小波与小波变换

合集下载

一看就懂的小波变换ppt

一看就懂的小波变换ppt

8
8
[32.5,0, 0.5,0.5,31,-29,27,-25]
Haar小波反变换:
1 1 1 0 1 0 0 0 32.5 64
1
1
1
0 -1
0
0
0
0
2
1 1 -1 0 0 1 0 0 0.5 3
1 1 -1 1 -1 0
0 1
0 -1 00
0 1
0 0
0.5
31
61 60
傅立叶变换: Of M log2 M
小波变换:
Ow M
设有信号f(t):
其傅里叶变
换为F(jΩ):
即:
f (t) 1 F ( j)e jtd
2
பைடு நூலகம் =
1
0. 8
0. 6
0. 4
0. 2
0 -0. 2 -0. 4 -0. 6
Ψ(t)
-0. 8
-1 0
2
4
6
8
10
12
14
16
18
+
1
0. 8
0. 6
二维金字塔分解算法
令I(x,y)表达大小为M N旳原始图像,l(i)表达相对于分析
小波旳低通滤波器系数,i=0,1,2,…,Nl-1, Nl表达滤波器L旳 支撑长度; h(i)表达相对于分析小波旳高通滤波器系数,
i=0,1,2,…,Nh-1, Nh表达滤波器H旳支撑长度,则
IL x,
y
1 Nl
1.2 二维小波变换(二维多尺度分析)
二维小波变换是由一维小波变换扩展而来旳,二维尺度 函数和二维小波函数可由一维尺度函数和小波函数张量 积得到,即:

小波变换课件

小波变换课件

消失矩性质
消失矩定义:小波变换在高频部分具有快速衰减的特性
消失矩性质与信号处理:在信号处理中,消失矩性质使得小波变换能够有效地提取信号的 高频成分
消失矩与多分辨率分析:消失矩性质是实现多分辨率分析的关键,能够同时获得信号在不 同尺度上的信息
消失矩的应用:在图像处理、语音识别、信号去噪等领域,消失矩性质都有着广泛的应用
图像去噪:小波变换能够将噪声与 图像信号进行分离,从而去除噪声
语音处理
小波变换在语音 信号处理中的应 用
小波变换在语音 识别和合成中的 应用
小波变换在语音 增强和去噪中的 应用
小波变换在语音 编码和压缩中的 应用
其他应用领域
信号处理 图像处理 语音处理 模式识别
小波变换的优缺点分析
小波变换的优点
用的特征信息
图像处理:小波变换在图像 处理中也有广泛的应用,如
图像压缩、去噪、增强等
图像处理
图像压缩:小波变换能够去除图像 中的冗余信息,实现高效的图像压 缩
图像融合:将多个图像的小波系数 进行融合,可以得到一个新的、包 含多个图像信息的图像
添加标题
添加标题
添加标题
添加标题
图像增强:通过调整小波系数,可 以突出图像的某些特征,提高图像 的视觉效果
多维小波变换算法:介绍多维小波变换的基本原理和算法实现,包括多维小波变换 的定义、性质、算法流程等。
多维小波变换在图像处理中的应用:介绍多维小波变换在图像处理中的应用,包括 图像压缩、图像去噪、图像增强等。
多维小波变换的优缺点:介绍多维小波变换的优缺点,包括优点如多尺度分析、方 向性、时频局部化等,以及缺点如计算量大、需要选择合适的小波基等。
数学表达式:对于任意实数a,如果f(t)的小波变换为Wf(s,a),则f(t-a)的小波变换仍为 Wf(s,a)

小波包变换和小波变换

小波包变换和小波变换

小波包变换和小波变换小波包变换和小波变换是一种信号分析和处理的方法,它们可以将信号分解成不同尺度和频率的成分,并可以分析和处理这些成分。

下面将对小波包变换和小波变换进行解释。

1. 小波包变换:小波包变换是在小波变换的基础上发展而来的一种方法。

小波包变换将信号分解成多个子带,并对每个子带进行进一步的分解。

相比于小波变换,小波包变换提供了更高的频率分辨率和更细的频率划分。

小波包变换的核心思想是使用不同的小波基函数对信号进行分解。

通过选择不同的小波基函数,可以获得不同尺度和频率的信号成分。

小波包变换可以通过反复迭代的方式,不断将信号分解成更细的频率带,进一步提高频率分辨率。

在每一级分解中,信号被分解成低频和高频两部分,低频部分可以继续进行进一步的分解。

小波包变换的优势在于能够提供更详细的频域信息,可以更好地分析信号的特征和结构。

它在信号处理、图像处理等领域有着广泛的应用,例如信号去噪、特征提取等。

2. 小波变换:小波变换是一种将信号分解成不同频率成分的方法。

通过小波变换,我们可以将信号从时域转换到频域,同时可以分析信号的时间和频率特性。

小波变换的基本思想是使用小波基函数对信号进行分解。

小波基函数是一种具有局部性质的函数,它能够在时域和频域中同时提供较好的分辨率。

通过选择不同的小波基函数,可以获得不同频率范围内的信号成分。

小波变换通过对信号进行连续的分解和重构,可以分析信号的频域特性。

小波变换有多种变体,其中最常用的是离散小波变换(DWT)。

离散小波变换将信号分解成多个尺度和频率的子带,通过这些子带可以分析信号的不同频率成分。

离散小波变换具有高效性和局部性,可以在信号处理中广泛应用,例如信号去噪、压缩等。

总结:小波包变换是在小波变换的基础上发展的一种方法,它能够提供更高的频率分辨率和更细的频率划分。

小波包变换通过选择不同的小波基函数,将信号分解成多个子带,并对每个子带进行进一步的分解。

相比之下,小波变换是将信号分解成不同频率成分的方法,通过选择不同的小波基函数,可以获得不同频率范围内的信号成分。

小波分解和小波变换

小波分解和小波变换

小波分解和小波变换
小波分解和小波变换是一种信号处理技术,它们可以将信号分解成不同频率的小波,从而更好地理解和处理信号。

小波分解和小波变换在信号处理、图像处理、音频处理等领域都有广泛的应用。

小波分解是将信号分解成不同频率的小波,这些小波具有不同的频率和振幅,可以更好地描述信号的特征。

小波分解可以通过小波变换来实现,小波变换是一种将信号转换成小波系数的方法。

小波变换可以将信号分解成不同频率的小波,从而更好地理解和处理信号。

小波分解和小波变换的优点在于它们可以将信号分解成不同频率的小波,从而更好地描述信号的特征。

小波分解和小波变换可以用于信号去噪、信号压缩、图像处理、音频处理等领域。

在信号去噪方面,小波分解和小波变换可以将信号分解成不同频率的小波,从而更好地去除噪声。

在信号压缩方面,小波分解和小波变换可以将信号分解成不同频率的小波,从而更好地压缩信号。

在图像处理方面,小波分解和小波变换可以将图像分解成不同频率的小波,从而更好地处理图像。

在音频处理方面,小波分解和小波变换可以将音频分解成不同频率的小波,从而更好地处理音频。

小波分解和小波变换是一种非常有用的信号处理技术,它们可以将信号分解成不同频率的小波,从而更好地理解和处理信号。

小波分解和小波变换在信号处理、图像处理、音频处理等领域都有广泛的
应用,是一种非常重要的信号处理技术。

小波变换课件

小波变换课件

小波变换的基本思想是将信号分 解成一系列的小波函数,每个小 波函数都有自己的频率和时间尺
度。
小波变换通过平移和缩放小波函 数,能够适应不同的频率和时间 尺度,从而实现对信号的精细分
析。
小波变换的特点
01
02
03
多尺度分析
小波变换能够同时分析信 号在不同频率和时间尺度 上的特性,提供更全面的 信号信息。
图像去噪
利用小波变换去除图像中的噪声,提高图像的清晰度和质 量。
在小波变换中,噪声通常表现为高频系数较大的值,通过 设置阈值去除这些高频系数,可以达到去噪的效果。去噪 后的图像能够更好地反映原始图像的特征和细节。
图像增强
ቤተ መጻሕፍቲ ባይዱ
利用小波变换增强图像的某些特征,突出显示或改善图像的某些部分。
通过调整小波变换后的系数,可以增强图像的边缘、纹理等特定特征。这种增强 方式能够突出显示图像中的重要信息,提高图像的可读性和识别效果。
在信号处理、图像处理、语音识别等 领域有广泛应用。
特点
能够同时分析信号的时域和频域特性 ,具有灵活的时频窗口和多分辨率分 析能力。
离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,通过对小波函数的离 散化处理,实现对信号的近似和
细节分析。
特点
计算效率高,适合于数字信号处理 和计算机实现。
应用
在信号处理、图像处理、数据压缩等领域有广泛应用,如语音压缩、图像压缩 、数据挖掘等。
CHAPTER 04
小波变换在图像处理中的应用
图像压缩
利用小波变换对图像进行压缩,减少存储空间和传输带宽的 需求。
通过小波变换将图像分解为不同频率的子带,去除高频细节 ,保留低频信息,从而实现图像压缩。压缩后的图像可以通 过逆小波变换重新构造,保持图像质量的同时减小数据量。

小波变换ppt课件

小波变换ppt课件
在此添加您的文本16字
自适应压缩
在此添加您的文本16字
小波变换的自适应性质使得它在压缩过程中能够根据信号 的特性进行动态调整,进一步提高压缩效率。
信号去噪
有效去噪 多尺度分析 自适应去噪
小波变换能够检测到信号中的突变点,从而在去噪过程 中保留这些重要特征,同时去除噪声。
小波变换的多尺度分析能力使其在去噪过程中能够同时 考虑信号的全局和局部特性,实现更准确的去噪效果。
小波变换的算法优化
1 2
小波变换算法的分类
介绍不同类型的小波变换算法,如连续小波变换、 离散小波变换等。
算法优化策略
探讨如何优化小波变换算法,以提高计算效率和 精度。
3
算法实现技巧
介绍实现小波变换算法的技巧和注意事项。
小波变换在实际应用中的挑战与解决方案
01
小波变换在信号处理中的应用
介绍小波变换在信号处理领域的应用,如信号去噪、特征提取等。
小波变换ppt课件
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
01
小波变换是一种信号处理方法, 它通过将信号分解成小波函数的 叠加,实现了信号的多尺度分析 。
02
小波变换在图像处理中的应用
探讨小波变换在图像处理领域的应用,如图像压缩、图像增强等。
03
实际应用中的挑战与解决方案
分析小波变换在实际应用中面临的挑战,并提出相应的解决方案。
THANKS
感谢观看
离散小波变换具有多尺度、多方向和自适应的特点,能够提供信号或图像在不同尺 度上的细节信息,广泛应用于信号降噪、图像压缩和特征提取等领域。

小波变换的基本概念和原理

小波变换的基本概念和原理

小波变换的基本概念和原理小波变换是一种数学工具,用于分析信号的频谱特性和时域特征。

它在信号处理、图像处理、数据压缩等领域有着广泛的应用。

本文将介绍小波变换的基本概念和原理。

一、什么是小波变换?小波变换是一种将信号分解为不同频率的成分的数学工具。

它类似于傅里叶变换,但不同之处在于小波变换不仅能提供频域信息,还能提供时域信息。

小波变换使用一组称为小波基函数的函数族,通过对信号进行连续或离散的变换,将信号分解为不同尺度和频率的成分。

二、小波基函数小波基函数是小波变换的基础。

它是一个用于描述信号特征的函数,具有局部性和可调节的频率特性。

常用的小波基函数有Morlet小波、Haar小波、Daubechies 小波等。

这些小波基函数具有不同的性质和应用场景,选择适当的小波基函数可以更好地适应信号的特征。

三、小波分解小波分解是将信号分解为不同尺度和频率的过程。

通过对信号进行连续或离散的小波变换,可以得到小波系数和小波尺度。

小波系数表示信号在不同尺度和频率下的能量分布,而小波尺度表示不同尺度下的信号特征。

小波分解可以将信号的局部特征和全局特征分离开来,为信号分析提供更多的信息。

四、小波重构小波重构是将信号从小波域恢复到时域的过程。

通过对小波系数进行逆变换,可以得到原始信号的近似重构。

小波重构可以根据需要选择保留部分小波系数,从而实现信号的压缩和去噪。

五、小波变换的应用小波变换在信号处理、图像处理、数据压缩等领域有着广泛的应用。

在信号处理中,小波变换可以用于信号去噪、特征提取、模式识别等任务。

在图像处理中,小波变换可以用于图像压缩、边缘检测、纹理分析等任务。

在数据压缩中,小波变换可以将信号的冗余信息去除,实现高效的数据压缩和存储。

六、小波变换的优势和局限性小波变换相比于傅里叶变换具有一些优势。

首先,小波变换可以提供更多的时域信息,对于非平稳信号和瞬态信号具有更好的分析能力。

其次,小波变换可以实现信号的局部分析,对于局部特征的提取和分析更为有效。

《小波分析》PPT课件

《小波分析》PPT课件
(Orthonormal Wavelet and Multiresolution Analysis)
3.1. 多分辨分析
(Multiresolution Analysis)
➢ 在(a,b)-W(a,b)给出的二维小波谱空间 ,二进离散小波谱点的分布规律可以用 Appendix C Fig.3. 加以说明。
Appendix C Fig.3.
正交小波的点谱吸收特性
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
01234567
0
1
2
3
0
1
0
§3. 正交小波和多分辨分析
级数的系数k, j 正好是信号f(x)的
小波变W f换a, b
在二进离散点:
2k , 2k j
(37)
上的取值。这说明:对于正交小波来说,任 何信号在二进离散点上的小波变换包含了它 的小波变换的全部信息,所以
正交小波具有优美的谱吸收特点。
小波变换与Fourier变换
Fourier变换:
➢ 对于任何信号f(x),只有当它是时间有 限时,它的谱F()(Fourier变换)才是频 率吸收的;
信号f(x)的另一种等价描述(因为Fourier变
换是信号的等价描述)
局限
遗憾的是,Gabor变换存在如下局限:
Gabor变换没有“好”的(即可以
构成标架或者正交基)离散形式;
Gabor变换没有快速算法:比如没 有 类 似 于 离 散 Fourier 变 换 之 FFT
的快速数值算法;
Appendix A Fig.1. Gabor变换的固定时-频窗口
注释
注释:如果小波母函数 x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9章小波图像编码由于小波变换技术在20世纪90年代初期已经比较成熟,因此从那时起就开始出现各种新颖的小波图像编码方法。

这些编码方法包括EZW, 在EZW算法基础上改进的SPIHT和EBCOT等。

由于EZW算法的开拓给后来者带来很大的启发,它是一种有效而且计算简单的图像压缩技术,因此本章将重点介绍。

9.1 从子带编码到小波编码9.1.1 子带编码子带编码(subband coding,SBC)的基本概念是把信号的频率分成几个子带,然后对每个子带分别进行编码,并根据每个子带的重要性分配不同的位数来表示数据。

在20世纪70年代,子带编码开始用在语音编码上。

由于子带编码可根据子带的重要性分别进行编码等优点,20世纪80年代中期开始在图像编码中使用。

1986年Woods, J. W.等科学家曾经使用一维正交镜像滤波器组(quadrature mirror filterbanks,QMF)把信号的频带分解成4个相等的子带,如图9-01所示。

图9-01(a)表示分解方法,图9-01(b)表示其相应的频谱。

图中的符号表示频带降低1/2,HH表示频率最高的子带,LL表示频率最低的子带。

这个过程可以重复,直到符合应用要求为止。

这样的滤波器组称为分解滤波器树(decomposition filter trees)。

图9-01 Lena图的子带编码(1984年)9.1.2 多分辨率分析S.Mallat于1988年在构造正交小波基时提出了多分辨率分析(multiresolution analysis)的概念,从空间上形象地说明了小波的多分辨率的特性,提出了正交小波的构造方法和快速算法,叫做Mallat算法。

根据Mallat和Meyer等科学家的理论,使用一级小波分解方法得到的图像如图9-02所示。

图9-02 Lena的两种分辨率分析图像(1986年)如果在一级分解之后继续进行分析,这种分解过程叫做多分辨率分析,实际上就是多级小波分解的概念。

使用多级小波分解可以得到更多的分辨率不同的图像,这些图像叫做多分辨率图像(multiresolution images)。

图9-03表示Lena的多分辨率图像。

其中,粗糙图像1的分辨率是原始图像的1/4,粗糙图像2的分辨率是粗糙图像1的1/4。

图9-03 Lena的多分辨率分析图像(1986年)9.1.3 滤波器组与多分辨率为了压缩语音数据,在1976年Croisier, Esteban和Galand介绍了一种可逆滤波器组(invertible filter bank),使用滤波和子采样(subsampling)的方法用来把离散信号()f n分解成大小相等的两种信号,并且使用叫做共轭镜像滤波器(conjugate mirror filters)的一种特殊滤波器来取消信号的混叠(aliasing),这样可从子采样的信号中重构原始信号()f n。

这个发现使人们花费了10多年的努力来开发一套完整的滤波器组理论。

正交小波的多分辨率理论(multiresolution theory)已经证明,任何共轭镜像滤波器都可以用来刻画一种小波()t,它能够生成2L(R)实数空间中的正交基,而且快速离散小波变换可以使用串联这些共轭镜像滤波器来实现。

连续小波理论和离散滤波器组之间的等效性揭示了数字信号处理和谐波分析之间关系,这就使人们一直在致力于解决它们之间的关系问题。

9.1.4 从子带编码到小波编码在过去的年代里,人们做了许多的努力来改进滤波器组的设计和子带编码技术。

在小波编码技术(wavelet coding,WC)的旗号下,人们提出了许多与子带编码技术非常类似和密切相关的方法。

小波编码技术中的一个重要的问题是如何构造正交的小波基函数系列。

正交的小波基函数系列可以在连续的时间域中构造,但如何在离散的时间域中构造是一个现实问题。

在众多的研究者中,Inrid Daubechies在离散的时间域中构造小波基函数方面做出了杰出的贡献。

她于1988年[1]最先揭示了小波变换和滤波器组之间的内在关系:离散时间滤波器(discrete-time filters)或者正交镜象滤波器(quadrature mirror filter,QMF)可以被叠代,并在某一种匀称(regularity,可粗略理解为函数的平滑性)条件下可获得连续小波。

这是一个非常实际和极其有用的发现,这就意味着可使用有限冲击响应(finite impulse response,FIR)的离散时间滤波器来执行小波分解,使用相同的滤波器可重构小波分解之后的信号。

由此可见,早期开发的子带编码实际上是一种小波变换。

在Daubechies揭示小波变换和滤波器组之间的关系之前,在图像编码中小波技术并不流行。

从20世纪90年代开始,Cohen, Daubechies和Feauveau,简称为CDF,系统地开发了构造紧支持双正交小波(compactly supported biorthogonal wavelets)的方法[2],以及其他学者提出的各种算法,使小波技术在图像编码中得到广泛的应用。

在构造小波和开发小波变换算法中,比利时成长的年轻学者Wim Sweldens在1994年的博士论文中首先提出了―The Lifting Scheme‖[3][4],简称Lifting/lifting(提升法)。

该方法的基本思想是首先把信号分成偶数号样本和奇数号样本,根据信号本身的相关性,奇数样本使用偶数样本进行预测,由预测丢失的信号叫做信号的细节信息,然后调整偶数样本以保存原始信号的粗糙信息和细节信息。

该方法保留了小波分析的特性(时间频率局部化和快速计算),通过放弃小波的平移和缩放,并且放弃用傅立叶分析来构造小波,从而解决了非无限信号或者非周期信号的小波和小波变换问题,也使计算速度得到很大的提高,因此被称为第二代小波(second generation wavelets),现在也成为制定JPEG2000标准中小波部分的基础。

9.1.5 小波分解图像方法使用小波变换把图像分解成各种子带的方法有很多种。

例如,均匀分解(uniform decomposition),非均匀分解(non-uniform decomposition),八带分解(octave-band decomposition)和小波包分解(wavelet-packet decomposition),根据不同类型的图像选择不同小波的自适应小波分解(adaptive wavelet decomposition)等。

其中,八带分解是使用最广泛的一种分解方法。

这种分解方法属于非均匀频带分割方法,它把低频部分分解成比较窄的频带,而对每一级分解的高频部分不再进一步分解。

图9-04表示Lena图像的数据分解。

图9-04 Lena图像的数据分解9.2 失真的度量方法在电子工程中,信号噪声比(SNR)一直是最流行的误差度量指标,在大多数情况下可提供很有价值的信息,在数学上也比较容易计算。

信号噪声比虽然也用在图像编码中,但由于它的数值与图像编码系统中高压缩比的关系不容易体现,因此提出了其他的几种度量方法,包括平均主观评分(mean opinion score,MOS)。

9.3 EZW编码9.3.1 介绍在1992年,Lewis,A. S.和Knowles, G.首先介绍了一种树形数据结构来表示小波变换的系数[6]。

在1993年,Shapiro, J. M.把这种树形数据结构叫做―零树(zerotree)‖,并且开发了一个效率很高的算法用于熵编码,他的这种算法叫做嵌入(式)零树小波(embedded zerotree wavelet,EZW)算法[7]。

EZW主要用于与小波变换有关的二维信号的编码,但不局限于二维信号。

嵌入(式)零树小波中的―小波‖是指该算法以离散小波变换为基础,以大的小波变换系数比小的小波变换系数更重要,以及高频子带中的小系数可以被抛弃的事实为背景。

―零树‖是指小波变换系数之间的一种数据结构,因为离散小波变换是一种多分辨率的分解方法,每一级分解都会产生表示图像比较粗糙(低频图像)和比较精细(高频图像)的小波系数,在同一方向和相同空间位置上的所有小波系数之间的关系可用一棵树的形式表示,如果树根和它的子孙的小波系数的绝对值小于某个给定的阈值T(threshold),那么这棵树就叫做零树。

―嵌入‖是渐进编码技术(progressive encoding)的另一种说法,其含义是指一幅图像可以分解成一幅低分辨率图像和分辨率由低到高的表示图像细节的许多子图像,图像合成的过程与分解的过程相反,使用子图像生成许多分辨率不同的图像。

EZW编码指的是,按照用户对图像分辨率的要求,编码器可以进行多次编码,每进行一次编码,阈值降低1/2,水平和垂直方向上的图像分辨率各提高1倍。

编码从最低分辨率图像开始扫描,每当遇到幅度大于阈值的正系数就用符号P表示,幅度的绝对值大于阈值的负系数用符号N表示,树根节点上的系数幅度小于阈值而树枝中有大于阈值的非零树用符号Z表示,零树用符号T表示。

小波图像编码(wavelet image coding)的一般结构如图9-05所示,它主要由小波变换(wavelet transform)、量化(quantization)和熵编码(entropy encoding)等3个模块组成。

小波变换不损失数据,但它是EZW算法具有渐进特性的基础;量化模块对数据会产生损失,数据损失的程度取决于量化阈值的大小,EZW算法指的就是这个模块的9.3.2 算法EZW算法是多分辨率图像的一种编码方法。

对整幅图像编码一次,生成一种分辨率图像,编码一次叫做一遍扫描。

每一遍扫描大致包含三个步骤:设置阈值、每个小波系数与阈值进行比较、量化系数和重新排序。

在扫描过程中需要维护两种表,一种是小波系数的符号表,另一种是量化表。

1. 零树回顾二维小波变换的计算过程,不难想象各级子图像中的系数是相关的。

在说明零树的概念之前,需要对小波变换得到的系数、名称和符号加以说明。

现以3级分解的离散小波变换为例,图9-06表示Lena图像使用三级滤波器组做小波变换输出的子图像(sub image)。

需要注意的是,分解之后的图像的名称在文献上有很多种,除了子图像之外,有的叫做子带图像(sub-band image),有的把子图像进一步区分为高频子图像和低频子图像,或者粗糙图像和精细图像等名称。

这些名称从不同的角度反映图像的特性,在不同的场合下使用可以收到异曲同工的效果。

图9-06中的数字1, 2和3表示分解的级数编号,LL3表示第3级的低频子图像,在这个例子中,它是分辨率最低的子图像。

HL3表示第3级分解在水平方向上的子图像,LH3表示第3级分解在垂直方向上的子图像,HH3表示第3级分解在对角线方向上的子图像,其他的组合符号依此类推。

相关文档
最新文档