河网水动力模型及水质模拟研究展望

合集下载

河道全过程水动力、水质模型

河道全过程水动力、水质模型

河道全过程水动力、水质模型
首先,让我们来看看水动力模型。

水动力模型通常用来模拟河
道中水流的速度、流量、水位、流态等动态变化。

这些模型可以基
于雷诺方程、纳维-斯托克斯方程等流体力学原理,结合地形、河道
断面特征、边界条件等参数,来模拟河流中水流的运动。

通过水动
力模型,我们可以预测洪水、河道泥沙输移、水力结构物对水流的
影响等,为水利工程设计和水资源管理提供重要参考。

其次,水质模型则是用来模拟河道中水质的变化过程。

这些模
型可以基于质量守恒方程、溶解氧平衡方程、营养盐循环方程等水
质反应动力学原理,结合污染物输入、河流混合、水生态系统作用
等因素,来模拟河流中水质的时空分布变化。

通过水质模型,我们
可以预测污染物扩散、水生态系统健康状况、水质改善措施效果等,为环境监测和水环境管理提供重要支持。

综合考虑水动力和水质模型,我们可以全面理解河道系统中水
流运动和水质变化的复杂过程。

这些模型的建立需要依靠大量的实
测数据和对河道系统的深入理解,同时也需要不断验证和修正,以
提高模型的可靠性和适用性。

在实际应用中,水动力和水质模型常
常结合使用,为河道管理、水资源保护和环境保护决策提供科学依据。

希望这些信息能够对你有所帮助。

湖泊水动力模型研究进展

湖泊水动力模型研究进展

湖泊水动力模型研究进展湖泊作为重要的水体资源,对于生态环境和人类生活都具有重要的意义。

在湖泊水动力研究中,水动力模型的应用已经成为关键技术,可以帮助我们更好地理解湖泊的水流和水质运动规律,为湖泊保护和管理提供科学依据。

随着科学技术的不断发展,湖泊水动力模型研究也取得了长足的进步,本文将围绕湖泊水动力模型研究进展进行分析和总结。

一、湖泊水动力模型的基本原理湖泊水动力模型是用来描述湖泊水流运动规律的数学模型,主要包括水流运动方程、湖泊边界条件和湖泊水质模拟等内容。

其基本原理包括质量守恒方程、动量守恒方程和能量守恒方程,通过对这些基本方程的求解,可以得到湖泊水流速度场和水质分布规律。

湖泊水动力模型还需要考虑湖泊地形、气象条件、人为活动等因素的影响,以建立更加准确的模型。

在湖泊水动力模型研究中,常用的方法包括实验研究、数值模拟和实地观测等。

实验研究是指通过实验室水槽或湖泊模拟池等设施进行模拟实验,以获取湖泊水动力参数和湖泊水质信息。

数值模拟是指通过计算机仿真软件,建立湖泊水动力模型并进行数值求解,得到湖泊水流和水质分布等信息。

实地观测则是直接在湖泊中进行水动力参数和水质监测,获取湖泊实际的水动力和水质数据。

这些方法相辅相成,共同构建了湖泊水动力模型的研究体系。

1. 水动力参数的研究湖泊水动力模型中的水动力参数是描述湖泊水流特性的重要参数,包括湖泊底摩擦系数、湖泊混合系数、湖泊底面粗糙度等。

近年来,研究人员通过实验研究和数值模拟,不断改进湖泊水动力参数的计算方法,提高了模型的准确性和可靠性。

对湖泊水动力参数的实地观测也为模型的验证和修正提供了重要数据支持。

2. 水流动态模拟湖泊水流动态模拟是水动力模型研究的重点内容之一,主要包括湖泊水流速度场和流向、湖泊湛怀模拟等。

通过数值模拟和实地观测,研究人员不断改进湖泊水流动态模拟的方法,并结合地理信息系统(GIS)技术等工具,实现对湖泊水流动态的更加精细的模拟和预测。

河流水动力学与水质模拟方法研究

河流水动力学与水质模拟方法研究

河流水动力学与水质模拟方法研究随着经济的快速发展和人口的增长,全球范围内的水资源管理问题变得日益重要。

河流的水动力学和水质模拟方法研究对于有效管理和保护水资源至关重要。

本文将重点讨论河流水动力学和水质模拟方法的研究现状、挑战和应用前景。

首先,我们来了解河流水动力学的研究方法。

水动力学是研究水在河流中运动的科学,它关注着水流的速度、水位和水压等变化规律。

通过水动力学模型,人们可以模拟能够有效预测洪水、泥沙运移、河道变形等事件。

目前,常见的水动力学模型包括一维模型、二维模型和三维模型。

其中,一维模型适用于直线或弯曲较小的河流段,二维模型适用于较为复杂的河流段,而三维模型则可应用于高度复杂的河道网络。

然而,河流水动力学模拟仍然面临着一些挑战。

首先是模型参数的确定。

模型参数的准确性直接影响着模拟结果的可靠性,因此需要大量的实地或实验数据来进行调整和验证。

其次是模型计算的精度和效率。

由于河流系统具有高度非线性和空间变化特征,模型的计算复杂度很高,需要采用高性能计算方法和优化算法来提高计算效率和精度。

此外,模型的不确定性和稳定性也需要进一步研究。

水质模拟方法是研究河流中污染物扩散和传输的科学。

水质模拟方法可以帮助我们理解河流中污染物的传播规律和影响因素,从而采取相应的控制措施,保护水资源和生态环境。

目前,常见的水质模拟方法包括物理模型、统计模型和数学模型。

物理模型基于物理原理,通过实验或数值模拟的方法来研究水质变化规律。

统计模型主要是利用历史观测数据和统计方法来预测未来的水质变化。

数学模型则是利用数学方程和计算方法来模拟水体中污染物的传输和转化过程。

然而,水质模拟方法也面临着一些挑战。

首先是污染物源的确定和监测。

污染物源是水质模拟的基础,需要通过实地监测和模型估算来确定。

然而,由于污染物的复杂来源和多样性,确定准确的污染物源是非常困难的。

其次是水质模型的精度和准确性。

水质模型的精度直接影响着模拟结果的可信度,因此需要采用准确的反演方法和优化算法来提高模型的精度和准确性。

水域水动力及水质模拟研究

水域水动力及水质模拟研究

水域水动力及水质模拟研究水是人类的生命之源,也是地球上最重要的自然资源之一。

而水质与生命息息相关,直接关系到人们健康和生存环境。

针对现今水质污染日益严重的情况,如何评估和改善水质已经成为了一个紧迫的问题。

水域水动力及水质模拟研究是解决该问题的有效手段之一。

一.水域水动力模拟水动力模拟主要是针对水域内潮汐、流速和流量等进行建模和仿真。

在模拟过程中,需要涉及流体力学的知识,主要涉及到流体的运动、力学方程、湍流模型等。

以流量预测为例,在水库下游的城市,需要预测一定时间内的水流量,以便及时采取措施防止外部环境影响。

流量预测需要考虑时间因素、水库面积、水库总体积、水位等多个因素,并用计算方法得出预测值。

着重强调的是,水动力模拟有其固有的局限性。

例如,在浅水域的采沙场不会涉及到深度,在潮汐调控中,涉及到潮汐的涨落。

”所以说,水动力模拟只能精准地预测某些水质参数,例如流速、水深等。

对于水质的变化,需要进一步的水质模拟。

二.水质模拟水质模拟主要是针对水中有害物质和自然营养物质的监测和控制。

水质模拟分两种类型。

一种是使用数学公式模拟,另一种是使用物理模型模拟。

数学公式模拟一般适用于单质或同质异相物质的模拟。

例如,一般情况下,可以利用动力学公式来预测某个重金属的浓度变化。

同样,可以利用物理学的张力理论对湖泊遗传中的蓝藻进行数学建模,预测水生生物的生长和变化。

物理模型模拟一般适用于较为复杂的水质体系,如湾区与内海分类等。

如果将模型划分为三个层次,第一层次是物理层,主要涉及物理参数如温度、流动、稳定性等。

第二层次是化学层,主要涉及化学参数如有机物、溶解氧等。

第三层次是生物层,主要涉及生物参数,如浮游植物、浮游动物等。

了解和掌握水动力和水质模拟,可以为我们提供非常及时、准确的水环境信息。

同时,这项研究还可以指导决策者和地方政府的决策,促进改善水质,减少水环境污染。

河网水动力模型及水质模拟研究展望

河网水动力模型及水质模拟研究展望

2.2 单元划分模型
在大型复杂河网计算中,尤其在湖泊、水库较多的情况下,单元划分模型更 具优点,其基本思想[15]是:将水力特性相似、水位变化不大的某一片水体概化为 一个单元,单元间流量交换的媒介是连接河道,其本身无调蓄作用。 假定单元间存 在两种连接方式: 在无水工建筑物或障碍物(不存在局部水头损失)的情况下认为 是河型连接;堰型连接存在局部水头损失,又可分为自由出流和淹没出流两种形 式。 单元划分模型的主要控制方程为,对任意单元 i 建立时段( n∆t , (n + 1)∆t )内
取单元几何中心的水位为单元代表水位,给出水位与水面面积关系。将计算 河网分解为一定数量的单元,再进行分组,然后确定各单元间的连接类型。 对每个 单元给出微分形式的质量平衡方程,经有限差分法离散后得到以单元水位为基本 未知量的方程组,进而求解各单元的代表水位和单元间流量。
2.3 混合模型
姚琪等人认为,运河河网地区地势平坦,区内无长大的天然河流; 大多数河流 坡降平缓,流量很小;农灌渠道不计其数,再加上泵站、水闸、船闸等水利控制工 程,使河网的水力学描述更加复杂,因而在建模工作中完全如实地模拟如此庞大 复杂的水系几乎是不可能的。节点-河道模型和单元划分模型都不能很好地适应 运河水网的特性,前者失之过繁,后者失之过简。将节点-河道模型和单元划分模 型中与平原河网特性相适应的优点综合起来,并避免其不相适应的缺点,构成新 的数学模型,即混合模型。 建立混合模型的基本思想 [16] 是 : 将平原河网的水域区分为骨干河道和成片 水域两类,对骨干河道采用节点-河道模型; 对成片水域采用单元划分的方法将其 划分为单元,再引入当量河宽的概念,把成片水域的调蓄作用概化为骨干河道的 滩地,将其纳入节点-河道模型一并计算。
3

湖泊水动力模型研究进展

湖泊水动力模型研究进展

湖泊水动力模型研究进展湖泊是地球上重要的水体之一,它们在生态系统中扮演着重要的角色。

湖泊水动力模型的研究对于湖泊水资源的管理和保护具有重要意义。

随着科学技术的进步,湖泊水动力模型的研究不断取得新的进展。

本文将介绍湖泊水动力模型研究的现状和进展,以及未来可能的发展方向。

湖泊水动力模型是用来描述湖泊中水流运动、水体混合和污染物传输等过程的数学模型。

它可以帮助我们更好地了解湖泊的水动力特性,指导湖泊的环境保护和资源管理工作。

湖泊水动力模型的研究涉及到流体力学、水文学、环境科学等多个领域,近年来取得了一系列重要的进展。

在湖泊水动力模型的研究中,数值模拟技术的发展为模型的建立和求解提供了有效的工具。

通过数值模拟,可以模拟湖泊水体运动的复杂过程,得到湖泊水动力的详细分布和变化规律。

这对于湖泊水资源的管理和保护具有重要意义。

数值模拟技术还可以帮助我们更好地理解湖泊水动力过程中的复杂机理,为进一步改进和优化湖泊水动力模型提供了强大的支持。

多学科交叉研究对于湖泊水动力模型的发展起到了重要作用。

湖泊水动力模型的研究涉及到流体力学、水文学、环境科学等多个学科领域,要深入理解湖泊水动力过程的复杂机理,需要多学科之间的紧密合作和交流。

近年来,不少研究团队在湖泊水动力模型的研究中开展了跨学科合作,取得了一系列重要的成果。

这些成果不仅推动了湖泊水动力模型的研究,也为相关学科领域的发展带来了新的思路和方法。

未来,湖泊水动力模型的研究还面临着一些挑战和机遇。

一方面,需要进一步深入研究湖泊水动力过程的复杂机理,探索更精确、更可靠的湖泊水动力模型建立和求解方法。

需要加强湖泊水动力模型与实际应用的结合,将研究成果更好地应用于湖泊水资源管理、环境监测和灾害预测等方面。

还需要促进跨学科合作,推动湖泊水动力模型研究迈向更加深入和广泛的领域。

河网水动力及水质模型的研究及应用的开题报告

河网水动力及水质模型的研究及应用的开题报告

河网水动力及水质模型的研究及应用的开题报告一、选题背景水是人类生存和发展的重要资源,其质量和流动状态对环境和人类健康都有着重要的影响。

近年来,随着城市化进程的加快和工业化程度的提高,水环境污染问题日益突出,水资源的合理利用和管理日益受到重视。

针对河流的水动力和水质状况分析是水资源管理和环境保护的重要内容之一。

现代水力学领域中,基于计算机技术和数值模型的水动力学研究已取得了显著的进展。

水动力学模型能够对河网的水流运动、水位、泥沙运移及洪涝、污染等诸多问题进行研究和预测。

而水质模型则能够有效地模拟和预测水体中污染物的扩散、转移和浓度分布情况,是解决水环境污染问题的重要手段。

二、研究意义通过开展河网水动力及水质模型的研究,可以对河流的水动力和水质状况进行全面、深入的分析和掌握。

具有以下几个方面的重要意义:1.为城市化进程提高提供科学依据。

研究河网水动力及水质模型,可为城市扩张、建设和环境治理提供科学依据,为城市化进程提供可持续发展的基础。

2.提高水资源的合理利用和管理水平。

研究河网水动力及水质模型,可为河流水资源的合理利用、调控和管理提供理论和实践依据。

3.保障水环境保护和生态安全。

研究河网水动力及水质模型,可为水环境保护和生态安全提供科学依据,保障人类健康和自然生态的平衡。

三、研究内容和方法1.研究内容本研究将深度探究河网水动力及水质模型的建立和应用,包括以下几个方面:(1)采集实地测量数据,建立河网水动力学数值模型,仿真研究水流运动、水位和泥沙运移等问题。

(2)采集水质监测数据,建立河网水质模型,模拟水体中污染物的扩散、转移和浓度分布情况。

(3)应用模型结果,探究河网水动力和水质变化的原因及对策,为河网的管理和保护提供科学依据。

2.研究方法本研究采用以下研究方法:(1)采集实地数据,建立河网水动力和水质监测网络。

(2)基于数值分析和计算流体力学(CFD)方法,建立河网水动力学和水质数值模型。

(3)对模型进行验证和优化,并进行模拟计算,得出水动力和水质状况的分析结果。

水质模型的研究进展及发展趋势

水质模型的研究进展及发展趋势

02
强调了水质模型研究中数据质量的重要性,认为数据质量是影响模型精度的关键因素之一,需要加强数据采集和处理工作。
03
指出了当前水质模型研究面临的挑战和问题,如多变量耦合、非线性效应等,需要进一步加以研究和解决。
建议加强水质模型参数确定方法的研究,探索更加准确、可靠的方法和技术,以提高模型精度和可靠性。
强调了跨学科合作的重要性,认为跨学科合作可以促进研究成果的共享和应用,推动水质模型研究的创新发展。
展望了未来水质模型研究的发展趋势,认为未来研究将更加注重模型的精度和可靠性、多学科交叉和国际化合作等方面的发展。同时,随着人工智能和大数据等技术的不断发展,未来水质模型研究也将更加智能化和精细化。
对未来质模型可以模拟预测养殖水体水质对养殖生物的影响,提高养殖效益。
水产养殖业
随着水质监测技术的进步,水质模型正朝着更精细化的方向发展,能够模拟预测不同时空尺度下的水质变化情况。
精细化
水质模型正朝着多要素、多尺度、多方法的集成方向发展,以解决复杂水环境中的水质问题。
研究成果总结
针对不同水体类型,如河流、湖泊和海洋等,分别介绍了相应的水质模型研究进展和应用情况。
探讨了模型参数的确定方法,包括实验测定、理论分析和数值计算等,并指出了各种方法的优缺点。
01
指出当前水质模型研究还存在一些不足之处,如模型精度不高、参数不确定等问题,需要进一步加以改进和完善。
研究不足与挑战
新型水质模型的研发
01
随着环境保护意识的不断提高,对水质模型的要求也越来越高,新型的水质模型研发成为当前研究的热点之一。
研究热点与前沿
水质模型的交叉学科应用
02
水质模型不仅仅应用于水环境领域,还涉及到气象、生态、地理等多个领域,交叉学科的应用成为当前研究的热点之一。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4 人工神经网络模型
人工神经网络是采用计算机来模拟生物神经网络的结构和功能,由大量神经 元构成的并行分布式系统。人工神经网络与平原河网在结构上有许多相似之处, 两者都是由各个内部单元通过并联或串联形成一个相互制约的整体网络结构,通 过调整系统内部各个“神经元”之间的相互作用可以达到系统输入变量和输出变
2

的质量平衡方程:
As i
dZ i = Pi ( t ) + ∑ Q i ,k ( Z i , Z k ) dt k
式中, As i 为水位为 Z i 时单元 i 的水面面积; Pi ( t ) 为 i 单元的降雨强度;
Q i ,k ( Z i , Z k ) 为从任意相邻单元 k 流入或流出单元 i 的流量。
取单元几何中心的水位为单元代表水位,给出水位与水面面积关系。将计算 河网分解为一定数量的单元,再进行分组,然后确定各单元间的连接类型。 对每个 单元给出微分形式的质量平衡方程,经有限差分法离散后得到以单元水位为基本 未知量的方程组,进而求解各单元的代表水位和单元间流量。
2.3 混合模型
姚琪等人认为,运河河网地区地势平坦,区内无长大的天然河流; 大多数河流 坡降平缓,流量很小;农灌渠道不计其数,再加上泵站、水闸、船闸等水利控制工 程,使河网的水力学描述更加复杂,因而在建模工作中完全如实地模拟如此庞大 复杂的水系几乎是不可能的。节点-河道模型和单元划分模型都不能很好地适应 运河水网的特性,前者失之过繁,后者失之过简。将节点-河道模型和单元划分模 型中与平原河网特性相适应的优点综合起来,并避免其不相适应的缺点,构成新 的数学模型,即混合模型。 建立混合模型的基本思想 [16] 是 : 将平原河网的水域区分为骨干河道和成片 水域两类,对骨干河道采用节点-河道模型; 对成片水域采用单元划分的方法将其 划分为单元,再引入当量河宽的概念,把成片水域的调蓄作用概化为骨干河道的 滩地,将其纳入节点-河道模型一并计算。
3.分级解法
分级解法是目前河网水流求解最主要的方法,该方法首先由荷兰学者提出.
4

分级解法的基本思想是[20],先将未知数集中到汊点上,待汊点未知数求出后,再 将各河段作为单一河段求解.分级解法按方程组的连接形式,又可以分为:二级解 法[21]、三级解法[22,23]四级解法[24]、汊点分组解法[25]和树型河网分组解法[26].先就 其中几种解法进行简介。 (1)二级解法:二级解法的基本思想是将所有的边界方程和河段方程一起构 成一个封闭的方程组,也即是二级连接方程组,求解这样的方程组,便可以求得河 网各河端未知数,然后再利用微段方程,求出全部内部计算断面的未知数. (2)三级解法: 三级解法是在二级解法的基础上提出来的.它的基本思想是在 二级解法的基础上,将所得到的河段方程自相消元,可以得到一对以水位或流量 为隐函数的方程组,方程组经转化变形可以直接代入相应的汊点和边点方程,消 去其中的流量改正值,则剩余含有 2Nr 个未知的水位改正值变量的 2Nr 个方程, 求解连接矩阵得到各汊点上各断面的水位改正值,回代各河段方程得到汊点各断 面的流量改正值,再回代节点的流量和水位值的递推公式,得到所有各断面上的 水位和流量改正值,从而可以得出各断面的水位和流量。 (3)四级解法: 四级解法是在三级解法的基础上,进一步从三级连接方程组中 分离出外边界方程和汊点能量衔接方程,最后由剩下的方程构成四级连接方程组. 然后,将第一步所得结果和汊点能量方程代入汊点水量平衡方程中,消去除各汊 点第一断面水位改正值以外的全部未知数, 这样形成的方程组即是所谓的四级连 接方程组,四级连接方程组共含有 Nj 个方程,Nj 个未知数可以求解。四级连接方 程组一经解出,将其乘上相应的系数,便可以得到三级解,再按三级解法相同的方 法求出各断面的水位和流量值。 (4)汊点分组解法:汊点分组解法首先由我国学者李义天提出[25]。该方法首 先将河网中的汊点分为 NG 组,用 ng 表示汊点组的序号(1≤ng≤NG),分组时,要求 每一汊点组最多与两个汊点组相连每组汊点中的河段,可以是连接本组汊点的河 段,也可以是一端连接本组汊点,另一端连接前一组或后一组汊点的河段,对每一 组汊点均可以形成分组后的汊点方程组。联立求解方程组,并回代求解可得河段 内部各断面的水位和流量增量。 在直接解法中,系数矩阵阶数为河网中选取的计算断面数的两倍,这对于大 型河网的求解几乎是不可能的。二级解法的系数矩阵的阶数为 4Nr,三级解法系
,3]
给出了方程组的离散及求解推导的详细过程。本
文仅对各类河网水动力模型进行综述分析,并在此基础之上论述河网水质模型的
1

研究与进展,为河网网地区水流水质计算提供科学参考。
2. 河网水动力数学模型
2.1 节点-河道模型
该模型的基本思想[4]是:将河网中的每一河道视为单一河道, 其控制方程均 为一维 Saint-Venant 方程组; 河道连接处称为节点(汊点),每个节点处均应满足 水流连续性方程和能量守恒方程。求解由边界条件、Saint-Venant 方程组和汊 点衔接方程联立闭合方程组,即可得到各河段内部断面的未知水力要素。 河网非恒定流问题水动力模型的控制方程为 Saint-Venant 方程组: ∂A ∂Q ∂t + ∂x = q QQ ∂Z Q2 ∂Q + ∂ α + gA 2 = 0 + gA ∂x A K ∂t ∂x 式中:x 为沿水流方向的距离;t 为时间;A 为过水断面面积;Q 为流量; Z 为水位;q 为单位河段长度的旁侧入流流量;K 为流量模数;α为动量校 正系数;g 为重力加速度。 节点-河道模型原则上可以求解任何水网的水力参数,不同的求解方法各有 优缺点。目前常用的求解方法有:特征线法[5],有限差分法[6],直接解法[7],间 接解法[8-12],矩阵标示法[13],有限体积法[14]等。

河网水动力模型及水质模拟研究展望
陈新永,朱静
(河海大学,环境科学与工程学院, 江苏南京 210024) (Chenxinyong2007@;biye2004@)
摘要: 论述了河网地区 4 类水动力模型及其基本思想,对水质模拟的方法理论、
4. 河网水质模拟研究现状
目前,河网水质模型及模拟方法都比较成熟。在水质模型中,美国的 QUAL-II(E)模型、传统 CSTR(Continuously Stirred Tank Reactor)模型等被广 泛用于河流水质模拟。 WASP 模型及 Carlos 的河网水质模型[33]则只适用于小型河 网。河海大学的 H w q now 模型能反映水体在不同溶解氧状态下的水质变化,且 适用于大型河网[34]。组合单元水质模型也是一种有效的河网模型[35]。清华大学 的水文-水质模型能应用于环状河网[29]。 在水动力模型的基础之上,根据水质控制方程及河道概化方式,河网地区水 质模拟方法可分为两类[31]:第一类为常用一维纵向分散方程求解法;第二类为 组合单元解法。 第一类水质模拟中,三级联解法是水质模拟最为常用,其求解思路[33]:(a) 对每条河道的扩散质一维对流纵向分散方程进行有限差分离散,经消元计算得到 各单一河道出流断面质量浓度与入流断面质量浓度间的线性关系;(b)在交叉口 引入均匀混合假设——流出交叉口的断面质量浓度等于流入交叉口各断面质量 浓度的平均值,导得以各交叉口节点质量浓度为未知变量的方程组,求解得各交 叉口质量浓度; (c)返回单一河道计算各断面质量浓度.此方法被广泛应用于河网 地区环境模拟和环境规划[25]研究中,并已成为河网地区水质计算的主流方法。 第二类水质模拟中,其组合单元解法求解思路[15]:按水力水质特性相近的原 则,将河网划分成若干单元,要求划分后的单元内部,水位流速变化均匀、水质浓 度无悬殊变化。单元间污染物质的交换通过随水体对流及交界面上的扩散而进 行。 单元污染物浓度以形心处浓度代替,它随时间的变化,取决于交界面上的对流 扩散输运、 单元内污染物的降解及源项的加入。 此方法由于单元概化使精度受损, 仅适用于大尺度水环境规划,但该方法以各单元物理量为直接求解对象,为环境
中间层
模型输出向量 图 1 河网概化的神经网络模型 神经网络模型与水动力模型的有机结合可以减少水动力模型计算量、 加快计 算速度;同时水动力模型为神经网络模型提供参考,在重要河段或区域由于资料 缺乏时得到广泛应用。神经网络模型是“黑箱”模型[19],反映网络内部节点之间 关系参数的物理意义模糊,就河网水动力模拟而言,它实际上反映的是河网各种 因素(如河网结构、河道糙率、断面形状、调蓄容量等)的综合影响,这就给模型 的验证带来困难,同时有可能影响计算结果的精度。
3

量之间的最优化或平衡,因此,人工神经网络理论可用于复杂河网水动力模型的 数值模拟[17]。 实际运用人工神经网络时,由于天然河网十分复杂,河流湖泊众多,首先应 对河网进行概化[18]。李荣等人从河网水流运动连续方程和漕蓄方程出发,对河网 作了概化[19]。经过上述概化,整个河网由河网水源的输入、河网内部相互串联和 并联而成的水库、河网输出三部分构成,如图 1 所示。第一层和最后一层节点的 输入输出为简单的线性关系,利用节点水量平衡方程和整个河网水量守恒关系保 证各个节点和整个单分析。结果表明,三级联解法是河网地区水质计算 的主流方法,组合单元解法有其良好的应用条件。在水动力模型研究发展基础之 上,指出减小模拟假设误差、改进和设计新的计算方法、数值模拟可视化将成为 河网水质模拟的主要发展方向。 关键词:河网;水动力模型;水质模拟
1. 前言
平原河网地区湖泊密布、河网发达,是我国社会、经济和文化较发达的地区。 然而,随着城市人口、经济的发展,各种工业废水和生活污水大量排入河网,致使 水环境质量日益恶化 , 成为困扰城市环境和经济可持续发展的一个主要问题。 所有这些对平原河网的灌溉、排涝、防洪、规划和污染控制等提出了一系列新的 研究课题。 为此,人们不仅日益重视该地区水资源保护的研究,同时还采取相应的 水流、水质模拟方法对其进行环境规划和管理.但由于理论、技术及各种客观条 件的制约,目前水流,特别是水质数值模拟精度不十分令人满意.由于河网模拟区 域范围很大,大多数情况下只能采用数值方法进行模拟,其核心问题是河网数学 模型的建立及求解,其中水动力模型是其他模型(如水质模型、 水环境容量模型等) 的基础。 河网水动力数学模型大体可以分为节点-河道模型、单元划分模型、混合模 型以及人工神经网络模型 4 类[1]。平原河网不同于单一河流的特点,在于河网错 综复杂性以及由此带来的方程组离散和求解上的困难,这是多年来人们研究河网 问题的一大难点,有关文献[2
相关文档
最新文档