机械阻尼器在地震工程中的应用研究
阻尼器用在哪里

阻尼器用在哪里阻尼器,是以提供运动的阻力,耗减运动能量的装置。
利用阻尼来吸能减震不是什么新技术,在航天、航空、军工、枪炮、汽车等行业中早已应用各种各样的阻尼器(或减震器)来减振消能。
从二十世纪七十年代后,人们开始逐步地把这些技术转用到建筑、桥梁、铁路等结构工程中,其发展十分迅速。
特别是有五十多年历史的液压粘滞阻尼器,在美国被结构工程界接受以前,经历了一个大量实验,严格审查,反复论证,特别是地震考验的漫长过程。
1、在航天、航空、军工、机械等行业中广泛应用,有着几十年成功应用的历史。
·上世纪80年代开始在美国东西两个地震研究中心等单位作了大量试验研究,发表了几十篇有关论文·90年代,美国国家科学基金会和土木工程学会等单位组织了两次大型联合,由第三者作出的对比试验,给出了权威性的试验报告,供教授和工程师们参考·在肯定以上成果的基础上被几乎各有关机构,规范审查,肯定并规定了应用办法·管理部门通过,带来了上百个结构工程实际应用。
这些结构工程,成功地经历了地震、大风等灾害考验,十分成功。
2、仓储货架编辑在重力式货架仓储中,由于货物受到重力影响,在倾斜的仓储滑道中做加速运动,如果任其自由运动,货物撞击货架,可能会引起货物损坏,操作人员安全隐患以及货架整体结构的损毁。
而阻尼器在其中起了非常重要的作用。
重力式货架中的阻尼器,又称减速器,主要用于消除重力式货架中货物产生的重力加速度,从而使得货物能够平稳,缓慢的沿轨道下滑,消除安全隐患。
保证货物及操作人员的安全性。
其中阻尼可分为外置式和内置式。
3、液压阻尼器是一种对速度反应灵敏的振动控制装置;液压阻尼器主要适用于核电厂、火电厂、化工厂、钢铁厂等的管道及设备的抗振动。
常用于控制冲击性的流体振动(如主汽门快速关闭、安全阀排放、水锤、破管等冲击激扰)和地震激扰的管系振动;液阻尼器对低幅高频或高幅低频的振动不能有效地控制,该场合宜采用弹簧减振器。
阻尼器抗震原理

阻尼器抗震原理阻尼器是一种能够缓解或消除结构物地震响应的重要装置。
它的基本原理是利用受控减振摩擦力和内部流体的运动阻力来实现减震,从而达到降低地震响应的目的。
本文将对阻尼器的抗震原理进行深入的探讨。
一、阻尼器的基本结构阻尼器是一种具有能量吸收和消散功能的装置,主要由三个部分组成:摩擦材料、流体和外壳。
摩擦材料一般为钢材或高强度复合材料,用于产生摩擦力;流体为液态或气态介质,主要用于调节结构物的振动能量;外壳则用于固定阻尼器以及隔绝中介体的流动。
二、阻尼器的减震机理1.摩擦减振效应阻尼器的摩擦减振效应是通过制动力产生的阻尼力来吸收结构物的振动能量。
当结构物发生振动时,摩擦材料中的制动力就会与结构物相互作用,从而形成一个减振系统。
随着振幅的增大,制动力也逐渐增强,减震器就会吸收更多的振动能量。
2.流体阻尼效应在阻尼器中,流体的运动阻力是减震机理的另一个重要因素。
当震动载荷作用于结构物上时,流体的流动会形成摩擦力和阻尼力,并使结构物的振动逐渐减弱。
流体本身也会吸收结构物的振动能量,并将其转化为热能或其他形式的能量。
3.摩擦材料和流体的相互作用阻尼器中的摩擦材料和流体之间存在一种复杂的相互作用关系。
当结构物处于振动状态时,摩擦材料和流体就会相互耗散能量。
摩擦材料通过制动力吸收结构物振动的动能,而流体则通过阻尼力将振动能量消耗掉。
这种相互作用可以使阻尼器具有更高的减震效率。
三、阻尼器的应用范围目前,阻尼器已经广泛应用于各种不同类型的结构物中,包括摩天大楼、桥梁、输电塔、核电站等。
阻尼器在这些结构物中的作用主要是消除结构物的固有频率,减少结构物在地震时的振动。
阻尼器还可以阻止结构物发生共振,降低结构物的疲劳损伤和结构的振幅,从而延长结构的使用寿命。
四、阻尼器的设计和选择阻尼器的设计和选择需要考虑多个因素,包括结构物的质量、地震波的频率和振动幅度等。
一般而言,较大的结构物需要使用更大的阻尼器,以便能够消耗更多的振动能量。
阻尼器在结构工程中的应用研究

阻尼器在结构工程中的应用研究随着现代建筑技术的不断发展,结构工程领域也在迅速进步,阻尼器作为一种重要的调节装置,被广泛应用于建筑和桥梁工程中。
本文旨在探讨阻尼器在结构工程中的应用研究,并讨论其对结构性能的影响。
首先,我们需要了解阻尼器的基本原理。
阻尼器是一种可以消耗结构振动能量的装置,通过吸收和分散振动能量,减少结构的振动响应。
在结构受到外部力的作用下,阻尼器通过内部阻尼机构迅速吸收能量,阻尼器的加装能够有效减少结构的振幅和振动周期,提高结构的稳定性和抗震性能。
因此,在地震多发地区,阻尼器被广泛应用于抗震设计中。
其次,我们需要了解不同类型的阻尼器及其特点。
根据结构工程的不同需求,阻尼器可以分为液态阻尼器、摩擦阻尼器和液压摩擦阻尼器等。
液态阻尼器通过油液的粘性和摩擦特性来实现能量的消耗,具有较好的线性响应和稳定性。
摩擦阻尼器则通过摩擦力来减少结构振动,其特点是具有较大的耗能能力和较简单的结构形式。
液压摩擦阻尼器则结合了液态阻尼器和摩擦阻尼器的优点,具有较好的稳定性和耐久性。
接下来,我们需要探讨阻尼器在结构工程中的实际应用。
阻尼器在高层建筑中的应用可以显著减少结构的动态响应,提高整体的抗震性能。
例如,在上海的上海中心大厦中,采用了大规模的液态阻尼器系统,可以使建筑在地震或风荷载作用下减少60%的位移幅值,保证建筑物的安全性。
此外,阻尼器在桥梁工程中也有广泛应用,例如东京湾海底隧道的液压摩擦阻尼器系统,可以减少结构的纵向和横向位移,确保交通运输的顺畅和安全。
最后,我们需要分析阻尼器对结构性能的影响。
阻尼器的加装可以显著改善结构的动力特性,降低结构的共振频率,减少结构的振动幅值,提高抗震性能。
此外,阻尼器的加装还可以减少结构与周围环境的振动传递,保护结构和设备的完整性和稳定性。
然而,阻尼器的应用也存在一定的问题,如安装和维护成本较高,结构设计和施工难度大等。
综上所述,阻尼器在结构工程中的应用研究具有重要意义。
阻尼减震器工作原理

阻尼减震器工作原理阻尼减震器是一种常见的机械减震器,广泛应用于工程、建筑和机械设备等领域。
本文将介绍阻尼减震器的工作原理,包括阻尼器的种类、材料及结构组成、工作原理及应用,旨在为读者进一步了解阻尼减震器的设计和应用提供参考。
一、阻尼器的种类及材料在实际工程应用中,阻尼器种类较多。
按照阻尼器的使用方式不同,可以将其分为主动阻尼和被动阻尼。
主动阻尼是指阻尼器主动进行能量吸收和减震,例如在地震时由节制器主动减小建筑物位移波动;被动阻尼是指阻尼器受到外力后才能够发挥所具有的减震、减振效果,例如汽车减震器、建筑物减震器等。
根据材料的不同,阻尼器又可以分为金属材料、高分子材料、陶瓷材料和液体材料等四类。
金属材料阻尼器主要应用于航天、国防等高档领域,由于耐高温、耐腐蚀、强度高等特点而备受青睐。
高分子材料阻尼器的主要材质是橡胶、聚氨酯和硅橡胶等,常用于汽车减震器和公路桥梁等领域。
陶瓷材料阻尼器含有氧化铝、氧化锆和硼硅酸钠等材料,可以在高温和高压环境下稳定运行,广泛应用于航空航天、核电站等领域。
液体阻尼器主要由油液和气液组成,它们又可以分为单向流动和双向流动两类。
二、阻尼器的结构组成阻尼器的结构组成各不相同,但是基本上均包含了阻尼材料、阻尼部件和机械螺纹和连杆等组成部分。
阻尼材料是阻尼减震器的核心,起到吸收振动能量的作用。
阻尼部件一般包括阻尼孔、阻尼片和钢质弹簧等,起到调节阻尼力和弹性力的作用,对抗机械力量的影响。
机械螺纹和连杆则用来连接阻尼器和其他机械部件,使其能够完整地组成整个阻尼系统。
阻尼器的工作原理是通过阻尼材料对振动能量的吸收和转换,来达到减小或消灭振动的目的。
当外力作用于物体上时,物体就会产生相应的振动,振动的大小和频率与外力大小和频率有关。
阻尼减震器材料的基本原理是根据牛顿第三定律:所有事物都产生相反的作用力和反作用力,当外力向材料施加过程中,材料会产生反作用力抵抗外力,从而起到减震作用。
四、阻尼器的应用1. 建筑减震领域:阻尼器应用于家庭住宅、公共建筑、办公楼,如油管阻尼器、液压阻尼器等。
阻尼器在结构振动控制中的应用研究

阻尼器在结构振动控制中的应用研究王臣(中煤国际工程集团武汉设计研究院,湖北武汉430000)应用科技£}裔要】本文介绍了粘弹|生阻尼器在结构工程中的应用。
并对其工作原理和巨能进行了分析。
同时给出了遭台于结构分橱计算的动力学模型,结合一个具钵算倒,比较了结构设置阻尼器前后的最大层剪力,得到了设置阻尼器后结构整体抗震性能得到提高的结论j臼籀}剐阻尼嚣;振动控制;动力学模型随着建筑形式的多样化以及结构复杂程度的增加,结构在地震和风等动力荷载作用下的振动问题也日益突出,单纯通增大构件截面或者增强刚度的方法已经不能满足结构的实用功能要求,比较合理的设计方法是在结构上增加耗能装置,并根据能量输入、能量吸收和能量耗散进行结构谢十,运用新型材料制成的阻尼器的应用已成为结构工程振动控制具有前沿性的发展方向之一,粘弹性阻尼器就是耗能装置的一种,它构造简单,滴振效果好o1工作原理在结构上设置粘弹性阻尼器是减结构动力响应的简单有效的方法。
所谓磁流变(M R)阻尼器就是以磁流变液作为工作介质的,应用磁流变效应特l生I而制造出的—种新型振动控制装置。
它具有结构简单、能耗小、出力大、响应快、阻尼力连续可调等优点,是结构振动半主动控制的理想元件。
此外,M R阻尼器在停电或在半主动控制策略失效后,阻尼器仍然能够作为一种被动耗能装置来抑制结构振动,是一种失效一安全型阻尼器。
在地震时粘弹性阻尼器能够先进入非弹性阶段,大幅消耗输入能量,迅速衰减结构的振动响应,减少或避免结构构件的损坏,确保结构的安全。
粘弹性阻尼器—般由粘弹性材料和约束钢板或内外约束钢圆筒构成,是—种主要与速度相关的被动消能减振装置。
在结构振动下,粘弹性材料产生剪切变形,从而耗敝结构的振动能Ii o大量的振动台试验表明,在结构上增设粘弹性阻尼器,不仅可以增加结构的刚度还可以大幅提高结构的阻尼,耗散输^结构的能量,减小结构的振动响应。
—般而言,结构中加入粘弹性阻尼器后,将改变结构的刚度、阻尼分布,从而使结构的动力特性也随之改变。
黏滞阻尼器在框架结构抗震加固中的应用与研究

黏滞阻尼器在框架结构抗震加固中的应用与研究摘要:近年来利用阻尼器对既有建筑结构进行减震加固得到了广泛关注。
本文建立了某实际4层框架结构的非线性模型,然后设置黏滞阻尼器(VFD),利用时程分析法对有、无控结构进行地震响应分析计算,得出该结构的耗能减震效果。
最后利用云图法,选取数条地震波对结构进行分析计算,对有、无控结构进行概率地震分析,通过对比概率需求模型、易损性曲线的差异分析黏滞阻尼器的耗能减震作用。
计算结果表明,通过对该结构设置若干VFD,结构的地震响应得到显著地减小,结构整体减震效果明显;有控结构的地震需求易损性曲线相较无控结构趋于平缓,表明VFD对该结构的耗能减震加固作用明显。
关键词:框架结构;黏滞阻尼器;非线性时程分析;云图法;结构概率地震需求分析耗能减震技术就是在结构的选定位置增设耗能装置,在小震作用下,耗能装置和结构一并处于弹性状态,可减小结构的地震响应,使结构主体处于安全范围,一旦出现大震,这些装置可以在结构破坏前率先达到屈服状态,来消耗大部分能量。
近年来利用耗能减震器对既有建筑结构进行减震加固得到了广泛关注。
1.消能减震的概念及耗能原理为了达到消震减能的目的,可以通过消能装置的安装来避免主体结构因地震能量而响应而造成的破坏,究其本质,消能减震技术是一种加固技术。
传统的抗震思路是进行“硬抗”,但却存在诸多的弊端问题。
而消能减震技术,则能够避免传统抗震加固的不足,通过“以柔克刚”的方式进一步达到抗震加固的效果。
从消能减震结构角度来看,其方式就是融入了减震控制思想,在原结构当中增加了消能减震装置,从而形成新的结构系统,图1对其进行了展现,通过图中资料的了解,无论是原结构还是消能减震装置,都是新结构系统的重要组成部分,并且在其中发挥了重要的作用。
相较于原结构而言,新结构系统在效能能力以及动力特征方面有自身的独特性,能够降低原结构承受的地震作用,这也是进行地震反应控制的一种有效方式,其目的是为了减少对主体结构造成的损害。
2024年阻尼器市场发展现状

2024年阻尼器市场发展现状引言阻尼器作为一种重要的机械装置,广泛应用于各个领域,如建筑工程、航空航天、汽车制造等。
阻尼器的主要作用是通过消耗能量减少结构振动或运动的过程中产生的冲击和震动。
本文将对阻尼器市场的发展现状进行分析,讨论阻尼器应用领域、市场规模以及发展趋势。
阻尼器的应用领域阻尼器广泛应用于不同领域,下面将介绍几个主要的应用领域。
建筑工程在建筑工程中,阻尼器常用于高层建筑和桥梁等结构的抗震设计。
由于地震和风力等因素可能引起结构的振动,阻尼器可以通过吸收和消散振动能量,减少结构的动态反应,提高结构的抗震性能。
航空航天在航空航天领域,阻尼器被广泛用于飞机和航天器的减震和振动控制。
通过安装阻尼器,可以减少飞机在飞行过程中的颠簸和摇晃感,提高飞行的舒适性。
汽车制造在汽车制造业中,阻尼器是车辆悬挂系统的重要组成部分。
它可以减少车辆在运动过程中的振动和颠簸,提供平稳的乘坐体验。
阻尼器的性能也对车辆的行驶稳定性和安全性有着重要影响。
阻尼器市场规模阻尼器市场的规模不断扩大,下面将对其进行分析。
根据市场研究报告,2019年全球阻尼器市场规模约为100亿美元。
亚太地区是阻尼器市场的主要消费地区,其市场份额约占全球的40%。
随着亚太地区国家经济的快速发展以及基础设施建设的加快,阻尼器的需求持续增加。
此外,北美地区和欧洲地区也是阻尼器市场的重要市场。
这些地区的高层建筑、桥梁以及汽车制造业的发展,使得阻尼器的需求保持稳定增长。
阻尼器市场发展趋势阻尼器市场具有以下发展趋势。
技术创新随着科技的不断进步,阻尼器的设计和制造技术也在不断创新。
新材料的应用、先进的计算模型以及精密的制造工艺,使得阻尼器的性能得到大幅提升。
技术创新将推动阻尼器市场的持续发展。
全球市场合作全球市场合作是阻尼器行业的趋势之一。
跨国公司通过合作和并购来扩大市场份额,提高竞争力。
同时,合作也使得公司能够提供更广泛的产品和服务,满足不同地区客户的需求。
建筑物柔性降震技术在地震灾害中的应用研究

建筑物柔性降震技术在地震灾害中的应用研究地震是自然界中常见的一种地壳活动,其导致的灾害给人们的生命财产安全造成了巨大的威胁。
为了保护人们的生命财产安全,科学家和工程师们一直在不断研究和探索各种地震减灾技术,其中建筑物柔性降震技术成为了一种重要的解决方案。
建筑物柔性降震技术是一种通过利用建筑结构中的柔性和耗能材料降低地震作用效应的方法。
它通过增加建筑结构的柔韧性和可变变形性,来减小地震对建筑物的影响,提高建筑物的抗震能力。
在建筑物柔性降震技术中,最常见的应用就是利用隔震结构。
隔震结构是通过在建筑物的基础上设置隔震层,将地震引起的振动分离开来,从而保护建筑物的结构不受到破坏。
常见的隔震层材料包括橡胶、钢球、钢板等,这些材料具有较大的变形能力和能量吸收能力,从而能够有效地吸收地震能量,减小地震对建筑物的冲击。
另一种常见的柔性降震技术是利用阻尼器。
阻尼器是一种能够控制结构振动的装置,通过增加结构的阻尼,有效减小地震引起的共振效应,从而保护建筑物的结构。
常见的阻尼器包括摩擦阻尼器、液体阻尼器等,它们通过引入能量耗散机制,将地震能量转化为热能,从而减少地震对建筑物的破坏。
除了隔震和阻尼技术,还有其他一些建筑物柔性降震技术也被广泛研究和应用。
例如,利用可变刚度结构可以根据地震作用调整建筑物的刚度,从而减小结构的振动响应;利用形状记忆合金等智能材料也可以实现建筑物的柔性控制,提高地震时的响应性能。
建筑物柔性降震技术的应用研究已经取得了一定的成果。
很多实际工程项目中,例如高层建筑、大型桥梁等,都采用了柔性降震技术来提高结构的抗震能力。
这些应用实例显示了建筑物柔性降震技术在地震灾害中的重要作用。
然而,建筑物柔性降震技术也面临一些挑战和问题。
首先,柔性降震技术需要大量的材料和设备,增加了建筑成本和施工难度。
其次,柔性降震技术需要定期维护和检查,对运维管理提出了一定的要求。
此外,柔性降震技术在实践中也面临一些技术问题,例如柔性降震装置的设计、性能预测等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械阻尼器在地震工程中的应用研究
近年来,地震灾害频繁发生,给人们的生命和财产安全带来了巨大威胁。
在地
震工程领域,研究人员们一直致力于开发和应用各种新技术来减轻地震对建筑物和结构的破坏程度。
其中,机械阻尼器作为一种重要的减震措施,受到了广泛关注和应用。
机械阻尼器是一种利用摩擦阻尼、粘滞阻尼等力学原理来消耗地震能量的装置。
它可以通过连接到结构上的弹簧和减震剪力器来有效减小建筑物在地震中所受到的力和位移,并降低结构的动态响应。
相比传统的减震技术,机械阻尼器具有结构简单、安装方便、可调性好等优点,因此在地震工程中得到了越来越多的应用。
首先,机械阻尼器在地震工程中的应用在结构抗震性能提高方面发挥了重要作用。
经过实验和实际工程验证,机械阻尼器可以显著减小建筑物在地震中的最大位移和剪力,减轻结构的震动响应。
通过合理设计和选择适当的机械阻尼器参数,可以达到提高建筑物抗震性能的目的。
此外,机械阻尼器还可以提高结构的耐候性和耐久性,延长建筑物的使用寿命。
其次,机械阻尼器在地震后的修复和重建中具有重要意义。
在地震灾害之后,
许多建筑物和结构需要进行修复和重建工作。
机械阻尼器能够有效地减小修复和重建工作的难度和成本。
相比传统的加固方法,机械阻尼器不仅可以提供更好的减震效果,而且可以减少结构的损坏范围,从而减少修复和重建工作的范围和时间。
此外,机械阻尼器在地震风险评估和设计规范制定中也具有重要地位。
通过对
不同结构类型和地震动特性的分析,研究人员可以对机械阻尼器的参数进行合理选择和设计,提高结构的整体抗震性能。
同时,机械阻尼器的应用还可以为地震风险评估和建筑设计规范的制定提供参考依据,为更好地保护人们的生命和财产安全提供支持。
最后,需要注意的是,在机械阻尼器的应用中仍然存在一些问题和挑战。
例如,机械阻尼器的耐久性和可靠性需要进一步提高;机械阻尼器的成本较高,在实际工程中的应用需要综合考虑经济成本和实际效益。
此外,鉴于地震工程的复杂性,机械阻尼器的应用也需要与其他减震技术进行结合,寻找最优的解决方案。
综上所述,机械阻尼器作为一种重要的减震措施,在地震工程中的应用研究具
有重要的意义。
通过合理选择和设计机械阻尼器参数,可以提高建筑物的抗震性能,减小地震灾害对人们生命和财产的影响。
随着技术的不断进步和应用的推广,相信机械阻尼器在地震工程中的应用前景将更加广阔。