弹性力学复习题 有答案
《弹性力学》复习 学习材料 试题与参考答案

《弹性力学》复习学习材料试题与参考答案一、单选题1.利用有限单元法求解弹性力学问题时,不包括哪个步骤(D)A.结构离散化B.单元分析C.整体分析D.应力分析2.如果必须在弹性体上挖空,那么孔的形状应尽可能采用(C)A.正方形B.菱形C.圆形D.椭圆形3.每个单元的位移一般总是包含着(B)部分A.一B.二C.三D.四4.在弹性力学中规定,线应变(C),与正应力的正负号规定相适应。
A.伸长时为负,缩短时为负B.伸长时为正,缩短时为正C.伸长时为正,缩短时为负D.伸长时为负,缩短时为正5.在弹性力学中规定,切应变以直角( C ),与切应力的正负号规定相适应。
A.变小时为正,变大时为正B.变小时为负,变大时为负C.变小时为负,变大时为正D.变小时为正,变大时为负6.物体受外力以后,其内部将发生内力,它的集度称为(C )A应变B应力C变形D切变力7.平面问题分为平面(A)问题和平面( )问题。
A应力,应变B切变、应力C内力、应变D外力,内力8.在弹性力学里分析问题,要建立( C )套方程。
A一B二C三D四9.下列关于几何方程的叙述,没有错误的是(C)A.由于几何方程是由位移导数组成的,因此,位移的导数描述了物体的变形位移B.几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的位移C.几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的应变分量D.几何方程是一点位移与应变分量之间的唯一关系10.用应力分量表示的相容方程等价于(B)A.平衡微分方程B.几何方程和物理方程C.用应变分量表示的相容方程D.平衡微分方程.几何方程和物理方程11.平面应变问题的应力、应变和位移与那个(些)坐标无关(纵向为z轴方向)(C)A.xB.yC.zD.x,y,z12.在平面应力问题中(取中面作xy平面)则(C)A.σz=0,w=0B.σz≠0,w≠0C.σz=0,w≠0D.σz≠0,w=013.下面不属于边界条件的是(B)。
弹性力学考试和答案

弹性力学考试和答案一、单项选择题(每题2分,共20分)1. 弹性力学中,应力状态的基本方程是()。
A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:A2. 弹性力学中,位移场的三个基本方程是()。
A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:B3. 弹性力学中,平面应力问题与平面应变问题的主要区别是()。
A. 应力分量不同B. 位移分量不同C. 应变分量不同D. 边界条件不同答案:C4. 弹性力学中,圣维南原理是指()。
A. 应力集中现象B. 应力释放现象C. 应力平衡现象D. 应力松弛现象答案:B5. 弹性力学中,莫尔圆表示的是()。
A. 应力状态B. 应变状态C. 位移状态D. 应力-应变关系答案:A6. 弹性力学中,平面问题的基本解法有()。
A. 直接积分法B. 叠加原理C. 变分法D. 能量法答案:A7. 弹性力学中,轴对称问题的基本解法是()。
A. 直接积分法B. 叠加原理C. 变分法D. 能量法答案:A8. 弹性力学中,扭转问题的解法是()。
A. 直接积分法B. 叠加原理C. 变分法D. 能量法答案:A9. 弹性力学中,平面应力问题的应力函数是()。
A. 单一函数B. 两个函数C. 三个函数D. 四个函数答案:A10. 弹性力学中,平面应变问题的应力函数是()。
A. 单一函数B. 两个函数C. 三个函数D. 四个函数答案:B二、多项选择题(每题3分,共15分)11. 弹性力学中,应力状态的基本方程包括()。
A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:AC12. 弹性力学中,位移场的三个基本方程包括()。
A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:BC13. 弹性力学中,平面应力问题与平面应变问题的主要区别包括()。
A. 应力分量不同B. 位移分量不同C. 应变分量不同D. 边界条件不同答案:AC14. 弹性力学中,圣维南原理包括()。
弹性力学复习题答案

弹性力学复习题答案弹性力学是固体力学的一个重要分支,主要研究在外力作用下固体材料的变形和应力分布。
以下是一些弹性力学的复习题及其答案,供学习者参考。
问题一:什么是弹性力学?答案:弹性力学是固体力学的一个分支,它研究在外部作用下,材料在弹性范围内的变形和内力的分布规律。
材料在弹性范围内,当外力去除后,能恢复到原始形状和状态。
问题二:简述胡克定律的内容。
答案:胡克定律是描述材料在弹性范围内应力与应变关系的定律。
它指出,在弹性范围内,材料的应力与应变成正比,比例常数称为杨氏模量(E)。
数学表达式为:σ = Eε,其中σ是应力,ε是应变。
问题三:什么是平面应力和平面应变问题?答案:平面应力问题指的是物体的应力只在一个平面内分布,而平面应变问题指的是物体的应变只在一个平面内分布。
在实际工程问题中,薄板和薄膜等结构常常可以简化为平面应力问题。
问题四:什么是圣维南原理?答案:圣维南原理是弹性力学中的一个基本原理,它指出在远离力作用区域的地方,物体的应力分布只与力的性质有关,而与物体的形状无关。
这意味着在远离力作用区域,应力分布是均匀的。
问题五:什么是弹性模量和剪切模量?答案:弹性模量,也称为杨氏模量,是描述材料抵抗拉伸或压缩的物理量,其数值等于应力与应变的比值。
剪切模量,也称为刚度模量,是描述材料抵抗剪切变形的物理量,其数值等于剪切应力与剪切应变的比值。
问题六:简述泊松比的概念。
答案:泊松比是材料在单轴拉伸或压缩时,横向应变与纵向应变的比值。
它是材料的一个固有属性,反映了材料在受力时的体积变化特性。
问题七:什么是主应力和主应变?答案:主应力是物体上某一点应力状态中最大的三个正应力,它们作用在相互垂直的平面上。
主应变是物体上某一点应变状态中最大的三个应变,它们也作用在相互垂直的平面上。
问题八:什么是应力集中?答案:应力集中是指在物体的某些局部区域,由于几何形状、材料不连续性或其他因素,应力值远大于周围区域的应力平均值的现象。
弹性力学重点复习题及其答案

弹性力学重点复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135'ο。
8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512MPa ,=2σ-312 MPa ,=1α-37°57′。
9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
13、按应力求解平面问题时常采用逆解法和半逆解法。
14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。
其具体步骤分为单元分析和整体分析两部分。
15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。
弹性力学复习题---有答案-知识归纳整理

知识归纳整理一、挑选题1. 下列材料中,( D )属于各向同性材料。
A. 竹材;B. 纤维增强复合材料;C. 玻璃钢;D. 沥青。
2 对于弹性力学的正确认识是(A )。
A. 计算力学在工程结构设计的中作用日益重要;B. 弹性力学从微分单元体入手分析弹性体,与材料力学不同,不需要对问题作假设;C. 任何弹性变形材料都是弹性力学的研究对象;D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。
3. 弹性力学与材料力学的主要不同之处在于( B )。
A. 任务;B. 研究对象;C. 研究想法;D. 基本假设。
4. 所谓“彻底弹性体”是指( A )。
A. 材料应力应变关系满足胡克定律;B. 材料的应力应变关系与加载时光历史无关;C. 本构关系为非线性弹性关系;D. 应力应变关系满足线性弹性关系。
5. 所谓“应力状态”是指( B )。
A. 斜截面应力矢量与横截面应力矢量不同;B. 一点不同截面的应力随着截面方位变化而改变;C. 3个主应力作用平面相互垂直;D. 不同截面的应力不同,所以应力矢量是不可确定的。
6. 变形协调方程说明( B )。
A. 几何方程是根据运动学关系确定的,所以对于弹性体的变形描述是不正确的;B. 微分单元体的变形必须受到变形协调条件的约束;C. 变形协调方程是保证所有弹性体变形协调条件的必要和充分条件;D. 变形是由应变分量和转动分量共同组成的。
7. 下列对于弹性力学基本方程描述正确的是( A )。
A. 几何方程适用小变形条件;B. 物理方程与材料性质无关;C. 平衡微分方程是确定弹性体平衡的唯一条件;D. 变形协调方程是确定弹性体位移单值延续的唯一条件;8、弹性力学建立的基本方程多是偏微分方程,最终需结合( B )求解这些微分方程,以求得具体问题的应力、应变、位移。
A .几何方程B .边界条件C .数值想法D .附加假定9、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程具有下列关系 ( B )。
弹性力学试题及答案

弹性力学试题及答案一、选择题(每题10分,共40分)1. 在弹性力学中,下列哪个物理量表示应变能密度?A. 应力B. 应变C. 位移D. 应力能密度答案:D2. 在平面应力状态下,下列哪个方程是正确的?A. σ_x + σ_y = 0B. σ_x + σ_y = σ_zC. σ_x + σ_y = τ_xyD. σ_x + σ_y = 0答案:D3. 在弹性体中,应力与应变之间的关系可以用下列哪个关系式表示?A. σ = EεB. σ = GγC. τ = μγD. σ = λε答案:A4. 在弹性力学中,下列哪个方程表示平衡方程?A. σ_x + σ_y + σ_z = 0B. ε_x + ε_y +ε_z = 0 C. τ_xy = τ_yx D. σ_x + σ_y + σ_z = F答案:D二、填空题(每题10分,共30分)1. 弹性力学中的基本假设有:连续性假设、线性假设和________假设。
答案:各向同性2. 在三维应力状态下,应力分量可以表示为:σ_x, σ_y, σ_z, τ_xy, τ_xz, τ_yz。
其中,τ_xy表示________面上的切应力。
答案:xOy3. 在弹性力学中,位移与应变之间的关系可以用________方程表示。
答案:几何方程三、计算题(每题30分,共90分)1. 已知一弹性体在平面应力状态下的应力分量为:σ_x = 100 MPa,σ_y = 50 MPa,τ_xy = 25 MPa。
弹性模量E = 200 GPa,泊松比μ = 0.3。
求应变分量ε_x, ε_y, γ_xy。
解:首先,利用胡克定律计算应变分量:ε_x = σ_x / E = 100 MPa / 200 GPa = 0.0005ε_y = σ_y / E = 50 MPa / 200 GPa = 0.00025γ_xy = τ_xy / G = 25 MPa / (E / 2(1 + μ)) = 25 MPa / (200 GPa / 2(1 + 0.3)) = 0.000375答案:ε_x = 0.0005,ε_y = 0.00025,γ_xy = 0.0003752. 一弹性体在三维应力状态下的应力分量为:σ_x = 120 MPa,σ_y = 80 MPa,σ_z = 40 MPa,τ_xy = 30 MPa,τ_xz = 20 MPa,τ_yz = 10 MPa。
(完整版)《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。
2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中, 的物理意义是 杆端截面上剪应力对转轴的矩等于M dxdy D=⎰⎰2ϕ杆截面内的扭矩M 。
4.平面问题的应力函数解法中,Airy 应力函数在边界上值的物理意义为 边界上某一点(基准ϕ点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为: ,。
0,=+i j ij X σ)(21,,i j j i ij u u +=ε二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。
ϕ题二(2)图(a ) (b )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x ⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。
试求薄板面积的改变量。
S∆题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为。
由得,l ∆q E)1(1με-=)1(2222με-+=+=∆Eb a q b a l 设板在力P 作用下的面积改变为,由功的互等定理有:S ∆lP S q ∆⋅=∆⋅将代入得:l ∆221b a P ES +-=∆μ显然,与板的形状无关,仅与E 、、l 有关。
弹性力学期末考试试题及答案

弹性力学期末考试试题及答案一、名词解释(每题5分,共25分)1. 弹性力2. 弹簧常数3. 应力4. 应变5. 胡克定律6. 弹性模量7. 弹性体的形变8. 弹性位移9. 弹性能量10. 弹性碰撞二、选择题(每题2分,共20分)1. 以下哪种材料不属于弹性材料?A. 钢铁B. 橡胶C. 玻璃D. 水2. 在弹性限度内,弹性力与形变量之间的关系遵循哪一定律?A. 平方律B. 立方律C. 直线律D. 反比律3. 一弹簧的弹簧常数为50N/m,当一个力作用于弹簧上使其压缩0.1m时,弹簧的弹性势能为多少?A. 0.5JB. 1JC. 2JD. 5J4. 下列哪种情况下,弹簧的弹性力最大?A. 弹簧处于自然长度时B. 弹簧被压缩时C. 弹簧被拉伸时D. 弹簧被压缩或拉伸到极限时5. 两个相同的弹性球碰撞,如果它们的弹性系数不同,那么碰撞后它们的速度关系是?A. 速度大小不变,方向相反B. 速度大小不变,方向相同C. 速度大小发生变化,方向相反D. 速度大小发生变化,方向相同三、填空题(每题5分,共25分)1. 一弹性体的形变是指其_________的变化。
2. 在弹性碰撞中,两个物体的速度满足_________定律。
3. 弹簧的弹簧常数_________,表示弹簧的_________。
4. 当一个力作用于弹性体上时,该力与弹性体的_________之比称为应力。
5. 弹性模量是衡量材料_________的物理量。
四、计算题(共40分)1. 一弹簧的弹簧常数为200N/m,当一个力作用于弹簧上使其压缩0.5m时,求弹簧的弹性势能。
(5分)2. 质量为2kg的物体从静止开始沿斜面滑下,斜面与水平面的夹角为30°,斜面长度为10m,摩擦系数为0.2。
求物体滑到斜面底部时的速度。
(5分)3. 两个弹性球A和B,质量分别为m1和m2,弹性系数分别为k1和k2。
它们从静止开始相互碰撞,求碰撞后A和B的速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1. 下列材料中,( D )属于各向同性材料。
A. 竹材;B. 纤维增强复合材料;C. 玻璃钢;D. 沥青。
2 关于弹性力学的正确认识是(A )。
A. 计算力学在工程结构设计的中作用日益重要;B. 弹性力学从微分单元体入手分析弹性体,与材料力学不同,不需要对问题作假设;C. 任何弹性变形材料都是弹性力学的研究对象;D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。
3. 弹性力学与材料力学的主要不同之处在于( B )。
A. 任务;B. 研究对象;C. 研究方法;D. 基本假设。
4. 所谓“完全弹性体”是指( A )。
A. 材料应力应变关系满足胡克定律;B. 材料的应力应变关系与加载时间历史无关;C. 本构关系为非线性弹性关系;D. 应力应变关系满足线性弹性关系。
5. 所谓“应力状态”是指( B )。
A. 斜截面应力矢量与横截面应力矢量不同;B. 一点不同截面的应力随着截面方位变化而改变;C. 3个主应力作用平面相互垂直;D. 不同截面的应力不同,因此应力矢量是不可确定的。
6. 变形协调方程说明( B )。
A. 几何方程是根据运动学关系确定的,因此对于弹性体的变形描述是不正确的;B. 微分单元体的变形必须受到变形协调条件的约束;C. 变形协调方程是保证所有弹性体变形协调条件的必要和充分条件;D. 变形是由应变分量和转动分量共同组成的。
7. 下列关于弹性力学基本方程描述正确的是( A )。
A. 几何方程适用小变形条件;B. 物理方程与材料性质无关;C. 平衡微分方程是确定弹性体平衡的唯一条件;D. 变形协调方程是确定弹性体位移单值连续的唯一条件;8、弹性力学建立的基本方程多是偏微分方程,最后需结合( B )求解这些微分方程,以求得具体问题的应力、应变、位移。
A .几何方程B .边界条件C .数值方法D .附加假定9、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程具有下列关系( B )。
A .平衡微分方程、几何方程、物理方程完全相同B .平衡微分方程、几何方程相同,物理方程不同C .平衡微分方程、物理方程相同,几何方程不同D .平衡微分方程,几何方程、物理方程都不同10、根据圣维南原理,作用在物体一小部分边界上的面力可以用下列( A )的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。
A .静力等效 B .几何等效 C .平衡 D .任意 11、应力函数必须是( C )A 、多项式函数B 、三角函数C 、重调和函数D 、二元函数 12、要使函数33axy bx y Φ=+作为应力函数,则b a 、满足的关系是( A ) A 、a b 、任意 B 、b a = C 、b a -= D 、2b a =13、三结点三角形单元中的位移分布为(B )。
A .常数B .线性分布C .二次分布D .三次分布 14、应力、面力、体力的量纲分别是( C ) A 、-1-2-2-2-2-2M L T , M L T , M L TB 、-1-2-2-2-1-2M L T , M L T , M L T C 、-1-2-1-2-2-2M L T , M L T , M L TD 、-2-2-2-2-1-2M L T , M L T , M L T15、应变、Airy 应力函数、势能的量纲分别是( A )A 、-22-21, M L T , M L TB 、-2-21, M L T , M L TC 、-1-2-22-2M L T , M L T , M L TD 、-2-2-2-22-2M L T , M L T , M L T 16、下列力不是体力的是( D )。
A、重力B、惯性力C、电磁力D、静水压力17、下列问题可能简化为平面应变问题的是( B )。
A、受横向集中荷载的细长梁B、挡土墙C、楼板D、高速旋转的薄圆板18、在有限单元法中是以( D )为基本未知量的。
A 、结点力B 、结点应力C 、结点应变D 、结点位移19、不计体力,在极坐标中按应力求解平面问题时,应力函数必须满足( A ) ①区域内的相容方程; ②边界上的应力边界条件;③满足变分方程; ④如果为多连体,考虑多连体中的位移单值条件。
A 、①②④B 、②③④C 、①②③D 、①②③④ 二、简答题阐述弹性力学的平面问题的五个基本假设及其意义。
课本P3面力、体力与应力的正负号规定是什么,要会标明单元体指定面上的应力、面力及体力。
参照课本P5内容和例题1、3。
什么是主平面、主应力、应力主方向。
课本P17平面应力问题与平面应变问题各有什么特点,典型工程实例有哪些?在什么条件下,平面应力问题的xyy x τσσ,,与平面应变问题的xyy x τσσ,,是相同的。
弹性力学平面问题三类方程的内容。
要会默写。
在建立弹性力学平衡微分方程、几何方程、物理方程时分别应用了哪些基本假设?提示:平衡微分方程:连续性假设和小变形假设;几何方程:连续性假设和小变形假设:物理方程:连续性假设、均匀性假设、各向同性假设、完全弹性假设。
按应力求解平面问题时,应力分量应满足哪些条件?P38简述圣维南原理的基本内容,两种表述方法及其应用举例。
若引用应力函数Φ求解平面问题,应力分量与应力函数的关系式x f y x x -∂Φ∂=22σ、y f x y y -∂Φ∂=22σ、y x xy∂∂Φ∂-=2τ是根据弹性力学哪一类基本方程推导出来的。
简述逆解法和半逆解法的求解步骤。
课本P57,P58由于求解微分方程边值问题的困难,在弹性力学中发展了三种数值解法,分别是,,。
有限单元法主要有两种导出方法,试简述其内容。
有限单元法特点有哪些?为了保证解答的收敛性,位移模式应满足哪些条件? 有限单元法解题的步骤有哪些。
课本P108 – P109。
单元劲度矩阵k 中元素ijk 是一22⨯矩阵,其每一元素的物理意义是什么?要会利用 公式来求单元劲度矩阵。
关于有限单元法,回答以下问题:1)单元结点力是什么?2)单元结点荷载是什么? 3)单元劲度矩阵的某一个元素的物理意义?4)整体劲度矩阵的某一个元素的物理意义?5)有限单元法结点的平衡方程是什么力和什么力的平衡?6)三节点三角形单元中,位移与应力哪个精度更高,哪个误差更大,并说明原因。
三、计算题 1. 试问xyb a bx ay xy y x )(,,22+===γεε是否可能成为弹性力学问题中的应变分量?提示:考察是否满足变形协调方程。
2. 检查下面的应力分量在体力为零时是否能成为可能的解答。
224,4,8x y xy x y xy σστ===-提示:是否满足相容方程。
3. 已知物体内某点的应力分量为100x σ=,50y σ=,xy τ=,试求该点的主应力12,σσ和1α。
课本P34,习题2-15。
4. 已知 (a )()()22222yAyx Bxy C x y Φ=-+++ (b )432234Ax Bx y Cx y Dxy Ey Φ=++++以上两式能否作为平面问题应力函数的表达式?若能,则需要满足什么条件。
5. 试列出下图问题的边界条件。
在其端部边界上,应用圣维南原理列出三个积分的应力边6. 试列出下图问题的边界条件。
在其端部边界上,应用圣维南原理列出三个积分的应力边参考答案:在主要边界2hy =±上,应精确满足下列边界条件: ()2hy y q σ=-=-,()20h xy y τ=-=,()20h y y σ==,()12h xy y q τ==-在次要边界0x =上应用圣维南原理列出三个积分的应力边界条件()2N 02h h x x dx F σ=-=⎰,()202h h x x ydx M σ=-=-⎰,()2S 02h h xy x dx F τ=-=-⎰在次要边界x l =列出位移边界条件,()0x l u ==,()0x l v ==。
也可应用圣维南原理列出三个积分的应力边界条件()21N 2h h x x ldx q l F σ=-=+⎰,()212222h h x S x l q lh ql ydx M F l σ=-=---⎰,()2S 2hh xy x ldx ql F τ=-=--⎰7. 单位厚度的楔形体,材料比重为1ρ,楔形体左侧作用比重为ρ的液体,如图所示。
试写出楔形体的边界条件。
参考答案:左侧面:cos ,sin ,cot l m y x ααα=-=-=-11cos sin cos sin cos sin x xy yxy gy gy σαταρασαταρα--=⎧⎨--=⎩ 右侧面,cos ,sin ,cot l m y x βββ==-=cos sin 0sin +cos 0x xy yxy σβτβσβτβ-=⎧⎨-=⎩ 8. 试用应力函数3Bxy Axy +=Φ求解图示悬臂梁的应力分量(设h l >>)。
参考答案:(1)将应力函数代入相容方程220∇∇Φ=,其中440x ∂Φ=∂,4220x y ∂Φ=∂,440y ∂Φ=∂满足相容方程。
(2)应力分量表达式为220x y σ∂Φ==∂,226y Bxy xσ∂Φ==∂,223xy A Bx x y τ∂Φ=-=--∂∂(3)考查边界条件在主要边界2bx =±上,应精确满足下列边界条件: ()20bx x σ=±=,()2b xyx q τ=±=-在次要边界0y =上,()0yy σ==能满足,但()0yx y τ==的条件不能精确满足,应用圣维南原理列出积分的应力边界条件代替()2020b b yx y dx τ=-=⎰将应力分量代入边界条件,得2q A =-,22q B b=应力分量0x σ=,212y qxy b σ=,221122xy q x b τ⎛⎫=- ⎪⎝⎭10. 设有矩形截面竖柱,密度为ρ,在一边侧面上受均布剪力q ,试求应力分量。
提示:假设220x yσ∂Φ==∂参考答案:(1)、假设220x yσ∂Φ==∂,由此推测Φ的形式为()()12=f x y f x Φ+(2)、代入4=0∇Φ,得()()441244y+=0d f x d f x dx dx要使上式在任意的y 都成立,必须()414=0d f x dx,得()321=f x Ax Bx Cx D +++ ()424=0d f x dx,得()321=f x Ex Fx Gx H +++ 代入Φ,即得应力函数的解答()3232=Ax Bx Cx y Ex Fx Φ++++(略去了x 、y 的一次项和常数项)(3)、由Φ求应力分量,0,x y f f g ρ==220x yσ∂Φ==∂()226262y y f y Ax B y Ex F gy x σρ∂Φ=-=+++-∂ (1分)()2232xy Ax Bx C x yτ∂Φ=-=-++∂∂(4)、校核边界条件主要边界()0,0x x h σ==(已满足)()00xy x τ==,0C =()xy x hq τ==,()232Ah Bh C q -++=(1)次要边界()0h y x dx σ==⎰,320Eh F +=(2) ()00h y x xdx σ==⎰,20Eh F +=(3) ()0hyx y dx τ==⎰,0Ah B +=(4)由(1)-(4)联立可解得 A 、B 、E 、F 。