淬火介质相关知识汇总(☆☆☆☆☆)
热处理淬火介质

热处理淬火介质随着技术的发展,热处理淬火介质的种类越来越多,适用范围广。
热处理淬火介质包含水溶性淬火介质和油性淬火介质。
水溶性淬火介质提供各类淬火介质,品种多,满足各种不同的热处理工艺及不同材质的工件要求,水性淬火介质产品种类及选用方法:THIF-502PAG淬火液主要成份:聚醚类高分子材料。
优点:经济环保,调整浓度可达到水和油之间任意冷速,淬硬层深,淬火硬度均匀,减少变型和开裂,工件干净。
缺点:使用液温不能超过65度(严格来说不能超过55度)。
适用材质:35CrMo、42CrMo、40Mn2、T8、T10、T12、40Mn、40Cr、Gcr9、30CrMnTi、Gcr6、40CrV、Gcr15、Gcr15SiMn、65Mn、50Cr、60Si2Mn、42SiMn、40Mn2V、GCr9SiMn、40MnB等整体淬火及20Cr、20Crn、20CrV、20CrNi、20CrMo、20Mn2、20CrMnMo、20CrMnTi、25Cr2Mo1V、32Cr3Mo1V等的渗碳淬火。
THIF-501水基淬火液主要成份:聚乙烯醇。
优点:价格便宜,环保。
缺点:容易变质适用材质:40Cr、40CrMo、40Mn2、45Mn2、30CrMnSi、40CrMnMo、Cr12钢,45CMnB、Gcr15、9CrSi、40Mn3、45Mn3、42CrNi、9Cr3、3Cr2W8、50Mo 等材质。
THIF-528类油淬火液优点:冷速比油还慢,环保,比油便宜。
缺点:产品粘度大适用材质:40CrNiMo、40CrMnMo、P20、H13、Gr12等材质做的大锻件、铸件、模具、钢轨等工件。
油性淬火介质-淬火油THIF-511快速光亮淬火油特点:冷却速度较快,光亮性好,寿命长,表面硬度高且均匀,淬硬层深。
适用范围:对几乎所有钢材尤其厚、大型工件、淬透性差的零件。
齿轮淬火油特点:光亮性好,使用寿命长,表面硬度均匀,淬硬层深,金相组织好。
淬火介质的知识总结的也这么全,拿走不谢!

淬火介质的知识总结的也这么全,拿走不谢!工件进行淬火冷却所使用的介质称为淬火冷却介质(或淬火介质)。
理想的淬火介质应具备的条件是使工件既能淬成马氏体,又不致引起太大的淬火应力。
这就要求在C 曲线的“鼻子”以上温度缓冷,以减小急冷所产生的热应力;在“鼻子”处冷却速度要大于临界冷却速度,以保证过冷奥氏体不发生非马氏体转变;在“鼻子”下方,特别使Ms 点一下温度时,冷却速度应尽量小,以减小组织转变的应力。
常用的淬火介质有水、水溶液、矿物油、熔盐、熔碱等。
水是冷却能力较强的淬火介质。
来源广、价格低、成分稳定不易变质。
缺点是在C曲线的“鼻子”区(500〜600 C左右),水处于蒸汽膜阶段,冷却不够快,会形成“软点”;而在马氏体转变温度区(300〜100C),水处于沸腾阶段,冷却太快,易使马氏体转变速度过快而产生很大的内应力,致使工件变形甚至开裂。
当水温升高,水中含有较多气体或水中混入不溶杂质(如油、肥皂、泥浆等),均会显著降低其冷却能力。
因此水适用于截面尺寸不大、形状简单的碳素钢工件的淬火冷却。
• 盐水和碱水在水中加入适量的食盐和碱,使高温工件浸入该冷却介质后,在蒸汽膜阶段析出盐和碱的晶体并立即爆裂,将蒸汽膜破坏,工件表面的氧化皮也被炸碎,这样可以提高介质在高温区的冷却能力。
其缺点是介质的腐蚀性大。
般情况下,盐水的浓度为10 %,苛性钠水溶液的浓度为10 %〜15 %。
可用作碳钢及低合金结构钢工件的淬火介质,使用温度不应超过60 C,淬火后应及时清洗并进行防锈处理。
冷却介质一般采用矿物质油(矿物油)。
如机油、变压器油和柴油等。
机油一般采用10 号、20 号、30 号机油,油的号越大,黏度越大,闪点越高,冷却能力越低,使用温度相应提高。
目前使用的新型淬火油主要有高速淬火油、光亮淬火油和真空淬火油三种。
高速淬火油是在高温区冷却速度得到提高的淬火油。
获得高速淬火油的基本途径有两种,一种是选取不同类型和不同黏度的矿物油,以适当的配比相互混合,通过提高特性温度来提高高温区冷却能力;另一种是在普通淬火油中加入添加剂,在油中形成粉灰状浮游物。
第3章-淬火介质

辐射 传导 对流
淬火介质一般的要求: 无毒、无味、经济、安全可靠; 不易腐蚀工件,淬火后易清洗; 成分稳定,使用过程中不易变质; 在过冷奥氏体的不稳定区域应有足够的冷却速度,在低温 马氏体区域应具有较缓慢的冷却速度,以保证淬火质量; 在使用时,介质粘度应较小, 以增加对流传热能力和减少 损耗。
食 盐 水 溶 液
图3-6 不同成分食盐水溶 液的冷却特性
3.2.3 常用淬火介质及其冷却特性
碱水作为淬火介质,常用的是 5%~l5%NaOH水溶液.它在高 温区间的冷却能力比盐水还大, 而在低温区间用而析出氢气,使氧化 皮易于脱落,淬火后工件呈银灰 色,表面较洁净,一般不需清理, 故又称其为光亮淬火. 但碱水的应用不如盐水广泛, 其原因是 NaOH 对工件及设备 的腐蚀较严重,淬火时有剌激性 气体产生,对皮肤有腐蚀性,以 及工件易于老化变质等.因此未 能广泛应用 。
3.2.3 常用淬火介质及其冷却特性
2.盐水与碱水
为了提高水的冷却能力, 往 往在水中添加-定量(一般为 5~10%)的盐或碱,目前比较普 遍采用的是食盐水溶液 , 其 优点是蒸汽膜阶段缩短,特 性温度提高,从而加快冷却 速度. 食盐水溶液的冷却能力在食 盐浓度较低时随食盐浓度的 增加而提高,随温度提高, 冷却能力降低。 盐 水 的 缺 点 是 在 低 温 ( 200 ~300℃)区间冷速仍很大。
第3章 钢的淬火及回火
• 3.1 淬火的定义、目的和必要条件
• 定义: 将钢加热到>Ac3或Ac1,保温并以大于临界冷却 速度冷却,以得到马氏体或下贝氏体组织的热处理工艺。 • 目的:提高硬度、强度和耐磨性; • 经淬火、回火获得良好的综合机械性能; • 改善钢的物理化学性能 • 必要条件:冷速大于临界冷速(抑制所有非马氏体转变的 最小冷速)。
淬火介质

淬火介质水性淬火剂THIF-502水性淬火剂,即常说的PAG淬火液,是目前热处理常用的水性淬火介质,浅黄色透明液体,无毒,无油烟,不燃烧,无火灾危险,使用安全,改善劳动环境。
水性淬火剂广泛应用于锻钢、铸铁、铸钢及冲压件等的淬火,适用于35CrMo、42CrMo、42SiMn、40Mn、T8、65Mn等多种材质。
水溶性淬火剂THIF-501水溶性淬火剂,即聚乙烯醇淬火剂,无色至浅黄色半透明液体,使用安全。
水溶性淬火剂广泛应用于感应加热淬火冷却,多用于碳素钢、合金钢的高频、中频淬火冷却,或整体淬火,适用于Cr12、45Cr、40CrMnMo、40CrMo、45Mn2、35CrMo、42CrNi、45CMnB等材质。
无机淬火剂THIF-505无机淬火剂是高分子无机聚合物饱和溶液,可完全与水溶合,无味,不腐蚀,不易变黑变臭,不老化,抗污染性强,高温不分解。
广泛应用于各类炉型加热的各类钢件(高速钢类除外)的整体浸淬、感应加热工件的整体浸淬和喷液淬火,适用于35、20、T8、20Cr、5Cr、40、50、35CrMo等材质。
快速光亮淬火油THIF-511快速光亮淬火油是热处理常用的油性淬火介质,冷却速度快,性能保持连续稳定,工件淬火后表面光亮不黑,积碳小,淬硬层深,变形量小,工件带出消耗量小,较易清洗,金相组织、机械性能好。
快速光亮淬火油广泛应用于所有钢材尤其是厚、大型工件、淬透性差的零件淬火时发挥优良淬火性。
齿轮淬火油THIF-512齿轮淬火油具有光亮性好,异味、烟雾小,工件淬火后表面硬度高且均匀,光亮性好,使用寿命长,易清洗。
齿轮淬火油适用于中、高淬透性的小零件的光亮淬火或渗碳淬火。
广泛应用于渗碳螺丝、标准件、织针、齿轮、轴承钢丸、套圈等淬火。
注意不要混入水分。
超速淬火油THIF-516超速淬火油对几乎所有钢材尤其是淬透性差的零件淬火时发挥优良的淬火性。
当用空气间歇炉进行紧固件、螺丝、链条、工具等碳素钢或低合金钢小物件物品的团体淬火时。
先进的淬火介质及冷却技术

先进的淬火介质及冷却技术I 淬火介质一、石油基淬火油根据冷速分为常规淬火油、中速淬火油、快速淬火油,常规淬火油用于高淬透性钢的淬火冷却,而中等冷速的淬火油用于中高淬透性的钢淬火冷却,而快淬火油用于低淬透性钢。
钢中的Me 含量不仅影响到钢的淬透性,同时也因增加了相当的C 的当量,而改变了其Ms 。
/5/5/10/10eq C C Mn Mo Cr Ni =++++当C%变化时,Ms 也将发生变化:0.2%~430℃;0.4%~360℃;1.0%~250℃另一类主要的石油基淬火油是分级淬火油,它可以被加热到(100~200℃)接近Ms 点的热油中均温以减少温差应力。
它具有优异的热稳定性,(精制加高效的组合氧化剂),使用温度一般要低于其闪点50℃。
二、植物油基淬火油石油基淬火油性能稳定,但它是不可再生的一次性资源,更是地下水的主要污染源。
而植物油淬火油基可以克服这些缺点,它有如下优点和不足。
1、优点:①容易生物降解;②低无毒性;③良好润滑性;④资源能再生;⑤供应充足;⑥闪点和燃点高。
2、缺点:①水解稳定性差;②氧化稳定性差;③表面粘附;④粘度范围窄;⑤有不同的气味;⑥价格偏高。
和矿物油的比较,植物油的稳定性差,但可利用现代添加剂技术可改善它的水解稳定性和氧化稳定性。
比如好富顿公司开发的以Canola 植物油为基础油添加抗氧化剂的植物基淬火油①具有良好的抗氧化稳定性。
②其降解性比石油基淬火油高5倍。
③而且几乎没有蒸位膜阶段,在1300~110F 温度范围为V 冷↑(这对大多数钢而言正是要求快冷区)。
④900~250F 温度范围内具有较慢的V 冷从而可减少淬火的变形。
⑤闪点高达332℃(630F )而一般石油基淬火油的闪点为177~232℃(350~450F )燃点也比石油基的高约160℃。
三、聚合物淬火介质它是有机聚合物和防锈添加剂,杀菌剂、消泡剂等组成水溶液,淬火时在热工件周围会形成一层聚合物的高集层(膜),它的优点是:1、环保:无油淬的烟雾,不但环保而且消除火灾隐患,无毒性。
常见淬火介质冷却速率

常见淬火介质冷却速率一、引言淬火是金属热处理过程中至关重要的步骤,它涉及将金属加热至某一温度后迅速冷却,以获得所需的物理和机械性能。
在这一过程中,淬火介质的冷却速率对最终的金属性能具有决定性的影响。
本文将探讨常见淬火介质及其冷却速率,以及影响淬火介质冷却速率的因素。
二、常见淬火介质及其冷却速率淬火介质主要分为气体、液体和固体三类。
不同种类的淬火介质具有不同的冷却速率。
1.气体淬火介质:主要包括空气、惰性气体等。
它们的冷却速率相对较低,因为气体的热传导率较低。
2.液体淬火介质:包括水、油、熔盐等。
水具有高比热容和高汽化热,因此具有较高的冷却速率;油的冷却速率相对较慢;熔盐则具有较高的冷却速率,适用于需要快速冷却的金属。
3.固体淬火介质:主要包括金属板、砂子等。
金属板的冷却速率较高,但与金属的热导率有关;砂子的导热性能较差,因此冷却速率较低。
三、影响淬火介质冷却速率的因素影响淬火介质冷却速率的因素有很多,包括介质的物理属性、操作条件和环境因素等。
1.介质的物理属性:如介质的密度、比热容、热导率等都会影响其冷却速率。
一般来说,密度高、比热容大、热导率高的介质具有较高的冷却速率。
2.操作条件:如淬火温度、加热和冷却时间、淬火介质的温度等都会影响其冷却速率。
提高淬火温度或降低淬火介质的温度通常会增加冷却速率。
3.环境因素:如环境温度、空气流动等也会影响淬火介质的冷却速率。
低温环境和强风可以提高冷却速率。
四、淬火介质冷却速率的测试与评估淬火介质冷却速率的测试与评估对于理解和控制其性能至关重要。
常用的测试方法包括:1.热电偶法:通过在试样上放置热电偶来测量温度变化,从而计算出冷却速率。
这种方法可以直接获得试样的温度变化数据,但可能受到热电偶位置和测温精度的影响。
2.DSC(差示扫描量热法):通过测量试样在不同温度下的热量变化来计算出冷却速率。
这种方法可以在较宽的温度范围内进行测量,但对于低冷却速率的测量可能会受到热历史的影响。
淬火所用介质

淬火所用介质在金属热处理工艺中,淬火是一个重要的步骤,而淬火所用的介质则是这个过程的关键因素。
本文将介绍淬火介质的种类、作用及其选择方法。
一、淬火介质的种类淬火介质是指在淬火过程中使用的冷却剂。
常见的淬火介质包括水和油类(如矿物油和植物油),以及气体和水蒸气等其他物质。
此外,还有化学药剂调配而成的各种淬火液,如水溶性淬火液、碱性淬火液等。
二、淬火介质的作用1. 迅速降低温度:淬火介质能够有效地降低工件的温度,使其快速冷却并达到淬火的硬度和强度要求。
2. 防止变形开裂:适当的冷却速度可以减少工件的变形和开裂风险。
过快的冷却速度可能导致工件内部应力过大,进而导致变形或开裂。
3. 保护工件表面质量:通过控制冷却时间和冷却速度,淬火介质可以帮助保持工件表面的光洁度,避免过度氧化和腐蚀。
4. 提高生产效率:合理的淬火介质选择可以提高淬火热处理的效率,缩短生产周期,提高企业的经济效益。
三、如何选择合适的淬火介质1. 根据工件的材料特性进行选择:不同的材料需要不同类型的淬火介质来满足其性能要求。
例如,碳含量较高的钢通常适合使用盐水或其他具有较强冷却能力的介质。
2. 考虑工件的形状和尺寸:对于大型或特殊形状的工件,可能需要采用特殊的淬火方式或特定的淬火介质来实现均匀冷却。
3. 注意安全因素:某些淬火介质可能对人体有害或有异味,因此在选择时应考虑到工人健康和环境安全的因素。
4. 参考行业标准与经验:在实际操作中,应参考相关行业标准和专家建议,结合企业自身的实际情况来进行合理选择。
5. 进行试验验证:为了确保选择的淬火介质效果zui佳,可在小范围内对不同种类的介质进行试样试验,以确定最适合的介质类型和使用浓度。
6. 使用高质量的冷却设备:良好的冷却设备是保证淬火热处理质量的重要前提之一。
选用高品质的冷却设备和控制系统有助于实现精确的控制和管理。
7. 对环境和资源的可持续利用:在选择淬火介质时,还应考虑到环保和资源节约的因素。
淬火介质、淬火加热温度及冷却方法介绍

淬火介质、淬火加热温度及冷却方法介绍淬火工艺是将钢加热到AC3或AC1点以上某一温度,保持一定时间,然后以适当速度冷却获得马氏体和(或)贝氏体组织的热处理工艺。
淬火的目的是提高硬度、强度、耐磨性以满足零件的使用性能。
淬火工艺应用最为广泛,如工具、量具、模具、轴承、弹簧和汽车、拖拉机、柴油机、切削加工机床、气动工具、钻探机械、农机具、石油机械、化工机械、纺织机械、飞机等零件都在使用淬火工艺。
(1)淬火加热温度淬火加热温度根据钢的成分、组织和不同的性能要求来确定。
亚共析钢是AC3+(30~50℃);共析钢和过共析钢是AC1+(30~50℃)。
亚共析钢淬火加热温度若选用低于AC3的温度,则此时钢尚未完全奥氏体化,存在有部分未转变的铁素体,淬火后铁素体仍保留在淬火组织中。
铁素体的硬度较低,从而使淬火后的硬度达不到要求,同时也会影响其他力学性能。
若将亚共析钢加热到远高于AC3温度淬火,则奥氏体晶粒回显著粗大,而破坏淬火后的性能。
所以亚共析钢淬火加热温度选用AC3+(30~50℃),这样既保证充分奥氏体化,又保持奥氏体晶粒的细小。
过共析钢的淬火加热温度一般推荐为AC1+(30~50℃)。
在实际生产中还根据情况适当提高20℃左右。
在此温度范围内加热,其组织为细小晶粒的奥氏体和部分细小均匀分布的未溶碳化物。
淬火后除极少数残余奥氏体外,其组织为片状马氏体基体上均匀分布的细小的碳化物质点。
这样的组织硬度高、耐磨性号,并且脆性相对较少。
过共析钢的淬火加热温度不能低于AC1,因为此时钢材尚未奥氏体化。
若加热到略高于AC1温度时,珠光体完全转变承奥氏体,并又少量的渗碳体溶入奥氏体。
此时奥氏体晶粒细小,且其碳的质量分数已稍高与共析成分。
如果继续升高温度,则二次渗碳体不断溶入奥氏体,致使奥氏体晶粒不断长大,其碳浓度不断升高,会导致淬火变形倾向增大、淬火组织显微裂纹增多及脆性增大。
同时由于奥氏体含碳量过高,使淬火后残余奥氏体数量增多,降低工件的硬度和耐磨性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
淬火介质相关知识汇总一、主要技术参数1、冷却特性1.1、冷却速度曲线当前,国内外多以国际标准方法(ISO9950)测定,并用冷却速度曲线来表征淬火介质的冷却特性。
但是,对特定工件(即在钢种、形状大小和热处理要求一定)的情况下,如何从冷却特性上去选择合适的淬火介质?在生产现场,一个淬火槽中往往要淬多种不同钢种、形状、大小和热处理要求的工件。
在这种情况下,如何选定它们共同适用的一种淬火液?从普通机油和自来水的冷却速度分布(如图1)可以看出,普通机油的冷却速度慢,因而不少工件在其中淬不硬;而自来水的冷却速度又太快,以致于多数钢种不能在其中淬火。
如果将机油的冷却速度提高,该工件淬火硬度也会相应提高,当机油的冷却速度提高到图2中带齿线水平时,该工件刚好可以得到要求的淬火硬度,我们把它叫做允许的最低冷速分布线。
同时,研究表明,自来水引起淬裂和变形,是自来水冷却太快,尤其是钢件冷到其过冷奥氏体发生马氏体转变的温度范围时受到的冷却太快的缘故。
于是又可以推知,如果能降低自来水的冷却速度,尤其是在工件冷到较低的温度以后的淬火冷却速度,就可以减小工件淬裂的危险。
假定自来水冷却速度降到图3中带齿线所示的水平时,该类工件便不会再淬裂了,我们把这条线叫做此工件已确定条件下允许的最高冷速分布线。
把图2和图3合在一起,可以得到该工件能同时获得前述三项淬火效果的淬火介质的冷却速度分布范围,如图4所示。
图中,只要所选的淬火介质的冷却速度分布曲线能全部落入这两条曲线之间的区域内,不管是快速淬火油还是水溶性淬火液,也不管这些淬火介质的冷却速度分布有何不同,上述工件在其中淬火都可以同时获得所希望的淬硬而又不裂的效果。
1.2淬火介质的冷却过程分三个阶段:蒸汽膜阶段、沸腾冷却阶段、对流冷却阶段(见下图所示)用符合ISO9950标准的ivf冷却特性测试仪测出的冷却特性曲线(如下图)有几个特征值对淬火油的淬硬能力有重要影响。
第一个是油蒸汽膜冷却阶段向沸腾冷却阶段转变的温度,即图中A点对应的温度,叫做(上)特征温度;第二个是出现最高冷却速度的温度,即图中B点对应的温度;第三个是最高冷却速度值,即B点对应的冷却速度值;第四个是对流开始温度,即C点对应的温度。
1.3冷却特征曲线测试方法1.3.1测试标准1995年5月1日,国际标准组织(ISO)颁布了淬火油冷却特性测定方法《Industrial quenching oils-determination of cooling characteristics-Nickel-alloy probe test method》(ISO9950)。
在1988年,我国颁布了2个标准,即GB9449《淬火介质冷却性能试验方法》(1995年调整为行业标准JB/T7951)和SH/T0220《热处理油冷却性能测定法》。
目前这3个标准在国内都被采用。
JB/T7951来自法国淬火液体小组A*T*T*T*S*F*M联合委员会在1982年提出的《淬火油烈度-银探头试验方法》。
SH/T0220来自日本工业标准《热处理油》(JIS K 2242—80)。
70年代初开始淬火油的研制工作时采用的是仿日的探头,一直沿用至今。
国内大多数淬火介质生产厂和使用厂都采用此标准。
上述3个标准探头的相同点是①都是热电偶测试探头,而且都在探头几何中心。
②都是K型热电偶。
③探头形状都是圆柱形。
这3种探头的不同点是①ISO为12.5mm×60mmIncone1600镍基合金,JB和SH为银。
②JB为16mm×48mm,SH为10mm×30mm。
③ISO是铠装热电偶,外径 1.5mm而JB、SH为0.5mm的偶丝。
1.3.2冷却曲线判读方法冷却曲线判读的目的在于评价淬火介质的冷却能力。
要评价就要有一个做为基准的参照系统。
一般情况下,都是采用水和油。
这是因为水和油是最早采用的淬火介质。
而且一直到现在仍是最常用的淬火介质。
Grossmann的H值也是如此,即以水的H值为1,油的H值为0.25。
既使不是定量地评价,也仍然要以水和油的冷却能力为基础做出定性的评价。
第二条原则是冷却曲线与钢材连续冷却转变曲线的关系,即淬火介质冷却性能与所淬钢材的对应原则。
这条原则是说明冷却曲线对应连续冷却转变曲线的不同阶段所应具备的冷却性能。
原则上说,在JB、SH探头心部的热电偶测得的冷却曲线可认为是工件(小中尺寸)表面或次表面的冷却曲线,而ISO测得的曲线则被认为是工件(小中尺寸)心部或接近心部的冷却曲线。
1.3.3测试方法我国现行的两个测试标准都是热电偶冷却曲线法,测量结果的误差由探头、热电偶、待测试样、操作人员、软件系统以及允许误差不同产生的。
T探头的表面状态是最重要的影响因素。
合金探头经过 6 次稳定化处理后形成的膜在测试过程中可能加厚或变薄;银探头测试后用砂纸打磨或用抛光膏抛光会影响探头表面的光洁度,均直接影响探头的冷却过程。
探头淬入温度的误差大约在 5 C 以内。
银探头用的是¢0. 5 mm 的K 型NiCr-NiSi 的偶丝,镍合金探头用的是K 型¢1. 5 mm 的非接地型铠装热电偶,丝径约为¢0. 3 mm2介质冷却能力常用方法:硬度U 曲线法、淬火烈度方法、直接硬度法、端淬试验法(多是用于钢材的淬透性检测)。
硬度U 曲线法:用长度5倍于直径的试样淬火后,从中间切取一段试样,在测定面上沿垂直直径方向测定硬度,以它们的平均值画出硬度-距试样中心距离的曲线,称为硬度U曲线。
试样材料、尺寸、热处理工艺不变,用不同的淬火介质淬火后得到的硬度U 曲线,就是评价淬火介质冷却能力的依据。
目前广泛应用在淬火介质的工艺试验中。
淬火烈度方法:表征淬火介质从热材料或工件中吸取热量的能力的指标。
以H值来表示。
淬火烈度(guench severi-ty)的概念是由美国Grossmann 在1939 年提出的,它首次定量地对淬火介质进行评价。
淬火烈度又称为H值,H = C / 2K,式中 C 为通过介质和试样界面的换热系数,K 为试样的导热系数,对于碳钢和低合金钢K值几乎是一个常数。
C = O / S(TW - TL )△t,式中O 为在时间间隔!I 内从试样向淬火介质转移的热量,S 为试样与淬火介质接触的表面积,TW 为试样表面的温度,TL 为淬火介质的温度,△t 为时间间隔。
Grossmann 是从一组钢棒的淬透性导出H美值的,后来各国学者又发展了很多方法计算H 值。
20 世纪50 年代,日本多贺谷和田村提出一个以JIS K 2242 为基础的阪大式H 值。
用!10 mm X 30 mm 的银柱探头测定800 ~ 300 C 的冷却时间折算为H日值。
阪大式H日,单位是cm - 1 ;Grossmann H美,单位为in - 1 。
两者的换算关系为:H美= 2. 54H日。
3冷却速度淬火介质温度最大冷速(℃/S) 300℃冷速(℃/S)水35℃221 102.5PAG淬火剂5%浓度35℃205 87.8PAG淬火剂10%浓度35℃169 61.2PAG淬火剂20%浓度35℃128 36.7K1 50℃102 13.8G1 50℃92 6.632#机油50℃74 11.8二、常用淬火介质1、常用淬火介质,见表1、2、3。
2、淬火介质选用原则和步骤淬火介质的基本要求:在钢的Ms点温度以上冷得适当的快,冷到Ms点以下后冷得适当的慢。
这又常常被简化成“高温能冷得快,低温能冷得慢”。
不同的钢种和不同的工件对上述的“快”和“慢”的程度有不同的要求。
为适应多种钢种和多种工件的不同要求,淬火冷却介质有多种类型和等级。
在热处理行业,淬火量最大的是碳素结构钢和低合金结构钢制的通用零部件,如齿轮、弹簧、轴承和其它结构件;用得最多的是淬火油、水溶性淬火剂、自来水以及盐水和碱水。
(一)水基淬火液1)含碳量高、淬透性好的钢种,应选低级别的淬火剂(或淬火液浓度)。
2)在保证不淬裂的前提下,选用级别稍高的淬火剂(或淬火液浓度)可以获得更深的淬火硬化层。
3)在适合的级别中,应选择性能稳定,使用寿命长,容易管理且价格低的品种。
PAG类、聚乙烯醇类以及聚丙烯酸钠类等种类。
它们大多是被加到自来水中配成淬火液来使用。
一般说,水中加入这些淬火剂的主要目的是降低水的低温冷却速度。
因此,从应用的角度,我们最关心的是它们能降低水的低温冷却速度的程度。
当然,还要求一定的防锈性、抑菌性和不污染环境,加在一起,就成为评价水性介质好坏的四个要求。
(二)淬火油1.淬火油的分类概况80℃以下的俗称冷油;使用温度在80℃以上的称为热油。
热油再按其使用温度的高低分成不同的品种或等级;冷油则按它的冷却速度快慢分成不同的等级。
此外,还有真空淬火油和光亮淬火油等品种。
所有淬火油都应当有稳定的冷却特性,并容易清洗。
对于生产现场来说,油的好坏,第一步看是否选对了油的类型。
一般情况下,淬火油按使用的温度范围分成冷油和热油。
冷油的冷却速度一般比热油要快。
在冷油中,又根据油的冷却速度高低分成快速淬火油和中快速淬火油。
油的冷却速度越快,其粘度一般多更低,闪点相应也越低。
热油的粘度和闪点多较高。
根据所处理工件的材质、大小和热处理要求,该选择冷却速度快的冷油的,如果选择成了冷却速度不够快的热油;那么,不管该油品的质量如何好,工件淬火后也会硬度不足,而且变形很大。
相反,该选择热油的场合,如果选成了冷却速度过快的冷油,不管该油品的质量如何好,工件在其中淬火的结果,变形超差,且心部硬度过高。
不仅冷油、热油要选择正确,就是在其中油品的级别,也应选择正确。
如果该选快速油而选成了中快速油,也会由于冷却速度不足,使某些工件达不到要求的淬火硬度。
热油的级别不同,主要指它们使用温度的不同。
使用温度高的品种,一般适用于较小型的工件,其控制变形的能力更好些。
但是,对更大一些的工件,或者淬透性稍差点的钢种,就应当选择使用温度更低的油品。
2.油品的评定评价的油品种类和级别是否选得正确,最简单的判断方法是用生产中准备采用的工艺参数,加热单一的工件,在该油品中淬火,看看能否得到要求的淬火硬度、淬硬深度、心部硬度,以及变形要求。
如果单件淬火能达到工件的热处理要求,该油品的种类和级别就基本上是选对了。
剩下来要做的就两件事。
一是从设对油的冷却特性,特别要注意它的稳定性。
根据我们了解到的情况,不管国内外什么厂家生产的油品,在大量连续处理一般中小型工件的场合,正常使用条•经过短时间使用,比如仅仅使用二、三十天后,冷却能力就已开始衰退。
这样的油稳定性不好。
•经过半年左右的使用,冷却能力的衰退开始表现出来,淬火后工件表面出现污点并逐渐增多;不到一年,淬火油就不得不整槽更换。
这样的油稳定性差。
•在相同的使用条件下,淬火油可以连续使用二、三年,甚至更长的时间,之后才开始出现冷却能力衰退迹象。