x a x a x x f (1) 讨论函数)(x f 的单调性;(2)若函数x x a x f x g ln )()()(--=在⎥⎦⎤⎢⎣⎡e e ,1上有两个零点,求a 的取值范围.21.(本小题满分12分)在平面直角坐标系中,已知动点M 与到定点)(0,1F 距离到定直线2=x 的距离比为22. (Ⅰ)求动点M 轨迹C 的方程;(Ⅱ)过点F 的直线l 交轨迹C 于B A ,两点,若轨迹C 上存在点P ,使OB OA OP 23+=,求直线l 的方程.请考生在22、23两题中任选一题作答,如果多做,则按所做的的第一题记分. 22.(本小题满分10分) 选修4-4:坐标系与参数方程 已知曲线1C 的参数方程为⎩⎨⎧=+=θθsin cos 1y x (θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为θρsin 32=.(Ⅰ)写出曲线1C 的极坐标方程,并求出曲线1C 与2C 公共弦所在直线的极坐标方程; (Ⅱ)若射线)(20πϕϕθ<<=与曲线1C 交于A O ,两点,与曲线2C 交于B O ,两点,且2||=AB ,求ϕ的值.23.(本小题满分10分) 选修4—5:不等式选讲 设|1|||)(ax a x x f ++-=(0>a ) (Ⅰ)证明:2)(≥x f ;(Ⅱ)若3)2(>f ,求a 的取值范围.答案一、选择题ACDBC ABDBC BA二、填空题 13.3 14.< 15.334 16.2)(3200cm π 三、解答题17.(本小题满分12分) 解:(1)由正弦定理可得:CB AC A sin sin 2sin cos cos +-=0cos sin cos sin sin cos 2=++C A A C B A0sin cos sin 2=+B A B ————————3分0sin ),,0(>∴∈B B πΘ————————4分,21cos -=∴A ————————5分32π=A ————————6分 (2)将32π=A ,322==S b ,,代入A bc S sin 21=可得4=c ————————9分由余弦定理可得72=a ————————————12分 18. (本小题满分12分)(1)证明:连接FG ,连接AG 并延长交CD 于点E ,连接BE ,G Θ是ACD ∆的重心,2=∴,又Θ2=,BE GF //∴————————2分又⊄FG Θ平面BCD ,————————————3分 且⊂BE 平面BCD ————————————4分//GF ∴平面BCD ————————————6分由(1)可知//GF 平面BCD ,所以BCD F BCD G V V --=————————————8分 且⊥AB 平面BCD ,FB ∴为三棱锥BCD F -的高,32231||=⨯=FB ————————————9分 则22221=⨯⨯=∆BCDS ————————————10分 9423231=⨯⨯==--BCD F BCD G V V ————————————12分19.(本小题满分12分)解:(1)设“抽到的都是女生 ”为事件D ——————————1分不妨设3个男生分别是:321,,n n n ,两个女生分别为:21,A A从中任选两人有:()21,n n ,()31,n n ,()11,A n ,()21,A n ,()32,n n ,()12,A n ,()22,A n ,()13,A n ,()23,A n ,()21,A A共10种,——————————3分 其中都是女生:()21,A A 共1种,则101)(=D P ——————————4分 (2)男生总数:45315=⨯人,男生中有兴趣的301545=-人——————————5分女生中有兴趣的20230=⨯——————————6分22100(30352015)1009.091 2.7065050455511K ⨯-⨯==≈>⨯⨯⨯——————————11分有%90的把握认为“性别与对冰球是否有兴趣有关”——————————12分20. (本小题满分12分) (1)xx a x a x a x x f )1)(2()2(2)('--=+-+=——————————1分 当20<<a 时,)(x f 的单调增区间为),1(),2,0(+∞a ;减区间为)1,2(a——————————2分当2=a 时,)(x f 的单调增区间为),0(+∞,无减区间;——————————3分当2>a 时,)(x f 的单调增区间为),2(),1,0(+∞a ;减区间为)2,1(a ——————————4分 (2)2)2(ln )(2++-+=x a x x x x g ,02)2(ln 2=++-+x a x x x 将变量与参数分开得:xx x a 2ln 2++=+——————————5分令xx x x h 2ln )(++= xx x x x x x x x h )1)(2(2211)('222-+=-+=-+=,——————————6分可得)(x h 的单调减区间是)1,1(e,单调减区间是),1(e ,即1=x 是极小值点(需列表)—————8分ee e h e e e h h 21)(,112)1(,3)1(++=+-==——————————9分)1()(eh e h <Θ——————————10分e e a 2123++≤+<∴即ee a 211+-≤<∴——————————12分21. (本小题满分12分)解(Ⅰ)设)(y x M ,因为,M 到定点)(0,1F 的距离与到定直线2=x 的距离之比为22,所以有|2|||x MF -=——————————————2分代入得1222=+y x ————————————4分 (Ⅱ)由题意直线l 斜率存在,设),(),,(),1(:2211y x B y x A x k y l -=(2)联立方程得,⎪⎩⎪⎨⎧-==+)1(1222x k y y x ,0124)12(2222=-+-+k x k x k ,∴0>∆恒成立∴⎪⎪⎩⎪⎪⎨⎧+-=+=+122212422212221k k x x k k x x ,---------5分OB OA OP 23+=,所以,23,232121y y y x x x p p +=+=代入椭圆有223223221221=+++)()(y y x x ,又222121=+y x ,222222=+y x ————————6分得22349212122222121=+++++)()()(y y x x y x y x02232121=++y y x x ,——————————————————9分 得02)(212232212212=++-++k x x k x x k )( 代入得612=k ——————————————11分直线方程l :)1(66-±=x y —————————12分 22.(本小题满分10分)解:(Ⅰ)曲线1C 的极坐标方程为θρcos 2=—————————2分θρsin 32=,θρcos 2=,得33tan =θ————————3分 所在直线的极坐标方程)(R ∈=ρπθ6,(或6πθ=和67πθ=)——————5分 (Ⅱ)把)(20πϕϕθ<<=,代入θρsin 32=,θρcos 2=, 得ϕcos 2||=OA ;ϕsin 32||=OB ——------6分 又2||=AB ,则2|cos 2sin 32|=-ϕϕ,),(,)(36621|6sin |πππϕπϕ-∈-=-——————9分 所以3πϕ=------10分23.(本小题满分10分)(Ⅰ)证明:2|1||1||1|||)(≥+=---≥++-=a a a x a x a x a x x f ;——————5分 (Ⅱ)aa a a f 11|2|3|12||2|)2(-<-⇔<++-=————————7分23102151211+<<+⇒<-<-a a a a ————————10分模拟试卷二一、选择题:共12 小题,每小题 5 分,共 60 分.1、若全集R U =,集合),4()1,(+∞--∞=Y A ,{}2||≤=x x B ,则如图阴影部分所表示的集合为 A.{}42<≤-x x B.{}42≥≤x x x 或 C.{}12-≤≤-x x D.{}21≤≤-x x 2、已知)1)(1(ai i -+0>(i 为虚数单位),则实数a 等于( ) A.1- B.0 C.1D.23、已知函数()xx x f )31(3-=,则()x f ( )A .是奇函数,且在 R 上是增函数B .是偶函数,且在 R 上是增函数C .是奇函数,且在 R 上是减函数D .是偶函数,且在 R 上是减函数 4、,是单位向量,“2)(2<+”是“,的夹角为钝角”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5、已知圆C 的圆心在坐标轴上,且经过点()0,6及椭圆141622=+y x 的两个顶点,则该圆的标准方程为( )A. ()16222=+-y x B. 72)6(22=-+y x C.91003822=+⎪⎭⎫ ⎝⎛-y x D. 91003822=+⎪⎭⎫ ⎝⎛+y x 6、古代数学著作《九章算术》有如下的问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,己知她5天共织布5尺,问这女子每天分别织布多少?”根据上述己知条件,若要使织布的总尺数不少于30尺,则至少需要( ) A .6天 B .7天 C .8天 D .9天 7、过点()1,1P 的直线,将圆形区域(){}4,22≤+y x y x 分两部分,使.这两部分的面积之差最大,则该直线的方程为( )A.02=-+y xB.1=yC. 0=-y xD.043=-+y x 8、若1cos()86απ-=,则cos(2)4α3π+=( ) A .1819 B .1718 C .1718- D .1819-9、已知21,F F 是双曲线12222=-by a x 的左右焦点,P 是右支上的动点, M F 2垂直于21PF F ∠ 的平分线,垂足为M ,则点M 的轨迹是( )A 、抛物线弧B 、双曲线弧C 、椭圆弧D 、圆弧 10、已知A 、B 、C 是球O 的球面上三点,三棱锥ABC O -的高为22,且3π=∠ABC , 2=AB ,4=BC , 则球O 的表面积为( )A.π24B.π32C.π48D.π19211、抛物线()02:21>=p py x C 的焦点与双曲线136:222=-y x C 的右焦点的连线在第一象限内与1C 交于点M .若1C 在点M 处的切线平行于2C 的一条渐近线,则=P ( ) A.163 B. 82 C. 223 D. 334 12.函数()1,0252sin 2,0,6x x f x x x ππ⎧≤⎪⎪=⎨⎛⎫⎪+<< ⎪⎪⎝⎭⎩,,若方程()f x a =恰有三个不同的解,记为123,,x x x ,则123x x x ++的取值范围是( )A .10102,33ππ⎛⎫-⎪⎝⎭ B .552,33ππ⎛⎫-⎪⎝⎭ C .10101,33ππ⎛⎫-⎪⎝⎭ D .551,33ππ⎛⎫-⎪⎝⎭二.填空题:本大题共 4 小题,每小题 5 分,共 20 分.13、已知实数,x y 满足65125=+y x的最小值等于 .14、已知椭圆131222=+y x 的左右焦点为21,F F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,则1PF 是2PF 的 倍。
高考数学模拟题复习试卷习题资料高考数学试卷文科附详细答案

高考数学模拟题复习试卷习题资料高考数学试卷(文科)(附详细答案)一、选择题(共本大题10小题,每小题5分,共50分)1.(5分)命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x2<0B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+x02<0D.∃x0∈R,|x0|+x02≥02.(5分)设i是虚数单位,复数i3+=()A.﹣iB.iC.﹣1D.13.(5分)抛物线y=x2的准线方程是()A.y=﹣1B.y=﹣2C.x=﹣1D.x=﹣24.(5分)如图所示,程序框图(算法流程图)的输出结果是()A.34B.55C.78D.895.(5分)设a=log37,b=23.3,c=0.81.1,则()A.b<a<cB.c<a<bC.c<b<aD.a<c<b6.(5分)过点P(﹣,﹣1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是()A.(0,]B.(0,]C.[0,]D.[0,]7.(5分)若将函数f(x)=sin2x+cos2x的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是()A. B. C. D.8.(5分)一个多面体的三视图如图所示,则该多面体的体积为()A. B. C.6 D.79.(5分)若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为()A.5或8B.﹣1或5C.﹣1或﹣4D.﹣4或810.(5分)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若•+•+•+•所有可能取值中的最小值为4||2,则与的夹角为()A. B. C. D.0二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)()+log3+log3=.12.(5分)如图,在等腰直角三角形ABC中,斜边BC=2,过点A作BC的垂线,垂足为A1,过点A1作AC的垂线,垂足为A2,过点A2作A1C的垂线,垂足为A3…,依此类推,设BA=a1,AA1=a2,A1A2=a3,…,A5A6=a7,则a7=.13.(5分)不等式组表示的平面区域的面积为.14.(5分)若函数f(x)(x∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=,则f()+f()=.15.(5分)若直线l与曲线C满足下列两个条件:(i)直线l在点P(x0,y0)处与曲线C相切;(ii)曲线C在点P附近位于直线l的两侧,则称直线l在点P处“切过”曲线C.下列命题正确的是(写出所有正确命题的编号).①直线l:y=0在点P(0,0)处“切过”曲线C:y=x3②直线l:x=﹣1在点P(﹣1,0)处“切过”曲线C:y=(x+1)2③直线l:y=x在点P(0,0)处“切过”曲线C:y=sinx④直线l:y=x在点P(0,0)处“切过”曲线C:y=tanx⑤直线l:y=x﹣1在点P(1,0)处“切过”曲线C:y=lnx.三、解答题(本大题共6小题,共75分)16.(12分)设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC的面积为,求cosA与a的值.17.(12分)某高校共有学生15 000人,其中男生10 500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.P(K2≥k0)0.10 0.05 0.010 0.005k0 2.706 3.841 6.635 7.879附:K2=.18.(12分)数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*.(Ⅰ)证明:数列{}是等差数列;(Ⅱ)设bn=3n•,求数列{bn}的前n项和Sn.19.(13分)如图,四棱锥P﹣ABCD的底面是边长为8的正方形,四条侧棱长均为2,点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(Ⅰ)证明:GH∥EF;(Ⅱ)若EB=2,求四边形GEFH的面积.20.(13分)设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.21.(13分)设F1,F2分别是椭圆E:+=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1B|.(Ⅰ)若|AB|=4,△ABF2的周长为16,求|AF2|;(Ⅱ)若cos∠AF2B=,求椭圆E的离心率.高考模拟题复习试卷习题资料高考数学试卷(文科)(附详细答案)参考答案与试题解析一、选择题(共本大题10小题,每小题5分,共50分)1.(5分)命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x2<0B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+x02<0D.∃x0∈R,|x0|+x02≥0【分析】根据全称命题的否定是特称命题即可得到结论.【解答】解:根据全称命题的否定是特称命题,则命题“∀x∈R,|x|+x2≥0”的否定∃x0∈R,|x0|+x02<0,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.2.(5分)设i是虚数单位,复数i3+=()A.﹣iB.iC.﹣1D.1【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:复数i3+=﹣i+=﹣i+=1,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)抛物线y=x2的准线方程是()A.y=﹣1B.y=﹣2C.x=﹣1D.x=﹣2【分析】先化为抛物线的标准方程得到焦点在y轴上以及2p=4,再直接代入即可求出其准线方程.【解答】解:抛物线y=x2的标准方程为x2=4y,焦点在y轴上,2p=4,∴=1,∴准线方程 y=﹣=﹣1.故选:A.【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.4.(5分)如图所示,程序框图(算法流程图)的输出结果是()A.34B.55C.78D.89【分析】写出前几次循环的结果,不满足判断框中的条件,退出循环,输出z的值.【解答】解:第一次循环得z=2,x=1,y=2;第二次循环得z=3,x=2,y=3;第三次循环得z=5,x=3,y=5;第四次循环得z=8,x=5,y=8;第五次循环得z=13,x=8,y=13;第六次循环得z=21,x=13,y=21;第七次循环得z=34,x=21,y=34;第八次循环得z=55,x=34,y=55;退出循环,输出55,故选:B.【点评】本题考查程序框图中的循环结构,常用的方法是写出前几次循环的结果找规律,属于一道基础题.5.(5分)设a=log37,b=23.3,c=0.81.1,则()A.b<a<cB.c<a<bC.c<b<aD.a<c<b【分析】分别讨论a,b,c的取值范围,即可比较大小.【解答】解:1<log37<2,b=23.3>2,c=0.81.1<1,则c<a<b,故选:B.【点评】本题主要考查函数值的大小比较,根据指数和对数的性质即可得到结论.6.(5分)过点P(﹣,﹣1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是()A.(0,]B.(0,]C.[0,]D.[0,]【分析】用点斜式设出直线方程,根据直线和圆有交点、圆心到直线的距离小于或等于半径可得≤1,由此求得斜率k的范围,可得倾斜角的范围.【解答】解:由题意可得点P(﹣,﹣1)在圆x2+y2=1的外部,故要求的直线的斜率一定存在,设为k,则直线方程为 y+1=k(x+),即 kx﹣y+k﹣1=0.根据直线和圆有交点、圆心到直线的距离小于或等于半径可得≤1,即 3k2﹣2k+1≤k2+1,解得0≤k≤,故直线l的倾斜角的取值范围是[0,],故选:D.【点评】本题主要考查用点斜式求直线方程,点到直线的距离公式的应用,体现了转化的数学思想,属于中档题.7.(5分)若将函数f(x)=sin2x+cos2x的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是()A. B. C. D.【分析】利用两角和的正弦函数对解析式进行化简,由所得到的图象关于y轴对称,根据对称轴方程求出φ的最小值.【解答】解:函数f(x)=sin2x+cos2x=sin(2x+)的图象向右平移φ的单位,所得图象是函数y=sin(2x+﹣2φ),图象关于y轴对称,可得﹣2φ=kπ+,即φ=﹣,当k=﹣1时,φ的最小正值是.故选:C.【点评】本题考查三角函数的图象变换,考查正弦函数图象的特点,属于基础题.8.(5分)一个多面体的三视图如图所示,则该多面体的体积为()A. B. C.6 D.7【分析】判断几何体的形状,结合三视图的数据,求出几何体的体积.【解答】解:由三视图可知,该多面体是由正方体截去两个正三棱锥所成的几何体,如图,正方体棱长为2,正三棱锥侧棱互相垂直,侧棱长为1,故几何体的体积为:V正方体﹣2V棱锥侧=.故选:A.【点评】本题考查三视图求解几何体的体积,解题的关键是判断几何体的形状.9.(5分)若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为()A.5或8B.﹣1或5C.﹣1或﹣4D.﹣4或8【分析】分类讨论,利用f(x)=|x+1|+|2x+a|的最小值为3,建立方程,即可求出实数a的值.【解答】解:<﹣1时,x<﹣,f(x)=﹣x﹣1﹣2x﹣a=﹣3x﹣a﹣1>﹣1;﹣≤x≤﹣1,f(x)=﹣x﹣1+2x+a=x+a﹣1≥﹣1;x>﹣1,f(x)=x+1+2x+a=3x+a+1>a﹣2,∴﹣1=3或a﹣2=3,∴a=8或a=5,a=5时,﹣1<a﹣2,故舍去;≥﹣1时,x<﹣1,f(x)=﹣x﹣1﹣2x﹣a=﹣3x﹣a﹣1>2﹣a;﹣1≤x≤﹣,f(x)=x+1﹣2x﹣a=﹣x﹣a+1≥﹣+1;x>﹣,f(x)=x+1+2x+a=3x+a+1>﹣+1,∴2﹣a=3或﹣+1=3,∴a=﹣1或a=﹣4,a=﹣1时,﹣+1<2﹣a,故舍去;综上,a=﹣4或8.故选:D.【点评】本题主要考查了函数的值域问题.解题过程采用了分类讨论的思想,属于中档题.10.(5分)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若•+•+•+•所有可能取值中的最小值为4||2,则与的夹角为()A. B. C. D.0【分析】两组向量,,,和,,,,均由2个和2个排列而成,结合其数量积组合情况,即可得出结论.【解答】解:由题意,设与的夹角为α,分类讨论可得①•+•+•+•=•+•+•+•=10||2,不满足②•+•+•+•=•+•+•+•=5||2+4||2cosα,不满足;③•+•+•+•=4•=8||2cosα=4||2,满足题意,此时cosα=∴与的夹角为.故选:B.【点评】本题考查向量的数量积公式,考查学生的计算能力,属于中档题.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)()+log3+log3=.【分析】直接利用对数运算法则以及有理指数幂的运算法则化简求解即可.【解答】解:()+log3+log3=+log35﹣log34+log34﹣log35=.故答案为:.【点评】本题考查有理指数幂的运算法则以及对数运算法则的应用,考查计算能力.12.(5分)如图,在等腰直角三角形ABC中,斜边BC=2,过点A作BC的垂线,垂足为A1,过点A1作AC的垂线,垂足为A2,过点A2作A1C的垂线,垂足为A3…,依此类推,设BA=a1,AA1=a2,A1A2=a3,…,A5A6=a7,则a7=.【分析】根据条件确定数列{an}是等比数列,即可得到结论.【解答】解:∵等腰直角三角形ABC中,斜边BC=2,∴sin45°=,即=,同理=,=,由归纳推理可得{an}是公比q=的等比数列,首项a1=2,则a7==,故答案为:.【点评】本题主要考查归纳推理的应用,根据等腰直角三角形之间的关系,得到数列{an}是公比q=的等比数列是解决本题的关键.13.(5分)不等式组表示的平面区域的面积为 4 .【分析】由不等式组作出平面区域为三角形ABC及其内部,联立方程组求出B的坐标,由两点间的距离公式求出BC的长度,由点到直线的距离公式求出A到BC边所在直线的距离,代入三角形面积公式得答案.【解答】解:由不等式组作平面区域如图,由图可知A(2,0),C(0,2),联立,解得:B(8,﹣2).∴|BC|=.点A到直线x+2y﹣4=0的距离为d=.∴.故答案为:4.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.14.(5分)若函数f(x)(x∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=,则f()+f()=.【分析】通过函数的奇偶性以及函数的周期性,化简所求表达式,通过分段函数求解即可. 【解答】解:函数f(x)(x∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=,则f()+f()=f(8﹣)+f(8﹣)=f(﹣)+f(﹣)=﹣f()﹣f()===.故答案为:.【点评】本题考查函数的值的求法,分段函数的应用,考查计算能力.15.(5分)若直线l与曲线C满足下列两个条件:(i)直线l在点P(x0,y0)处与曲线C相切;(ii)曲线C在点P附近位于直线l的两侧,则称直线l在点P处“切过”曲线C.下列命题正确的是①③④(写出所有正确命题的编号).①直线l:y=0在点P(0,0)处“切过”曲线C:y=x3②直线l:x=﹣1在点P(﹣1,0)处“切过”曲线C:y=(x+1)2③直线l:y=x在点P(0,0)处“切过”曲线C:y=sinx④直线l:y=x在点P(0,0)处“切过”曲线C:y=tanx⑤直线l:y=x﹣1在点P(1,0)处“切过”曲线C:y=lnx.【分析】分别求出每一个命题中曲线C的导数,得到曲线在点P出的导数值,求出曲线在点P处的切线方程,再由曲线在点P两侧的函数值与对应直线上点的值的大小判断是否满足(ii),则正确的选项可求.【解答】解:对于①,由y=x3,得y′=3x2,则y′|x=0=0,直线y=0是过点P(0,0)的曲线C的切线,又当x>0时y>0,当x<0时y<0,满足曲线C在P(0,0)附近位于直线y=0两侧,∴命题①正确;对于②,由y=(x+1)2,得y′=2(x+1),则y′|x=﹣1=0,而直线l:x=﹣1的斜率不存在,在点P(﹣1,0)处不与曲线C相切,∴命题②错误;对于③,由y=sinx,得y′=cosx,则y′|x=0=1,直线y=x是过点P(0,0)的曲线的切线,又x∈时x<sinx,x∈时x>sinx,满足曲线C在P(0,0)附近位于直线y=x两侧,∴命题③正确;对于④,由y=tanx,得,则y′|x=0=1,直线y=x是过点P(0,0)的曲线的切线,又x∈时tanx<x,x∈时tanx>x,满足曲线C在P(0,0)附近位于直线y=x两侧,∴命题④正确;对于⑤,由y=lnx,得,则y′|x=1=1,曲线在P(1,0)处的切线为y=x﹣1,设g(x)=x﹣1﹣lnx,得,当x∈(0,1)时,g′(x)<0,当x∈(1,+∞)时,g′(x)>0.∴g(x)在(0,+∞)上有极小值也是最小值,为g(1)=0.∴y=x﹣1恒在y=lnx的上方,不满足曲线C在点P附近位于直线l的两侧,命题⑤错误.故答案为:①③④.【点评】本题考查命题的真假判断与应用,考查了利用导数研究过曲线上某点处的切线方程,训练了利用导数求函数的最值,判断③④时应熟记当x∈时,tanx>x>sinx,该题是中档题.三、解答题(本大题共6小题,共75分)16.(12分)设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC的面积为,求cosA与a的值.【分析】利用三角形的面积公式,求出sinA=,利用平方关系,求出cosA,利用余弦定理求出a的值.【解答】解:∵b=3,c=1,△ABC的面积为,∴=,∴sinA=,又∵sin2A+cos2A=1∴cosA=±,由余弦定理可得a==2或2.【点评】本题考查三角形的面积公式、余弦定理,考查学生的计算能力,属于中档题. 17.(12分)某高校共有学生15 000人,其中男生10 500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.P(K2≥k0)0.10 0.05 0.010 0.005k0 2.706 3.841 6.635 7.879附:K2=.【分析】(1)根据频率分布直方图进行求解即可.(2)由频率分布直方图先求出对应的频率,即可估计对应的概率.(3)利用独立性检验进行求解即可【解答】解:(1)300×=90,所以应收集90位女生的样本数据.(2)由频率分布直方图得1﹣2×(0.100+0.025)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.(3)由(2)知,300位学生中有300×0.75=225人的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时,又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:每周平均体育运动时间与性别列联表男生女生总计45 30 75每周平均体育运动时间不超过4小时165 60 225 每周平均体育运动时间超过4小时总计210 90 300结合列联表可算得K2==≈4.762>3.841所以,有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.【点评】本题主要考查频率分布直方图以及独立性检验的应用,比较基础18.(12分)数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*.(Ⅰ)证明:数列{}是等差数列;(Ⅱ)设bn=3n•,求数列{bn}的前n项和Sn.【分析】(Ⅰ)将nan+1=(n+1)an+n(n+1)的两边同除以n(n+1)得,由等差数列的定义得证.(Ⅱ)由(Ⅰ)求出bn=3n•=n•3n,利用错位相减求出数列{bn}的前n项和Sn.【解答】证明(Ⅰ)∵nan+1=(n+1)an+n(n+1),∴,∴,∴数列{}是以1为首项,以1为公差的等差数列;(Ⅱ)由(Ⅰ)知,,∴,bn=3n•=n•3n,∴•3n﹣1+n•3n①•3n+n•3n+1②①﹣②得3n﹣n•3n+1==∴【点评】本题考查利用等差数列的定义证明数列是等差数列;考查数列求和的方法:错位相减法.求和的关键是求出通项选方法.19.(13分)如图,四棱锥P﹣ABCD的底面是边长为8的正方形,四条侧棱长均为2,点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(Ⅰ)证明:GH∥EF;(Ⅱ)若EB=2,求四边形GEFH的面积.【分析】(Ⅰ)证明GH∥EF,只需证明EF∥平面PBC,只需证明BC∥EF,利用BC∥平面GEFH即可;(Ⅱ)求出四边形GEFH的上底、下底及高,即可求出面积.【解答】(Ⅰ)证明:∵BC∥平面GEFH,平面GEFH∩平面ABCD=EF,BC⊂平面ABCD,∴BC∥EF,∵EF⊄平面PBC,BC⊂平面PBC,∴EF∥平面PBC,∵平面EFGH∩平面PBC=GH,∴EF∥GH;(Ⅱ)解:连接AC,BD交于点O,BD交EF于点K,连接OP,GK.∵PA=PC,O为AC中点,∴PO⊥AC,同理可得PO⊥BD,又∵BD∩AC=O,AC⊂底面ABCD,BD⊂底面ABCD,∴PO⊥底面ABCD,又∵平面GEFH⊥平面ABCD,PO⊄平面GEFH,∴PO∥平面GEFH,∵平面PBD∩平面GEFH=GK,∴PO∥GK,且GK⊥底面ABCD∴GK是梯形GEFH的高∵AB=8,EB=2,∴,∴KB=,即K为OB中点,又∵PO∥GK,∴GK=PO,即G为PB中点,且GH=,由已知可得OB=4,PO===6,∴GK=3,故四边形GEFH的面积S===18.【点评】本题考查线面平行的判定与性质,考查梯形面积的计算,正确运用线面平行的判定与性质是关键.21.(13分)设F1,F2分别是椭圆E:+=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1B|.(Ⅰ)若|AB|=4,△ABF2的周长为16,求|AF2|;(Ⅱ)若cos∠AF2B=,求椭圆E的离心率.【分析】(Ⅰ)利用|AB|=4,△ABF2的周长为16,|AF1|=3|F1B|,结合椭圆的定义,即可求|AF2|;(Ⅱ)设|F1B|=k(k>0),则|AF1|=3k,|AB|=4k,由cos∠AF2B=,利用余弦定理,可得a=3k,从而△AF1F2是等腰直角三角形,即可求椭圆E的离心率.【解答】解:(Ⅰ)∵|AB|=4,|AF1|=3|F1B|,∴|AF1|=3,|F1B|=1,∵△ABF2的周长为16,∴4a=16,∴|AF1|+|AF2|=2a=8,∴|AF2|=5;(Ⅱ)设|F1B|=k(k>0),则|AF1|=3k,|AB|=4k,∴|AF2|=2a﹣3k,|BF2|=2a﹣k∵cos∠AF2B=,在△ABF2中,由余弦定理得,|AB|2=|AF2|2+|BF2|2﹣2|AF2|•|BF2|cos∠AF2B,∴(4k)2=(2a﹣3k)2+(2a﹣k)2﹣(2a﹣3k)(2a﹣k),化简可得(a+k)(a﹣3k)=0,而a+k>0,故a=3k,∴|AF2|=|AF1|=3k,|BF2|=5k,∴|BF2|2=|AF2|2+|AB|2,∴AF1⊥AF2,∴△AF1F2是等腰直角三角形,∴c=a,∴e==.【点评】本题考查椭圆的定义,考查椭圆的性质,考查余弦定理的运用,考查学生的计算能力,属于中档题.20.(13分)设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.【分析】(Ⅰ)利用导数判断函数的单调性即可;(Ⅱ)利用(Ⅰ)的结论,讨论两根与1的大小关系,判断函数在[0,1]时的单调性,得出取最值时的x的取值.【解答】解:(Ⅰ)f(x)的定义域为(﹣∞,+∞),f′(x)=1+a﹣2x﹣3x2,由f′(x)=0,得x1=,x2=,x1<x2,∴由f′(x)<0得x<,x>;由f′(x)>0得<x<;故f(x)在(﹣∞,)和(,+∞)单调递减,在(,)上单调递增;(Ⅱ)∵a>0,∴x1<0,x2>0,∵x∈[0,1],当时,即a≥4①当a≥4时,x2≥1,由(Ⅰ)知,f(x)在[0,1]上单调递增,∴f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x2<1,由(Ⅰ)知,f(x)在[0,x2]单调递增,在[x2,1]上单调递减,因此f(x)在x=x2=处取得最大值,又f(0)=1,f(1)=a,∴当0<a<1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0和x=1处取得最小值;当1<a<4时,f(x)在x=0处取得最小值.【点评】本题主要考查利用导数研究函数的单调性及最值的知识,考查学生分类讨论思想的运用能力,属中档题.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
全国卷高考文科数学模拟题及答案解析

全国卷高考文科数学模拟题及答案解析全国卷高考文科数学模拟题及答案解析本试卷共23小题,满分150分,考试用时120分钟。
参考公式:锥体的体积公式$V=\frac{1}{3}Sh$,其中$S$为锥体的底面积,$h$为高。
一、选择题:本大题共12小题,每小题5分,满分60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知$A=\{(x,y)|x+y=0,x,y\in R\}$,$B=\{(x,y)|x-y-2=0,x,y\in R\}$,则集合$A\cap B$等于()。
A.$\{(x,y)|x=1\}$。
B.$\{(x,y)|y=-1\}$C.$\{1,-1\}$。
D.$\{(1,-1)\}$2.下列函数中,在其定义域内是减函数的是()。
A.$f(x)=-x+x^2+1$。
B.$f(x)=\frac{1}{x}$C.$f(x)=\log x$。
D.$f(x)=\ln 3x$3.已知函数$f(x)=\begin{cases}x(x+1),&x<0\\x(x-1),&x\geq0\end{cases}$,则函数$f(x)$的零点个数为()。
A.1.B.2.C.3.D.44.等差数列$\{a_n\}$中,若$a_2+a_8=15-a_5$,则$a_5$等于()。
A.3.B.4.C.5.D.65.已知$a>0$,$f(x)=x^4-ax+4$,则$f(x)$为()。
A.奇函数。
B.偶函数。
C.非奇非偶函数。
D.奇偶性与$a$有关6.已知向量$\boldsymbol{a}=(1,2)$,$\boldsymbol{b}=(x,4)$,若向量$\boldsymbol{a}$与向量$\boldsymbol{b}$平行,则$x$=()。
A.2.B.$-2$。
C.8.D.$-8$7.设数列$\{a_n\}$是等差数列,且$a_2=-8$,$a_{15}=5$,$S_n$是数列$\{a_n\}$的前$n$项和,则()。
高中文科数学高考模拟试卷(含答案)

文科数学模拟试卷一、选择题:本大题共12小题,每小题5分,满分60分.1.如果复数)()2(R ai ai ∈+的实部与虚部是互为相反数,则a 的值等于 A .2 B .1 C .2- D .1- 2.已知两条不同直线1l 和2l 及平面α,则直线21//l l 的一个充分条件是A .α//1l 且α//2lB .α⊥1l 且α⊥2lC .α//1l 且α⊄2lD .α//1l 且α⊂2l 3.在等差数列}{n a 中,69327a a a -=+,n S 表示数列}{n a 的前n 项和,则=11SA .18B .99C .198D .2974.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是A .π32B .π16C .π12D .π85.已知点)43cos ,43(sinππP 落在角θ的终边上,且)2,0[πθ∈,则θ的值为 A .4π B .43π C .45π D .47π6.按如下程序框图,若输出结果为170,则判断框内应补充的条件为A .5i >B .7i ≥C .9i >D .9i ≥7.若平面向量)2,1(-=a 与b 的夹角是︒180,且||=A .)6,3(- B .)6,3(- C .)3,6(- 8.若函数)(log )(b x x f a +=的大致图像如右图,其中则函数b a x g x+=)(的大致图像是A B C D9.设平面区域D 是由双曲线1422=-x y 的两条渐近线和椭圆1222=+y x 的右准线所围成的三角形(含边界与内部).若点D y x ∈),(,则目标函数y x z +=的最大值为A .1B .2C .3D .610.设()11xf x x+=-,又记()()()()()11,,1,2,,k k f x f x f x f f x k +===则()2009=f x ( )俯视图A .1x-B .xC .11x x -+D .11x x +-11. 等差数列{}n a 中,8776,S S S S ><,真命题有__________(写出所有满足条件的序号)①前七项递增,后面的项递减 ② 69S S <③1a 是最大项 ④7S 是n S 的最大项 A .②④B .①②④C .②③④D .①②③④12. 已知()f x 是定义在R 上的且以2为周期的偶函数,当01x ≤≤时,2()f x x =,如果直线y x a =+与曲线()y f x =恰有两个交点,则实数a 的值为 A .0 B .2()k k Z ∈ C .122()4k k k Z -∈或 D .122()4k k k Z +∈或 二、填空题:本大题共4小题,每小题4分,满分16分。
高三文科数学高考复习试题(附答案)

高三文科数学高考复习试题(附答案)考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。
下面是店铺为大家整理的高三文科数学高考复习试题,请认真复习!高三文科数学高考复习试题一、选择题:每小题只有一项是符合题目要求的,将答案填在题后括号内.1.函数y=log2x-2的定义域是( )A.(3,+∞)B.[3,+∞)C.(4,+∞)D.[4,+∞)2.设集合A={(x,y) | },B={(x,y)|y=2x},则A∩B的子集的个数是( )A.1B.2C.3D.43.已知全集I=R,若函数f(x)=x2-3x+2,集合M={x|f(x)≤0},N={x| <0},则M∩∁IN=( )A.[32,2]B.[32,2)C.(32,2]D.(32,2)4.设f(x)是R上的奇函数,当x>0时,f(x)=2x+x,则当x<0时,f(x)=( )A.-(-12)x-xB.-(12)x+xC.-2x-xD.-2x+x5.下列命题①∀x∈R,x2≥x;②∃x∈R,x2≥x;③4≥3;④“x2≠1”的充要条件是“x≠1或x≠-1”.其中正确命题的个数是( )A.0B.1C.2D.36. 已知下图(1)中的图像对应的函数为,则下图(2)中的图像对应的函数在下列给出的四个式子中,只可能是( )7.在用二分法求方程x3-2x-1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为( )A.(1.4,2)B.(1,1.4)C.(1,32)D.(32,2)8.点M(a,b)在函数y=1x的图象上,点N与点M关于y轴对称且在直线x-y+3=0上,则函数f(x)=abx2+(a+b)x-1在区间[-2,2)上( )A.既没有最大值也没有最小值B.最小值为-3,无最大值C.最小值为-3,最大值为9D.最小值为-134,无最大值9.已知函数有零点,则的取值范围是( )A. B. C. D.二、填空题:将正确答案填在题后横线上.10.若全集U=R,A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则如图中阴影部分表示的集合为_______ _.11.若lga+lgb=0(a≠1),则函数f(x)=ax与g(x)=-bx的图象关于________对称.12.设 ,一元二次方程有正数根的充要条件是 = .13.若函数f(x)在定义域R内可导,f(2+x)=f(2-x),且当x∈(-∞,2)时,(x-2) >0.设a=f(1),,c=f(4),则a,b,c的大小为.14、已知。
高考数学模拟试题文科数学含答案.docx

新课标高考模拟试题数学文科本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150 分。
考试时间120 分钟。
参考公式:样本数据x1, x2 ,x n 的标准差锥体体积公式其中 x 为样本平均数其中 S 为底面面积, h 为高柱体体积公式球的表面积、体积公式其中 S 为底面面积, h 为高其中 R 为球的半径第Ⅰ卷(选择题共 60 分)一、选择题1.已知集合A{ x | x1}, B{ x | x22x0} ,则A I B =()A.( 0,1)B. C.0,1 D.1,12.若a(1,1),b(1,1),c(2,4),则 c 等于()A. -a+3b B .a-3b C.3a-b D. -3a+b3.已知四棱锥 P—ABCD 的三视图如右图所示,则四棱锥P— ABCD 的体积为()A.1B.2C.33 334D .84.已知函数f (x)Asin(x)( A0,0,||) 的部分图象如图所示,则 f ( x)2的解析式是()A.f (x)sin(3 x)( x R)B .f(x)sin(2x)(x)36R C.f (x)sin( x)( x R) D .f (x)sin(2 x)( x R)335.阅读下列程序,输出结果为 2 的是()6.在ABC 中,tan A 1,cos B 3 10,则 tanC 的值是()210A. -1 B .1 C.3 D .-27.设 m,n 是两条不同的直线,, ,是三个不同的平面,有下列四个命题:①若 m,, 则 m;②若/ / , m,则 m / / ;③若 n, n, m, 则 m; ④若,, m,则 m.其中正确命题的序号是A .①③B .①②C.8.两个正数a、b 的等差中项是心率 e 等于35A .B .C.23 9.已知定义域为R 的函数 f (则()A .f (2) f (3)B .10.数列{ a n}中,a32, a721A .B .C.52xx 11.已知函数 f ( x)ln( x ()A .(,1) U (2, )C.(1,2)12.若函数f ( x) 1e ax的图bC 的位置关系是()A .在圆外 B.在圆内第二、填空题(本大题共 4 小题13.复数z325的共轭复4i14.右图为矩形,长为5,宽为数得落在阴影部分的黄豆数部分的面积为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学模拟题复习试卷习题资料高考数学试卷(文科)(附详细答案)(3)一.选择题:本大题共12小题,每小题5分,共60分1.(5分)复数(3+2i)i等于()A.﹣2﹣3iB.﹣2+3iC.2﹣3iD.2+3i2.(5分)若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于()A.{x|3≤x<4}B.{x|3<x<4}C.{x|2≤x<3}D.{x|2≤x≤3}3.(5分)以边长为1的正方形的一边所在所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于()A.2πB.πC.2D.14.(5分)阅读如图所示的程序框图,运行相应的程序,输出的n的值为()A.1B.2C.3D.45.(5分)命题“∀x∈[0,+∞),x3+x≥0”的否定是()A.∀x∈(﹣∞,0),x3+x<0B.∀x∈(﹣∞,0),x3+x≥0C.∃x0∈[0,+∞),x03+x0<0D.∃x0∈[0,+∞),x03+x0≥06.(5分)已知直线l过圆x2+(y﹣3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是()A.x+y﹣2=0B.x﹣y+2=0C.x+y﹣3=0D.x﹣y+3=07.(5分)将函数y=sinx的图象向左平移个单位,得到函数y=f(x)的函数图象,则下列说法正确的是()A.y=f(x)是奇函数B.y=f(x)的周期为πC.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于点(﹣,0)对称8.(5分)若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数正确的是()A. B. C.D.9.(5分)要制作一个容积为4m3,高为1m的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是()A.80元B.120元C.160元D.240元10.(5分)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A. B.2 C.3 D.411.(5分)已知圆C:(x﹣a)2+(y﹣b)2=1,设平面区域Ω=,若圆心C∈Ω,且圆C与x轴相切,则a2+b2的最大值为()A.49B.37C.29D.512.(5分)在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L﹣距离”定义为|P1P2|=|x1﹣x2|+|y1﹣y2|.则平面内与x轴上两个不同的定点F1,F2的“L﹣距离”之和等于定值(大于|F1F2|)的点的轨迹可以是()A.B. C.D.二、填空题:本大题共4小题,每小题4分,共16分13.(4分)如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为.14.(4分)在△ABC中,A=60°,AC=2,BC=,则AB等于.15.(4分)函数f(x)=的零点个数是.16.(4分)已知集合{a,b,c}={0,1,2},且下列三个关系:① a≠2;②‚b=2;③ c≠0有且只有一个正确,则100a+10b+c等于.三.解答题:本大题共6小题,共74分.17.(12分)在等比数列{an}中,a2=3,a5=81.(Ⅰ)求an;(Ⅱ)设bn=log3an,求数列{bn}的前n项和Sn.18.(12分)已知函数f(x)=2cosx(sinx+cosx).(Ⅰ)求f()的值;(Ⅱ)求函数f(x)的最小正周期及单调递增区间.19.(12分)如图,三棱锥A﹣BCD中,AB⊥平面BCD,CD⊥BD.(Ⅰ)求证:CD⊥平面ABD;(Ⅱ)若AB=BD=CD=1,M为AD中点,求三棱锥A﹣MBC的体积.20.(12分)根据世行新标准,人均GDP低于1035美元为低收入国家;人均GDP为1035﹣4085美元为中等偏下收入国家;人均GDP为4085﹣12616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:行政区区人口占城市人口比例区人均GDP(单位:美元)A 25% 8000B 30% 4000C 15% 6000D 10% 3000E 20% 10000(Ⅰ)判断该城市人均GDP是否达到中等偏上收入国家标准;(Ⅱ)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.21.(12分)已知曲线Γ上的点到点F(0,1)的距离比它到直线y=﹣3的距离小2.(Ⅰ)求曲线Γ的方程;(Ⅱ)曲线Γ在点P处的切线l与x轴交于点A.直线y=3分别与直线l及y轴交于点M,N,以MN为直径作圆C,过点A作圆C的切线,切点为B,试探究:当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论.22.(14分)已知函数f(x)=ex﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<ex;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x<cex.高考模拟题复习试卷习题资料高考数学试卷(文科)(附详细答案)(3)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,共60分1.(5分)复数(3+2i)i等于()A.﹣2﹣3iB.﹣2+3iC.2﹣3iD.2+3i【分析】直接由复数代数形式的乘法运算化简求值.【解答】解:(3+2i)i=3i+2i2=﹣2+3i.故选:B.【点评】本题考查了复数代数形式的乘法运算,是基础的计算题.2.(5分)若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于()A.{x|3≤x<4}B.{x|3<x<4}C.{x|2≤x<3}D.{x|2≤x≤3}【分析】由于两集合已是最简,直接求它们的交集即可选出正确答案【解答】解:∵P={x|2≤x<4},Q={x|x≥3},∴P∩Q={x|3≤x<4}.故选:A.【点评】本题考查交集的运算,理解好交集的定义是解题的关键3.(5分)以边长为1的正方形的一边所在所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于()A.2πB.πC.2D.1【分析】边长为1的正方形,绕其一边所在直线旋转一周,得到的几何体为圆柱,从而可求圆柱的侧面积.【解答】解:边长为1的正方形,绕其一边所在直线旋转一周,得到的几何体为圆柱,则所得几何体的侧面积为:1×2π×1=2π,故选:A.【点评】本题是基础题,考查旋转体的侧面积的求法,考查计算能力.4.(5分)阅读如图所示的程序框图,运行相应的程序,输出的n的值为()A.1B.2C.3D.4【分析】根据框图的流程模拟运行程序,直到不满足条件2n>n2,跳出循环,确定输出的n值.【解答】解:由程序框图知:第一次循环n=1,21>1;第二次循环n=2,22=4.不满足条件2n>n2,跳出循环,输出n=2.故选:B.【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.5.(5分)命题“∀x∈[0,+∞),x3+x≥0”的否定是()A.∀x∈(﹣∞,0),x3+x<0B.∀x∈(﹣∞,0),x3+x≥0C.∃x0∈[0,+∞),x03+x0<0D.∃x0∈[0,+∞),x03+x0≥0【分析】全称命题的否定是一个特称命题,按此规则写出其否定即可得出正确选项.【解答】解:∵命题“∀x∈[0,+∞),x3+x≥0”是一个全称命题.∴其否定命题为:∃x0∈[0,+∞),x03+x0<0故选:C.【点评】本题考查全称命题的否定,掌握此类命题的否定的规则是解答的关键.6.(5分)已知直线l过圆x2+(y﹣3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是()A.x+y﹣2=0B.x﹣y+2=0C.x+y﹣3=0D.x﹣y+3=0【分析】由题意可得所求直线l经过点(0,3),斜率为1,再利用点斜式求直线l的方程. 【解答】解:由题意可得所求直线l经过点(0,3),斜率为1,故l的方程是 y﹣3=x﹣0,即x﹣y+3=0,故选:D.【点评】本题主要考查用点斜式求直线的方程,两条直线垂直的性质,属于基础题.7.(5分)将函数y=sinx的图象向左平移个单位,得到函数y=f(x)的函数图象,则下列说法正确的是()A.y=f(x)是奇函数B.y=f(x)的周期为πC.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于点(﹣,0)对称【分析】利用函数图象的平移法则得到函数y=f(x)的图象对应的解析式为f(x)=cosx,则可排除选项A,B,再由cos=cos(﹣)=0即可得到正确选项.【解答】解:将函数y=sinx的图象向左平移个单位,得y=sin(x+)=cosx.即f(x)=cosx.∴f(x)是周期为2π的偶函数,选项A,B错误;∵cos=cos(﹣)=0,∴y=f(x)的图象关于点(﹣,0)、(,0)成中心对称.故选:D.【点评】本题考查函数图象的平移,考查了余弦函数的性质,属基础题.8.(5分)若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数正确的是()A. B. C.D.【分析】根据对数函数的图象所过的特殊点求出a的值,再研究四个选项中函数与图象是否对应即可得出正确选项.【解答】解:由对数函数的图象知,此函数图象过点(3,1),故有y=loga3=1,解得a=3,对于A,由于y=a﹣x是一个减函数故图象与函数不对应,A错;对于B,由于幂函数y=xa是一个增函数,且是一个奇函数,图象过原点,且关于原点对称,图象与函数的性质对应,故B正确;对于C,由于a=3,所以y=(﹣x)a是一个减函数,图象与函数的性质不对应,C错;对于D,由于y=loga(﹣x)与y=logax的图象关于y轴对称,所给的图象不满足这一特征,故D错.故选:B.【点评】本题考查函数的性质与函数图象的对应,熟练掌握各类函数的性质是快速准确解答此类题的关键.9.(5分)要制作一个容积为4m3,高为1m的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是()A.80元B.120元C.160元D.240元【分析】设池底长和宽分别为a,b,成本为y,建立函数关系式,然后利用基本不等式求出最值即可求出所求.【解答】解:设池底长和宽分别为a,b,成本为y,则∵长方形容器的容器为4m3,高为1m,∴底面面积S=ab=4,y=20S+10[2(a+b)]=20(a+b)+80,∵a+b≥2=4,∴当a=b=2时,y取最小值160,即该容器的最低总造价是160元,故选:C.【点评】本题以棱柱的体积为载体,考查了基本不等式,难度不大,属于基础题,由实际问题向数学问题转化是关键.10.(5分)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A. B.2 C.3 D.4【分析】虑用特殊值法去做,因为O为任意一点,不妨把O看成是特殊点,再代入计算,结果满足哪一个选项,就选哪一个.【解答】解:∵O为任意一点,不妨把A点看成O点,则=,∵M是平行四边形ABCD的对角线的交点,∴=2=4故选:D.【点评】本题考查了平面向量的加法,做题时应掌握规律,认真解答.11.(5分)已知圆C:(x﹣a)2+(y﹣b)2=1,设平面区域Ω=,若圆心C∈Ω,且圆C与x轴相切,则a2+b2的最大值为()A.49B.37C.29D.5【分析】作出不等式组对应的平面区域,利用圆C与x轴相切,得到b=1为定值,此时利用数形结合确定a的取值即可得到结论.【解答】解:作出不等式组对应的平面区域如图:圆心为(a,b),半径为1∵圆心C∈Ω,且圆C与x轴相切,∴b=1,则a2+b2=a2+1,∴要使a2+b2的取得最大值,则只需a最大即可,由图象可知当圆心C位于B点时,a取值最大,由,解得,即B(6,1),∴当a=6,b=1时,a2+b2=36+1=37,即最大值为37,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.12.(5分)在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L﹣距离”定义为|P1P2|=|x1﹣x2|+|y1﹣y2|.则平面内与x轴上两个不同的定点F1,F2的“L﹣距离”之和等于定值(大于|F1F2|)的点的轨迹可以是()A.B. C.D.【分析】设出F1,F2的坐标,在设出动点M的坐标,由新定义列式后分类讨论去绝对值,然后结合选项得答案.【解答】解:设F1(﹣c,0),F2(c,0),再设动点M(x,y),动点到定点F1,F2的“L﹣距离”之和等于m(m>2c>0),由题意可得:|x+c|+|y|+|x﹣c|+|y|=m,即|x+c|+|x﹣c|+2|y|=m.当x<﹣c,y≥0时,方程化为2x﹣2y+m=0;当x<﹣c,y<0时,方程化为2x+2y+m=0;当﹣c≤x<c,y≥0时,方程化为y=;当﹣c≤x<c,y<0时,方程化为y=c﹣;当x≥c,y≥0时,方程化为2x+2y﹣m=0;当x≥c,y<0时,方程化为2x﹣2y﹣m=0.结合题目中给出的四个选项可知,选项A中的图象符合要求.故选:A.【点评】本题考查轨迹方程的求法,考查了分类讨论的数学思想方法,解答的关键是正确分类,是中档题.二、填空题:本大题共4小题,每小题4分,共16分13.(4分)如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为 0.18 .【分析】根据几何槪型的概率意义,即可得到结论.【解答】解:正方形的面积S=1,设阴影部分的面积为S,∵随机撒1000粒豆子,有180粒落到阴影部分,∴几何槪型的概率公式进行估计得,即S=0.18,故答案为:0.18.【点评】本题主要考查几何槪型的概率的计算,利用豆子之间的关系建立比例关系是解决本题的关键,比较基础.14.(4分)在△ABC中,A=60°,AC=2,BC=,则AB等于 1 .【分析】利用余弦定理列出关系式,将AC,BC,以及cosA的值代入即可求出AB的长. 【解答】解:∵在△ABC中,A=60°,AC=b=2,BC=a=,∴由余弦定理得:a2=b2+c2﹣2bccosA,即3=4+c2﹣2c,解得:c=1,则AB=c=1,故答案为:1【点评】此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.15.(4分)函数f(x)=的零点个数是 2 .【分析】根据函数零点的定义,直接解方程即可得到结论.【解答】解:当x≤0时,由f(x)=0得x2﹣2=0,解得x=或x=(舍去),当x>0时,由f(x)=0得2x﹣6+lnx=0,即lnx=6﹣2x,作出函数y=lnx和y=6﹣2x在同一坐标系图象,由图象可知此时两个函数只有1个交点,故x>0时,函数有1个零点.故函数f(x)的零点个数为2,故答案为:2【点评】本题主要考查函数零点个数的判断,对于比较好求的函数,直接解方程f(x)=0即可,对于比较复杂的函数,由利用数形结合进行求解.16.(4分)已知集合{a,b,c}={0,1,2},且下列三个关系:① a≠2;②‚b=2;③ c≠0有且只有一个正确,则100a+10b+c等于 201 .【分析】根据集合相等的条件,列出a、b、c所有的取值情况,再判断是否符合条件,求出a、b、c的值后代入式子求值.【解答】解:由{a,b,c}={0,1,2}得,a、b、c的取值有以下情况:当a=0时,b=1、c=2或b=2、c=1,此时不满足题意;当a=1时,b=0、c=2或b=2、c=0,此时不满足题意;当a=2时,b=1、c=0,此时不满足题意;当a=2时,b=0、c=1,此时满足题意;综上得,a=2、b=0、c=1,代入100a+10b+c=201,故答案为:201.【点评】本题考查了集合相等的条件的应用,以及分类讨论思想,注意列举时按一定的顺序列举,做到不重不漏.三.解答题:本大题共6小题,共74分.17.(12分)在等比数列{an}中,a2=3,a5=81.(Ⅰ)求an;(Ⅱ)设bn=log3an,求数列{bn}的前n项和Sn.【分析】(Ⅰ)设出等比数列的首项和公比,由已知列式求解首项和公比,则其通项公式可求;(Ⅱ)把(Ⅰ)中求得的an代入bn=log3an,得到数列{bn}的通项公式,由此得到数列{bn}是以0为首项,以1为公差的等差数列,由等差数列的前n项和公式得答案.【解答】解:(Ⅰ)设等比数列{an}的公比为q,由a2=3,a5=81,得,解得.∴;(Ⅱ)∵,bn=log3an,∴.则数列{bn}的首项为b1=0,由bn﹣bn﹣1=n﹣1﹣(n﹣2)=1(n≥2),可知数列{bn}是以1为公差的等差数列.∴.【点评】本题考查等比数列的通项公式,考查了等差数列的前n项和公式,是基础的计算题.18.(12分)已知函数f(x)=2cosx(sinx+cosx).(Ⅰ)求f()的值;(Ⅱ)求函数f(x)的最小正周期及单调递增区间.【分析】(Ⅰ)利用三角恒等变换化简函数的解析式为f(x)=sin(2x+)+1,从而求得f()的值.(Ⅱ)根据函数f(x)=sin(2x+)+1,求得它的最小正周期.令2kπ﹣≤2x+≤2kπ+,k∈Z,求得x的范围,可得函数的单调递增区间.【解答】解:(Ⅰ)∵函数f(x)=2cosx(sinx+cosx)=sin2x+1+cos2x=sin(2x+)+1,∴f()=sin(+)+1=sin+1=+1=2.(Ⅱ)∵函数f(x)=sin(2x+)+1,故它的最小正周期为=π.令2kπ﹣≤2x+≤2kπ+,k∈Z,求得kπ﹣≤x≤kπ+,故函数的单调递增区间为[kπ﹣,kπ+],k∈Z.【点评】本题主要考查三角函数的恒等变换,三角函数的周期性和单调性,属于中档题.19.(12分)如图,三棱锥A﹣BCD中,AB⊥平面BCD,CD⊥BD.(Ⅰ)求证:CD⊥平面ABD;(Ⅱ)若AB=BD=CD=1,M为AD中点,求三棱锥A﹣MBC的体积.【分析】(Ⅰ)证明:CD⊥平面ABD,只需证明AB⊥CD;(Ⅱ)利用转换底面,VA﹣MBC=VC﹣ABM=S△A BM•CD,即可求出三棱锥A﹣MBC的体积.【解答】(Ⅰ)证明:∵AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD,∵CD⊥BD,AB∩BD=B,∴CD⊥平面ABD;(Ⅱ)解:∵AB⊥平面BCD,BD⊂平面BCD,∴AB⊥BD.∵AB=BD=1,∴S△ABD=,∵M为AD中点,∴S△ABM=S△ABD=,∵CD⊥平面ABD,∴VA﹣MBC=VC﹣ABM=S△ABM•CD=.【点评】本题考查线面垂直,考查三棱锥A﹣MBC的体积,正确运用线面垂直的判定定理是关键.20.(12分)根据世行新标准,人均GDP低于1035美元为低收入国家;人均GDP为1035﹣4085美元为中等偏下收入国家;人均GDP为4085﹣12616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:行政区区人口占城市人口比例区人均GDP(单位:美元)A 25% 8000B 30% 4000C 15% 6000D 10% 3000E 20% 10000(Ⅰ)判断该城市人均GDP是否达到中等偏上收入国家标准;(Ⅱ)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.【分析】(Ⅰ)利用所给数据,计算该城市人均GDP,即可得出结论;(Ⅱ)利用古典概型概率公式,即可得出结论.【解答】解:(Ⅰ)设该城市人口总数为a,则该城市人均GDP为=6400∴该城市人均GDP达到中等偏上收入国家标准;(Ⅱ)从该城市5个行政区中随机抽取2个,共有=10种情况,GDP都达到中等偏上收入国家标准的区域有A,C,E,抽到的2个行政区人均GDP都达到中等偏上收入国家标准,共有=3种情况,∴抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.【点评】本题考查概率与统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查必然、或然思想.22.(14分)已知函数f(x)=ex﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<ex;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x<cex. 【分析】(1)利用导数的几何意义求得a,再利用导数法求得函数的极值;(2)构造函数g(x)=ex﹣x2,利用导数求得函数的最小值,即可得出结论;(3)利用(2)的结论,令x0=,则ex>x2>x,即x<cex.即得结论成立.【解答】解:(1)由f(x)=ex﹣ax得f′(x)=ex﹣a.又f′(0)=1﹣a=﹣1,∴a=2,∴f(x)=ex﹣2x,f′(x)=ex﹣2.由f′(x)=0得x=ln2,当x<ln2时,f′(x)<0,f(x)单调递减;当x>ln2时,f′(x)>0,f(x)单调递增;∴当x=ln2时,f(x)有极小值为f(ln2)=eln2﹣2ln2=2﹣ln4.f(x)无极大值.(2)令g(x)=ex﹣x2,则g′(x)=ex﹣2x,由(1)得,g′(x)=f(x)≥f(ln2)=eln2﹣2ln2=2﹣ln4>0,即g′(x)>0,∴当x>0时,g(x)>g(0)>0,即x2<ex;(3)对任意给定的正数c,总存在x0=>0.当x∈(x0,+∞)时,由(2)得ex>x2>x,即x<cex.∴对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x<cex.【点评】本题主要考查基本初等函数的导数、导数的运算及导数的应用、全称量词、存在量词等基础知识,考查运算求解能力、推理论证能力、抽象概括能力,考查函数与方程思想、有限与无限思想、划归与转化思想、分类与整合思想、特殊与一般思想.属难题.21.(12分)已知曲线Γ上的点到点F(0,1)的距离比它到直线y=﹣3的距离小2.(Ⅰ)求曲线Γ的方程;(Ⅱ)曲线Γ在点P处的切线l与x轴交于点A.直线y=3分别与直线l及y轴交于点M,N,以MN为直径作圆C,过点A作圆C的切线,切点为B,试探究:当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论.【分析】(Ⅰ)设S(x,y)曲线Γ上的任意一点,利用抛物线的定义,判断S满足配额我想的定义,即可求曲线Γ的方程;(Ⅱ)通过抛物线方程利用函数的导数求出切线方程,求出A、M的坐标,N的坐标,以MN为直径作圆C,求出圆心坐标,半径是常数,即可证明当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度不变.【解答】解:(Ⅰ)设S(x,y)曲线Γ上的任意一点,由题意可得:点S到F(0,1)的距离与它到直线y=﹣1的距离相等,曲线Γ是以F为焦点直线y=﹣1为准线的抛物线,∴曲线Γ的方程为:x2=4y.(Ⅱ)当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度不变,证明如下:由(Ⅰ)可知抛物线的方程为y=,设P(x0,y0)(x0≠0)则y0=,由y得切线l的斜率k==∴切线l的方程为:,即.由得,由得,又N(0,3),所以圆心C(),半径r==∴点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度不变.【点评】本题考查轨迹方程的求法,直线与抛物线的位置关系的应用,圆的方程函数的导数等指数的应用,难度较大.高考数学试卷解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合{124}A =,,,{246}B =,,,则A B =▲.【答案】{}1,2,4,6。