计算机图形学 三维图形变换

合集下载

计算机图形学中的透视和投影变换

计算机图形学中的透视和投影变换

计算机图形学中的透视和投影变换计算机图形学是机器图像处理和计算机视觉的理论基础,主要研究计算机生成的三维图形的数学表示和渲染技术。

在计算机生成的三维图形中,透视和投影变换是非常重要的技术,它们可以使三维图形更加直观逼真地呈现出来。

本文将对透视和投影变换进行详细讲解。

一、透视变换透视变换是一种三维立体图像转换为二维平面图像的方法,它可以模拟出现实中的透视效果。

在透视变换中,被变换的三维场景需要经过以下几个步骤:1. 建立三维场景模型。

在建立三维场景模型时,需要确定物体的位置、大小、形状和材质等参数,并将这些参数用数学公式表示出来。

2. 确定观察点位置和视线方向。

观察点是放置在场景外的假想点,用于观察场景中的物体。

视线方向是从观察点指向场景中的物体。

3. 定义投影平面。

投影平面是垂直于视线方向的平面,它用于将三维物体投影到二维平面上。

4. 进行透视变换。

在透视变换中,需要用到透视投影矩阵,它可以将三维图形投影到二维平面上,并使得远离观察点的物体变得更小。

透视变换可以使得生成的二维平面图像更加逼真,同时也可以减少计算量,提高渲染效率。

但是透视变换也有一些缺点,例如不能完全保持原图像的形状和大小,因此在实际应用中需要进行调整。

二、投影变换投影变换是一种将三维物体投影到二维平面上的方法,它可以用于生成平面图像、制作立体影像和建立虚拟现实等应用。

在投影变换中,被变换的三维场景需要经过以下几个步骤:1. 建立三维物体模型。

在建立三维物体模型时,需要确定物体的位置、大小、形状和材质等参数,并将这些参数用数学公式表示出来。

2. 确定相机位置和视线方向。

相机位置是放置在场景外的假想点,用于观察场景中的物体。

视线方向是从相机指向场景中的物体。

3. 定义投影平面。

投影平面是垂直于视线方向的平面,它用于将三维物体投影到二维平面上。

4. 进行投影变换。

在投影变换中,需要用到投影矩阵,它可以将三维图形投影到二维平面上,并保持原图形的形状和大小。

计算机图形学第4章图形变换

计算机图形学第4章图形变换

反射变换
总结词
反射变换是将图形关于某一平面进行镜像反射的变换。
详细描述
反射变换可以通过指定一个法向量和反射平面来实现。法向量垂直于反射平面,指向反射方向。在二 维空间中,反射变换可以将图形关于x轴或y轴进行镜像反射;在三维空间中,反射变换可以将图形关 于某一平面进行镜像反射。
03
复合图形变换
组合变换
01
02
03
04
组合变换是指将多个基本图形 变换组合在一起,形成一个复
杂的变换过程。
组合变换可以通过将多个变换 矩阵相乘来实现,最终得到一
个复合变换矩阵。
组合变换可以应用于各种图形 变换场景,如旋转、缩放、平
移、倾斜等。
组合变换需要注意变换的顺序 和矩阵的乘法顺序,不同的顺 序可能导致不同的变换结果。
矩阵变换
矩阵变换是指通过矩阵运算对图形进 行变换的方法。
常见的矩阵变换包括平移矩阵、旋转 矩阵、缩放矩阵和倾斜矩阵等。
矩阵变换可以通过将变换矩阵与图形 顶点坐标相乘来实现,得到变换后的 新坐标。
矩阵变换具有数学表达式的简洁性和 可操作性,是计算机图形学中常用的 图形变换方法之一。
仿射变换
仿射变换是指保持图形中点与 点之间的线性关系不变的变换。
05
应用实例
游戏中的图形变换
角色动画
通过图形变换技术,游戏中的角 色可以完成各种复杂的动作,如
跑、跳、攻击等。
场景变换
游戏中的场景可以通过图形变换 技术实现动态的缩放、旋转和平 移,为玩家提供更加丰富的视觉
体验。
特效制作
图形变换技术还可以用于制作游 戏中的特效,如爆炸、火焰、水
流等,提升游戏的视觉效果。
THANKS

计算机图形学-变换

计算机图形学-变换
1
第3章 变换
基本的二维几何变换 二维复合变换 其他二维变换 三维几何变换 OpenGL几何变换函数 三维图形的显示流程 投影 裁剪
2
几何变换
应用于对象几何描述并改变它的位置、方 向或大小的操作称为几何变换(geometric transformation) 基本的二维几何变换包括平移、旋转和缩 放
8
矩阵表示和齐次坐标
许多图形应用涉及到几何变换的顺序 需要用一个通式来表示平移、旋转和缩放
P M1 P M 2
将2×2矩阵扩充为3×3矩阵,可以把二维几 何变换的乘法和平移项组合为单一矩阵表示
9
二维平移矩阵
x 1 0 t x x y 0 1 t y y 1 0 0 1 1
三维坐标轴旋转
X轴坐标不变,循环替代x、y、z三个 轴可以得到绕x轴旋转的公式
z
y ' y cos z sin
y
z ' y sin z cos x' x
x
35
三维坐标轴旋转
y轴坐标不变,循环替代x、y、z三个 轴可以得到绕y轴旋转的公式
x
z
y
z ' z cos x sin x' z sin x cos y' y
glMatrixMode (GL_MODELVIEW); glColor3f (0.0, 0.0, 1.0); glRecti (50, 100, 200, 150); //显示蓝色矩形
glColor3f (1.0, 0.0, 0.0); glTranslatef (-200.0, -50.0, 0.0); glRecti (50, 100, 200, 150); //显示红色、平移后矩形

计算机图形学之图形变换

计算机图形学之图形变换

4 T
3
2 p
1
0
012 34 567 8
线段和多边形的平移可以通过顶点的
平移来实现。同样线段和多边形的其它几 何变换也可以通过对顶点的几何变换来实 现。
2. 旋转变换(Rotation) 二维旋转有两个参数:
旋转中心: 旋转角:

6 P’
5
4
3
P
2
1
0
012 34 567 8
设OP与x轴的夹角为 则:
由于采用齐次坐标矩阵表示几何变换, 多个变换的序列相应地可以用矩阵链乘来表 示。
需要注意:先作用的变换其矩阵在右边, 后作用的变换其矩阵在左边。
变换函数
平移变换 void glTanslate{fd}(TYPE x, TYPE y, TYPE z);
旋转变换 void glRotate{fd}(TYPE angle, TYPE x, TYPE y, TYPE z); 绕矢量v=(x,y,z)T逆时针方向旋转angle指定的角度。 旋转角度的范围是0~360度。当angle=0时, glRotate()不起作用。
二维旋转有两个参数: 旋转中心: 旋转角:
上述变换可以分解为三个基本变换:
•平移:
•旋转:
•平移: 回原位。
使旋转中心移到坐标原点; 使旋转中心再移
二维旋转有两个参数: 旋转中心: 旋转角:
因此上述变换可以写成矩阵乘积形式:
4. 5 基本三维几何变换(Basic three-dimensional geometric transformation)
1. 矩阵表示(Matrix representation) 前面三种变换都可以表示为如下的矩
阵形式

《计算机图形学》实验报告

《计算机图形学》实验报告

实验报告模板《计算机图形学》实验报告一、实验目的及要求1.实习三维图形的坐标系之间的变换;2.三维图形几何变换;3.掌握三维图形的坐标系之间的变换算法及三维图形几何变换的原理和实现;4.实现二维图形的基本变换(平移、旋转、缩放、错切、对称、复合等);5.实现三维图形的基本变换(平移、旋转、缩放、复合等);二、理论基础在齐次坐标理论下,二维图形几何变换矩阵可用下式表示:⎪⎪⎪⎭⎫⎝⎛===ifchebgdaTnkxx kk2,1,0,)(ϕ平移变换:[x* y* 1] =[x y 1] *0000001ts⎛⎫⎪⎪⎪⎝⎭=[t*x s*y 1]比例变换:[x* y* 1]=[x y 1] *1000101m n⎛⎫⎪⎪⎪⎝⎭=[m+x n+y 1]旋转变换:在平面上的二维图形饶原点逆时针旋转Ө角,变换矩阵为[x* y* 1]=[x y 1] *cos sin0sin cos0001θθθθ⎛⎫⎪- ⎪⎪⎝⎭= [x*cosө-y*sinө]复合变换:以上各种变换矩阵都是以原点为参照点,当以任意参照点进行变换的时候,我们就要用到复合变换矩阵。

三维变换类似于二维,在画图时,把三维坐标转换为二维即可。

三、算法设计与分析二维变换:#define dx 50#define dy 100void CCGWithVCView::OnTransScale() //平移(50,100){// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Move Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]+dx;a[1]=m[i][1]+dy;b[0]=m[i+1][0]+dx;b[1]=m[i+1][1]+dy;DDALine(a,b, RGB(0, 200, 255), pDC);}}#define h 0.1745#include<math.h>void CCGWithVCView::OnTransRotate() //旋转{// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Rotate Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]*cos(h)-m[i][1]*sin(h);a[1]=m[i][1]*cos(h)+m[i][0]*sin(h);b[0]=m[i+1][0]*cos(h)-m[i+1][1]*sin(h);b[1]=m[i+1][1]*cos(h)+m[i+1][0]*sin(h);DDALine(a,b, RGB(0, 200, 255), pDC);}}#define k 2;#define f 2.5void CCGWithVCView::OnTransMove() //缩放{// TODO: Add your command handler code here//AfxMessageBox(_T("Please Insert The Scale Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]*k;a[1]=m[i][1]*f;b[0]=m[i+1][0]*k;b[1]=m[i+1][1]*f;DDALine(a,b, RGB(0, 200, 255), pDC);}}#define n 2#define d 0void CCGWithVCView::OnTransOther(){// TODO: Add your command handler code here//AfxMessageBox(_T("Please Insert The Other Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]+n*m[i][1];a[1]=m[i][1]+d*m[i][0];b[0]=m[i+1][0]+n*m[i+1][1];b[1]=m[i+1][1]+d*m[i+1][0];DDALine(a,b, RGB(0, 200, 255), pDC);}}三维变换:#include<math.h>#define dx 100#define dy 100#define dz 0void CCGWithVCView::OnTransScale() //平移(50,100){// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Move Change Code!")) ;int i;int p2d[6][2];int p3d[6][3]={{400,300,0},{300,400,0},{300,300,10},{275,300,0},{400,300,0},{300,300,10}};for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]+p3d[i][0]/sqrt(2);}int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]+dy-p3d[i][0]+dx/sqrt(2);p2d[i][1]=p3d[i][2]+dz+p3d[i][0]+dx/sqrt(2);}for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 0, 255), pDC);}}#define k 0.1745void CCGWithVCView::OnTransRotate() //旋转{// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Rotate Change Code!")) ;int i;int p2d[6][2];int p3d[6][3]={{400,300,0},{300,400,0},{300,300,10},{275,300,0},{400,300,0},{300,300,10}};for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]+p3d[i][0]/sqrt(2);}int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]*cos(k)-p3d[i][2]*sin(k)-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]*cos(k)+p3d[i][1]*sin(k)+p3d[i][0]/sqrt(2);}for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 0, 255), pDC);}}四、程序调试及结果的分析二维:三维:五、实验心得及建议在实验过程中,尽管过程中任由许多不会的地方,而且有待于今后的提高和改进,但我加深了对书本上知识的理解与掌握,同时也学到了很多书本上没有东西,并积累了一些宝贵的经验,这对我以后的学习与工作是不无裨益的。

2024年考研高等数学三计算机图形学中的数学算法历年真题

2024年考研高等数学三计算机图形学中的数学算法历年真题

2024年考研高等数学三计算机图形学中的数学算法历年真题数学算法作为计算机图形学的重要组成部分,其在图像处理、三维建模、动画制作等领域具有广泛应用。

下面回顾历年考研高等数学三计算机图形学中涉及到的数学算法真题,以加深对该领域知识的理解。

一、二维图形的表示和处理1. 2015年真题题目描述:给定一个二维平面上的点集P,设计一个算法,统计该点集中在指定矩形内部的点的数量。

解析:该问题可采用扫描线算法来解决。

将矩形按横坐标分割成多个行,并从上至下依次统计每行内的点数量。

具体算法步骤为:先对点集P按照横坐标排序,然后逐行扫描,记录在每一行内x坐标落在矩形范围内的点的数量。

二、三维图形的表示和处理2. 2018年真题题目描述:给定一个三维空间中的点云数据集P,设计一个算法,确定该数据集中所有点的最大距离。

解析:该问题可使用蛮力法(brute-force)来解决。

遍历所有点对的组合,计算它们之间的距离,并在遍历过程中保存最大距离。

具体算法步骤为:对点云数据集P中的每一对点(A, B),计算其欧氏距离dist(A,B),并保留最大的距离值。

三、曲线和曲面的生成及处理3. 2019年真题题目描述:已知一个平面上的曲线关于X轴的转动,设计一个算法,在三维空间内生成该曲线的旋转曲面。

解析:该问题可使用参数方程法来解决。

考虑平面上的曲线由参数方程x=f(t),y=g(t)给出,其中t为参数。

要生成其旋转曲面,首先选择一个旋转轴,假设为Z轴,然后将x和y分别替换为t的函数,可得旋转曲面的参数方程x=f(t)cosθ,y=f(t)sinθ,z=g(t),其中θ为旋转的角度。

通过不同的θ取值,可生成曲线的多个旋转曲面。

四、三维变换4. 2020年真题题目描述:给定一个三维对象的初始位置和一个变换矩阵,设计一个算法,计算该对象在变换后的位置。

解析:该问题可使用齐次坐标和矩阵乘法来解决。

将三维对象的初始坐标表示为齐次坐标[x, y, z, 1],并将变换矩阵表示为4×4的矩阵T。

计算机图形学第4章图形变换(2)

计算机图形学第4章图形变换(2)

4.1.6 二维仿射变换
上面讨论的五种变换给出的都是点变换的公式, 图形的变换实际上都可以通过点变换完成。例如 直线段的变换可通过变换两个端点,并重画新端 点间的线而得到。多边形的变换可通过变换每个 顶点,并用新的顶点来生成多边形而实现。曲线 的变换可通过变换控制点并重画线来完成。 符合下面形式:
4.2 二维观察变换 在实际应用中,用户要求图形系统具有能从已 有的图形显示数据(对应一个完整的图形)中方 便地选出数据(对应某一区域的图形)进行显示 的能力,我们把在用户坐标系中预先选定的将产 生图形显示的区域称为窗口。 同样,在使用中用户也要求能控制显示图形 在显示屏上的位置和大小,我们把在显示器坐标 系中规定的显示图形区域称为视口。 观察变换就是把这种用户坐标系中窗口的图 形变换到显示器的视口中以产生显示。
上图给出了将坐标系从右手系转换到左手系的 对称变换例子,该变换改变z坐标符号,保持x坐 标和y坐标值不变,关于x-y平面的点对称变换矩 阵为:
类似的关于y-z平面和x-z平面的对称变换矩 阵分别将x和y的值取反。关于其它平面的对称变 换可以由平移、旋转及坐标平面对称变换复合而 得。
4.3.6 三维错切变换
4.1.7 二维复合变换
二维复合变换:前面所讨论的图形变换是相对于坐 标原点或坐标轴来进行的。在实际中,常常需要相 对于任意点或任意轴来进行变换。为了做到这一点, 可通过计算多个基本变换矩阵的乘积来得到总的变 换矩阵或称为复合变换矩阵,从而实现任意顺序的 组合变换。常见的组合变换有: 1、绕任意点的旋转 绕任意点(或称基准点)(xr,yr)的旋转:该 变换可分成如图所示的三个步骤来实现
作业在实际应用中用户要求图形系统具有能从已有的图形显示数据对应一个完整的图形中方便地选出数据对应某一区域的图形进行显示的能力我们把在用户坐标系中预先选定的将产生图形显示的区域称为窗口生图形显示的区域称为窗口

计算机图形学--第八讲 图形的三维几何变换

计算机图形学--第八讲 图形的三维几何变换
同样,我们用齐次坐标来表示三维几何变换矩阵
3
变换通式
空间点[x y z] 的四维齐次坐标 [X Y Z H]表示
三维空间点的变换为 [x y z 1] T = [x’ y’ z’ 1]
变换前点的坐标 三维图形的变换矩阵
变换后点的坐标
三维图形变换矩阵通式为4 x 4 方阵
a b c p
T = d
e
5.关于Y轴对称
特点: y 值不变,zx坐标符号改变
[x y z 1] T = [-x y -z 1]
6.关于Z轴对称
特点: z值不变,xy坐标符号改变
[x y z 1] T = [-x -y z 1]
5.3 图形的三维几何变换—三维基本变换(13)
对称变换示意图
17
5.3 图形的三维几何变换—三维基本变换(14)
(x’, y’, z’)
x = xcos −ysin
y = xsin +ycos
z = z
矩阵运算的表达式为
z
cos sin 0 0
x
y
z 1 = x
y
z
1

sin
0
cos
0
0
0
1 0
0
0 0 1
y
(x, y, z)
x
10
5.4 图形的三维几何变换-三维基本变换(7)
绕X轴旋转
与二维图形的组合变换一样, 三维立体图形也可通过 三维基本变换矩阵, 按一定顺序依次相乘而得到一个 组合矩阵(称级联), 完成组合变换。
三维组合平移、组合旋转和组合比例变换与二维组合 平移、组合旋转和组合比例变换具有类似的规律。
19
5.3 图形的三维几何变换—三维复合变换(2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《计算机图形学》实验报告
实验 三维图形变换
一、实验目的与要求
1. 掌握三维图形的基本变换与复合变换算法原理;
2. 掌握三维图形投影变换与透视变换的算法。

二、实验内容
1. 给定一个长方体8个顶点坐标,编程实现图形的正投影变换与轴测投影变换;
2. 给定一个三维几何体坐标,实现它的轴测投影变换与一点透视变换。

三、重要算法分析
三维变换齐次坐标矩阵:
⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛lm ns cfir behq adgp
从功能上可以将4x4的矩阵分为四个部分:
1. 对图形进行缩放、旋转、对称、错切等变换的矩阵:
⎪⎪⎪⎭
⎫ ⎝⎛cfi beh adg
2. 对图形进行平移变换的矩阵:
()lm n
3. 对图形透视变换的矩阵:
⎪⎪⎪⎭
⎫ ⎝⎛r q p
4. 对图形整体比例变换的矩阵:
()s
三维空间点齐次坐标矩阵变换方法为:
()1'''z y x =()1xyz ⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛lm ns cfir behq adgp
通过上述矩阵对图形上坐标值进行计算,获得相应变换后的坐标值,即可输出要显示的图形。

四、程序运行截图
图1为正投影图形,图2、3分别为正等测投影和正二测投影,图4为一点透视投影。

图1 正投影图形
图2 正等测图形图3 正二测图形
图4 一点透视图形
五、总结与调试经验
三维图形的变换可以产生很好的视觉效果,使的再二维平面上的图形更有立体感,对图形进行变换的过程中,通过使用四维的齐次坐标矩阵可以在计算机中方便的计算出变换前后图形的坐标值,并绘制出图形。

相关文档
最新文档