2015中考一元二次方程专题复习
一元二次方程专题复习

一元二次方程专题复习(一)直接开平方法→配方法要点一、一元二次方程的解法---配方法1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式.类型一、用配方法解一元二次方程1.用配方法解方程x 2-7x-1=0.【答案与解析】将方程变形为x 2-7x =1,两边加一次项的系数的一半的平方,得x 2-7x+=1+,所以有=1+.直接开平方,得x-=或x-=-.所以原方程的根为x =+或x =-.【总结升华】一般地,用先配方,再开平方的方法解一元二次方程,应按以下步骤进行: (1)把形如ax 2+bx+c =0(a ≠0)的方程中二次项的系数化为1; (2)把常数项移到方程的右边;2222()a ab b a b ±+=±(3)方程的两边都加“一次项系数一半的平方”,配方得形如(x+m)2=n(n ≥0)的方程; (4)用直接开平方的方法解此题.举一反三:【变式】用配方法解方程.(1)x 2-4x-2=0; (2)x 2+6x+8=0.要点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,一定要学好.类型二、配方法在代数中的应用2.若代数式,,则的值( )A .一定是负数B .一定是正数C .一定不是负数D .一定不是正数【答案】B ;【解析】(作差法).故选B.【总结升华】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.221078Ma b a =+-+2251N a b a =+++M N -22221078(51)M N a b a a b a -=+-+-+++2222107851a b a a b a =+-+----29127a a =-+291243a a =-++2(32)30a =-+>3.用配方法说明:代数式x2+8x+17的值总大于0.【答案与解析】x2+8x+17= x2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴(x+4)2+1>0,故无论x取何实数,代数式 x2+8x+17的值总大于0.【总结升华】利用配方法将代数式配成完全平方式后,再分析代数式值得符号.举一反三:【变式】求代数式 x2+8x+17的最小值4.(2014春•滦平县期末)已知x2+y2﹣4x+6y+13=0,求(x+y)2013的值.【思路点拨】采用配方法求出x、y的值,代入计算即可得到答案.【答案与解析】解:x2+y2﹣4x+6y+13=0,x2﹣4x+4+y2﹣+6y+9=0,(x﹣2)2+(y+3)2=0∴x﹣2=0,y+3=0,解得,x=2,y=﹣3,(x+y)2013=﹣1.【总结升华】本题考查的是配方法的应用和非负数的性质的应用,掌握配方法的步骤和几个非负数的和为0,每个非负数都为0是解题的关键.1.一元二次方程的求根公式 一元二次方程,当时,.2.一元二次方程根的判别式 一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程,用配方法将其变形为:①当时,右端是正数.因此,方程有两个不相等的实根:② 当时,右端是零.因此,方程有两个相等的实根: ③ 当时,右端是负数.因此,方程没有实根.20 (0)ax bx c a ++=≠2224()24b b ac x a a -+=240b ac ∆=->1,22b x a-±=240b ac ∆=-=1,22b x a=-240b ac ∆=-<5. 用公式法解下列方程.(1); (2).【总结升华】 用公式法解一元二次方程的关键是对a 、b 、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a ,b ,c 的值并计算的值;(3)若是非负数,用公式法求解.举一反三:【变式】用公式法解方程6.用公式法解下列方程:(1); (2) .【总结升华】首先把每个方程化成一般形式,确定出a 、b 、c 的值,在的前提下,代入求根公式可求出方程的根.23310x x --=2241x x =-24b ac -24b ac -2341x x =+2100x -+=(1)(1)x x +-=240b ac -≥举一反三:【变式】(2014秋•泽州县校级期中)用公式法解方程:5x 2﹣4x ﹣12=0.【巩固练习】 一、选择题1.已知关于x 的一元二次方程,用配方法解此方程,配方后的方程是( )A .B .C .D . 2.用配方法解下列方程时,配方有错误的是( )A .化为B .化为C .化为D .化为3.(2015春•张家港市校级期中)若M=2x 2﹣12x+15,N=x 2﹣8x+11,则M 与N 的大小关系为( ) A .M ≥N B . M >N C . M ≤N D . M <N 4.不论x 、y 为何实数,代数式的值 ( )A .总小于2B .总不小于7C .为任何实数D .不能为负数 5.已知,则的值等于( )A.4B.-2C.4或-2D.-4或2 6.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定二、填空题 7.(1)x 2-x+ =( )2; (2)x 2+px+ =( )2. 220x x m --=2(1)1x m -=+2(1)1x m +=+22(1)1x m -=+22(1)1x m +=+22990x x --=2(1)100x -=22740t t --=2781416t ⎛⎫-= ⎪⎝⎭2890x x ++=2(4)25x +=23420x x --=221039x ⎛⎫-= ⎪⎝⎭22247x y x y ++-+438.已知,则的值为 . 9.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.10.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为____ ___,∴所以方程的根为_________. 11.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是___ ________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________. 12.(2015春•重庆校级期中)a 2+b 2﹣4a+2b+5=0,则b a 的值为 .三、解答题 13. 用配方法解方程.(1) 3x 2-4x-2=0; (2)x 2-4x+6=0.14. 用公式法解下列方程:(2) .15.(2014•甘肃模拟)用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0.16.已知在⊿ABC 中,三边长a 、b 、c ,满足等式a 2-16b 2-c 2+6ab+10bc=0,求证:a+c=2b223730216b a a b -+-+=a -2(1)210x ax --=;22222(1)()ab x a x b x a b +=+>一元二次方程专题复习(二)温故知新:1.直接开平方法2.配方法3.公式法一、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
《一元二次方程》总复习、练习、中考真题【题型解析】

一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0〕。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法1.直接开平方法:对形如(x+a〕2=b〔b≥0〕的方程两边直接开平方而转化为两个一元一次方程的方法。
x+a= ± b ∴ x1 =-a+ b x2 =-a- b2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0〕的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a〕2=b 的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,那么原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是x = - b ± b 2 - 4ac (b2-4ac≥0)。
步骤:①把方程转化为一般形2a式;②确定 a,b,c 的值;③求出 b2-4ac 的值,当 b2-4ac≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:假设ab=0,那么 a=0 或b=0。
步骤是:①将方程右边化为 0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的考前须知:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0 时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c 的值;②假设b2-4ac<0,那么方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4) 2 =3〔x+4〕中,不能随便约去 x+4。
中考数学一轮复习《一元二次方程》知识要点及专题练习

中考数学一轮复习知识点课标要求专题训练:一元二次方程(含答案)一、知识要点:1、定义等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。
一元二次方程的一般形式是ax 2+bx +c =0(a ≠0)。
其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。
2、一元二次方程的解法直接开方法、配方法、公式法、因式分解法。
(1)直接开方法。
适用形式:x 2=p 、(x +n )2=p 或(mx +n )2=p 。
(2)配方法。
套用公式a 2+2ab +b 2=(a +b )2;a 2-2ab +b 2=(a -b )2,配方法解一元二次方程的一般步骤是:①化简——把方程化为一般形式,并把二次项系数化为1;②移项——把常数项移项到等号的右边;③配方——两边同时加上b 2,把左边配成x 2+2bx +b 2的形式,并写成完全平方的形式;④开方,即降次;⑤解一次方程。
(3)公式法。
当b 2-4ac ≥0时,方程ax 2+bx +c =0的实数根可写为:a ac b b x 242-±-=的形式,这个式子叫做一元二次方程ax 2+bx +c =0的求根公式。
这种解一元二次方程的方法叫做公式法。
①b 2-4ac >0时,方程有两个不相等的实数根。
a ac b b x 2421-+-=,aac b b x 2422---= ②b 2-4ac =0时,方程有两个相等的实数根。
ab x x 221-== ③b 2-4ac <0时,方程无实数根。
定义:b 2-4ac 叫做一元二次方程ax 2+bx +c =0的根的判别式,通常用字母Δ表示,即Δ=b 2-4ac 。
(4)因式分解法。
主要用提公因式法、平方差公式。
3、一元二次方程与实际问题解有关一元二次方程的实际问题的一般步骤:第1步:审题。
认真读题,分析题中各个量之间的关系。
第2步:设未知数。
中考总复习一元二次方程复习

解:(1)当x≥0时,原方程化为x2-x-2=0, 解得x1=2,x2=-1(不合题意,舍去). (2)当x<0时,原方程化为x2+x-2=0,解得x1=1
(不合题意,舍去),x2=-2.
∴原方程的根是x1=2, x2 =-2. 请参照例题解方程:
x2-│x-3│-3=0,则此方程的根是________.
∴x2=5,x=± . ∴原方程的解为x1=
x3= ,x4=- .解答5 问题:
2 ,x2=- ,
2
(1)填2 空:在由5 原方程得到5方程①的过程中,利用_________
法达到了降次的目的,体现了_________的数学思想.
(2)解方程x4-x2-6=0
第十二页,编辑于星期一:十五点 五十二分。
基础闯关
• 1.判断下列方程是否为一元二次方程?
•
•
(1) 3x + 2 = 5y - 3
(2)
• 整式方程中都只含 有一个未知数,并
且未知数的最高次
• (3)
数是2,这样的方 程叫做一元二次方
程
• (4)
2.若方程(k²+2k-3)x²+(k-1)x+4=0是关于x的一
元二次方程,则k的取值范围是____
2 )x + ( 1 ) 2 - 3 x + 1 + 2 = 0 ;(因式分解法)
3) -x2+4x-3=0(因式分解法)
4)2x2-9x+8=0(公式法)
10. 用配方法说明:不论k取何实数,多项式
3k2+6k+5的值必定大于零.
第十页,编辑于星期一:十五点 五十二分。
基础闯关
北京中考一元二次方程全章复习

一元二次方程复习22.1 一元二次方程(1)一元二次方程的定义:请你举出几个一元二次方程的例子:一元二次方程的一般形式:。
其中叫二次项,叫一次项,叫常数项,叫二次项系数,叫一次项系数。
想一想:分别找出下列方程中的二次项,一次项,常数项,二次项系数,一次项系数。
⑴x2+10x-900=0 ⑵5x2+10x-2.2=0 ⑶x2-x-56=0⑷4x2=9 ⑸x2+3x=0 ⑹3y2-5y=7做一做:1、将方程3x(x-10)=5(x+2)化成一元二次方程的一般形式,并写出二次项,一次项,常数项,二次项系数,一次项系数。
2、将导语中的方程化成一元二次方程的一般形式,并写出二次项,一次项,常数项,二次项系数,一次项系数。
拓展练习1、如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,如果梯子的顶端下滑1m,则梯子底端滑动多少米?2、有一群蜜蜂,其半数的平方根只飞向茉莉花丛, 留在家里,还有两只去寻找荷花瓣里嗡嗡叫的雄蜂,这两只雄蜂被荷花的香味吸引,傍晚时由于花瓣合拢,飞不出去了,请你告诉我蜂群中有多少只蜜蜂22.1 一元二次方程(2)1、下面哪些数是方程2x2+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4.(1)x 2-64=0 (2)3x 2-6=0 (3)x 2-3x=0应用拓展1、要剪一块面积为150cm 2的长方形铁片,使它的长比宽多5cm ,•这块铁片应该怎样剪?2、已知x=2是关于x 的方程1.5x 2-2a=0的解,求式子2a-1的值?22.1一元二次方程的概念和直接开平方法解一元二次方程一元二次方程的一般形式: ,其中二次项是 ,二次项系数是 ,一次项是 ,一次项系数是 , 常数项是 。
叫做一元二次方程的根。
1、判断下列关于x 的方程是否是一元二次方程,若是一元二次方程,请写出它的a 、b 、c① 3x 2=2x-1 ② x 2+x 2=0 ③ x 2=5④ ax 2+bx+c=0 ⑤ (x-2)(x+1)=(x+3)(x-1)2、已知关于x 的方程(m+2)x m +3x+m=0是一元二次方程,求此一元二次方程。
中考总复习 一元二次方程

(1)增长率
设a为原来量,x为平均增长率,n为增长数,b为增长后 的量,则 有 . ;当 m 为平均下降率时,则
(2)利润等量关系: 利润 = 售价 - 成本; .
(3)面积类问题常见图形归纳如下:
如图①所示的矩形 ABCD 长为 a,宽为 b,空白部分 宽为 x,则阴影部分的面积表示为 ________________.
中考考点清单 甘肃三年真题精讲练(精讲,精练)
考点巩固练习
例:1、关于x的方程 x 2 (k 2) x 6 k 0 有两个相等的正实数根,
则k的值是(
2
)
2
2、若啊a,b,c是∆ABC的三边长,且关于x的方程
a( x 1) 2cx b( x 1) 0
∆ABC的形状
命题点4 一元二次方程根与系数的关系 例(’13甘南州22题4分)设m、n是一元二次方程x2+2x-3=0 的两根,则
m 2 n mn 2 m2 n2
的值为________.
命题点5 一元二次方程的实际应用 例(’15甘肃省卷7题3分)近年来某县加大了对教育经费的投 入,2013年投入2500万元,2015年将投入3600万元.设该县投入 教育经费的年平均增长率为x,根据题意列方程,则下列方程 正确的是( ) A. 2500x2=3600 B. 2500(1+x)2=3600 C. 2500(1+x%)2=3600 D. 2500(1+x)+2500(1+x)2=3600
甘肃三年真题精讲练
命题点1 一元二次方程及其相关概念 例(’14甘南州8题4分) 若x=3是方程x2-5mx+6m=0的一个根,则m的值为( A. 1 B. 2 C. 3 D. 4 )
中考数学专题复习题:一元二次方程

1 / 3中考数学专题复习题:一元二次方程一、单项选择题(共10小题)1.已知方程260x x +−=的两个根是a b ,,则ab 的值为( )A .1B .1−C .6D .6−2.在下列方程中,不属于一元二次方程的是( )A.2152x −=xB .7x 2=0C .0.3x 2+0.2x =4D .x (1-2x 2)=2x 2 3.如果关于x 的方程240x x m −+=有两个不相等的实数根,那么在下列数值中,m 可以取的是( )A .3B .4C .5D .64.关于x 的不等式x ﹣2a <1的解集为x <1,则关于x 的一元二次方程x 2+ax +1=0根的情况是( ) A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定5.若关于的一元二次方程2210kx x +−=有两个不相等的实数根,则实数k 的取值范围是( )A .1k >−B .且0k ≠C .1k ≥−且D .1k <−且6.如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,若每轮感染中平均一台电脑会感染x 台电脑,下列方程正确的是( )A .x (x +1)=81B .1+x +x 2=81C .1+x +x (x +1)=81D .1+(x +1)2=817.已知关于x 的方程220x kx +−=的一个解与方程131x x +=−的解相同,则方程的另一个解是( )A .B .2−C .1D .28.从4−,,,0,1,2,4,6这八个数中随机抽一个数,记为a ,数a 使关于xx 1k >−0k ≠0k ≠220x kx +−=1−2−1−2 / 3的一元二次方程()22240x a x a −−+=有实数解,关于y 的分式方程1311y a y y+−=−−有整数解,则符合条件的a 的值的和是( )A .B .C .D .29.已知ABC 的三边长为a ,b ,c ,且满足方程a 2x 2-(c 2-a 2-b 2)x +b 2=0,则方程根的情况是( )A .有两相等实根B .有两相异实根C .无实根D .不能确定10.三角形两边的长分别是6和8,第三边的长是一元二次方程216600x x −+=的一个实数根,则该三角形的面积是( )A .24B .24或 C .48或D .二、填空题(共5小题)11.已知x =-2是方程x 2+mx -6=0的一个根,则方程的另一个根是________.12.在国际象棋比赛中,若要求参赛的每两位棋手之间都要比赛一场,根据赛程计划共安排45场比赛,设本次比赛共有x 个参赛棋手,则可列方程为________.13.一元二次方程23670x x −−=的二次项系数是________,常数项是________. 14.把方程232x x −=用配方法化为2()x m n +=的形式,则m =______,n =______. 15.如图是一块矩形菜地ABCD ,AB=a (m ),AD=b (m ),面积为2()s m ,现将边AB 增加1m.(1)如图1,若a=5,边AD 减少1m ,得到的矩形面积不变,则b 的值是________. (2)如图2,边AD 增加2m ,有且只有一个a 的值,使得到的矩形面积为22()s m ,则s 的值是________.三、解答题(共7小题)16.解方程:(1)x 2-2x =1;(2)(x +3)2-2(x +3)=0 6−4−2−3 / 317.已知关于x 的方程x 2+9x +25+m =0,(1)若此方程有实数根,求m 的取值范围;(2)在(1)条件下m 取满足条件的最大整数时,求此时方程的解.18.一次函数5y x =−+与反比例函数k y x=的图象在第一象限交于A ,B 两点,其中()1,A a .(1)求反比例函数表达式;(2)若把一次函数的图象向下平移b 个单位,使之与反比例函数的图象只有一个交点,请求出b 的值.19.先化简再求值:2221(1)11m m m m m −−÷−−−+,其中m 是方程22016x x −=的解. 20.现有一块长20cm ,宽10cm 的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为56cm 2的无盖长方体盒子,请求出剪去的小正方形的边长.21.已知关于x 的一元二次方程x 2-(2k +1)x +4k -3=0,当Rt △ABC 的斜边a且两直角边b 和c 恰好是这个方程的两个根时,求△ABC 的周长.22.已知关于的一元二次方程22(12)10k x k x +−+=有两个不相等的实数根.(1)求的取值范围;(2)若原方程的两个实数根为12x x ,,且满足121223x x x x +=−,求的值.5y x =−+k y x=x k k。
中考数学专题复习一元二次方程的综合题附答案解析

一、一元二次方程 真题与模拟题分类汇编(难题易错题) 1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值.试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2, ∴k 1=1,k 2=-3. ∵k ≤12,∴k =-3.2.解方程:(x+1)(x ﹣3)=﹣1. 【答案】x 1=1+3,x 2=1﹣3 【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可. 试题解析:整理得:x 2﹣2x=2,配方得:x 2﹣2x+1=3,即(x ﹣1)2=3, 解得:x 1=1+3,x 2=1﹣3.3.已知x 1、x 2是关于x 的﹣元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根. (1)求a 的取值范围;(2)若(x 1+1)(x 2+1)是负整数,求实数a 的整数值. 【答案】(1)a≥0且a≠6;(2)a 的值为7、8、9或12. 【解析】 【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x 1+x 2=﹣26a a + ,x 1x 2=6aa + ,由(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=﹣66a - 是是负整数,即可得66a -是正整数.根据a 是整数,即可求得a 的值2. 【详解】(1)∵原方程有两实数根,∴,∴a≥0且a≠6.(2)∵x 1、x 2是关于x 的一元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根, ∴x 1+x 2=﹣,x 1x 2=,∴(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=﹣+1=﹣.∵(x 1+1)(x 2+1)是负整数, ∴﹣是负整数,即是正整数.∵a 是整数,∴a ﹣6的值为1、2、3或6, ∴a 的值为7、8、9或12. 【点睛】本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a 的不等式是解此题的关键.4.发现思考:已知等腰三角形ABC 的两边分别是方程x 2﹣7x+10=0的两个根,求等腰三角形ABC 三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因. 涵涵的作业解:x 2﹣7x+10=0 a=1 b=﹣7 c=10 ∵b 2﹣4ac=9>0∴x=2b b 4ac 2a--=732±∴x 1=5,x 2=2所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2. 当腰为2,底为5时,等腰三角形的三条边为2,2,5. 探究应用:请解答以下问题:已知等腰三角形ABC 的两边是关于x 的方程x 2﹣mx+m 2﹣14=0的两个实数根. (1)当m=2时,求△ABC 的周长; (2)当△ABC 为等边三角形时,求m 的值.【答案】错误之处及错误原因见解析;(1)当m=2时,△ABC 的周长为72;(2)当△ABC 为等边三角形时,m 的值为1. 【解析】【分析】根据三角形三边关系可以得到等腰三角形的三条边不能为2、2、5. (1)先解方程,再确定边,从而求周长;(2)是等边三角形,则两根相等,即△=(﹣m)2﹣4(m2﹣14)=m2﹣2m+1,可求得m.【详解】解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5.错误原因:此时不能构成三角形.(1)当m=2时,方程为x2﹣2x+34=0,∴x1=12,x2=32.当12为腰时,12+12<32,∴12、12、32不能构成三角形;当32为腰时,等腰三角形的三边为32、32、12,此时周长为32+32+12=72.答:当m=2时,△ABC的周长为72.(2)若△ABC为等边三角形,则方程有两个相等的实数根,∴△=(﹣m)2﹣4(m2﹣14)=m2﹣2m+1=0,∴m1=m2=1.答:当△ABC为等边三角形时,m的值为1.【点睛】本题考核知识点:二元一次方程的运用.解题关键点:熟练掌握二元一次方程的解法和等腰三角形性质.5.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.月份用水量(吨)水费(元)四月3559.5五月80151【答案】6.由图看出,用水量在m 吨之内,水费按每吨1.7元收取,超过m 吨,需要加收.7.(问题)如图①,在a×b×c (长×宽×高,其中a ,b ,c 为正整数)个小立方块组成的长方体中,长方体的个数是多少? (探究)探究一:(1)如图②,在2×1×1个小立方块组成的长方体中,棱AB 上共有1+2=232⨯=3条线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为3×1×1=3. (2)如图③,在3×1×1个小立方块组成的长方体中,棱AB 上共有1+2+3=342⨯=6条线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为6×1×1=6. (3)依此类推,如图④,在a×1×1个小立方块组成的长方体中,棱AB 上共有1+2+…+a=()a a 12+线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为______. 探究二:(4)如图⑤,在a×2×1个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有1+2=232⨯=3条线段,棱AD 上只有1条线段,则图中长方体的个数为()a a 12+×3×1=()3a a 12+.(5)如图⑥,在a×3×1个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有1+2+3=342⨯=6条线段,棱AD 上只有1条线段,则图中长方体的个数为______. (6)依此类推,如图⑦,在a×b×1个小立方块组成的长方体中,长方体的个数为______.探究三:(7)如图⑧,在以a×b×2个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC 上有()b b 12+条线段,棱AD 上有1+2=232⨯=3条线段,则图中长方体的个数为()3a a 12+×()b b 12+×3=()()3ab a 1b 14++.(8)如图⑨,在a×b×3个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有()b b 12+条线段,棱AD 上有1+2+3=342⨯=6条线段,则图中长方体的个数为______.(结论)如图①,在a×b×c 个小立方块组成的长方体中,长方体的个数为______. (应用)在2×3×4个小立方块组成的长方体中,长方体的个数为______. (拓展)如果在若干个小立方块组成的正方体中共有1000个长方体,那么组成这个正方体的小立方块的个数是多少?请通过计算说明你的结论.【答案】探究一:(3)()a a12+;探究二:(5)3a(a+1);(6)()()ab a1b14++;探究三:(8)()()3ab a1b12++;【结论】:①()()()abc a1b1c18+++;【应用】:180;【拓展】:组成这个正方体的小立方块的个数是64,见解析.【解析】【分析】(3)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(5)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(6)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(8)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(结论)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(应用)a=2,b=3,c=4代入(结论)中得出的结果,即可得出结论;(拓展)根据(结论)中得出的结果,建立方程求解,即可得出结论.【详解】解:探究一、(3)棱AB上共有()a a12+线段,棱AC,AD上分别只有1条线段,则图中长方体的个数为()a a12+×1×1=()a a12+,故答案为() a a12+;探究二:(5)棱AB上有()a a12+条线段,棱AC上有6条线段,棱AD上只有1条线段,则图中长方体的个数为()a a12+×6×1=3a(a+1),故答案为3a(a+1);(6)棱AB上有()a a12+条线段,棱AC上有()b b12+条线段,棱AD上只有1条线段,则图中长方体的个数为()a a12+×()b b12+×1=()()ab a1b14++,故答案为()() ab a1b14++;探究三:(8)棱AB上有()a a12+条线段,棱AC上有()b b12+条线段,棱AD上有6条线段,则图中长方体的个数为()a a12+×()b b12+×6=()()3ab a1b12++,故答案为()()3ab a 1b 12++;(结论)棱AB 上有()a a 12+ 条线段,棱AC 上有()b b 12+条线段,棱AD 上有()c c 12+条线段,则图中长方体的个数为()a a 12+×()b b 12+×()c c 12+=()()()abc a 1b 1c 18+++,故答案为()()()abc a 1b 1c 18+++;(应用)由(结论)知,()()()abc a 1b 1c 18+++,∴在2×3×4个小立方块组成的长方体中,长方体的个数为()()()2342131418⨯⨯⨯+⨯+⨯+=180,故答案为为180;拓展:设正方体的每条棱上都有x 个小立方体,即a=b=c=x ,由题意得33(1)8x x +=1000, ∴[x (x+1)]3=203, ∴x (x+1)=20,∴x 1=4,x 2=-5(不合题意,舍去) ∴4×4×4=64所以组成这个正方体的小立方块的个数是64. 【点睛】解此题的关键在于根据已知得出规律,题目较好,但有一定的难度,是一道比较容易出错的题目.8.阅读下面的例题, 范例:解方程x 2﹣|x|﹣2=0,解:(1)当x≥0时,原方程化为x 2﹣x ﹣2=0,解得:x 1=2,x 2=﹣1(不合题意,舍去). (2)当x <0时,原方程化为x 2+x ﹣2=0,解得:x 1=﹣2,x 2=1(不合题意,舍去). ∴原方程的根是x 1=2,x 2=﹣2请参照例题解方程x 2﹣|x ﹣10|﹣10=0. 【答案】x 1=4,x 2=﹣5. 【解析】 【分析】分为两种情况:当x≥10时,原方程化为x 2﹣x=0,当x <10时,原方程化为x 2+x ﹣20=0,分别求出方程的解即可.【详解】当x≥10时,原方程化为x 2﹣x+10﹣10=0,解得x 1=0(不合题意,舍去),x 2=1(不合题意,舍去);当x <10时,原方程化为x 2+x ﹣20=0,解得x 3=4,x 4=﹣5, 故原方程的根是x 1=4,x 2=﹣5. 【点睛】本题考查了解一元二次方程——因式分解法,解此题的关键是能正确去掉绝对值符号.9.已知关于x 的一元二次方程x 2﹣mx ﹣2=0…①(1)若x =﹣1是方程①的一个根,求m 的值和方程①的另一根; (2)对于任意实数m ,判断方程①的根的情况,并说明理由.【答案】(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析. 【解析】试题分析:(1)直接把x=-1代入方程即可求得m 的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为判别式△与0的关系进行判断. (1)把x=-1代入得1+m-2=0,解得m=1 ∴2--2=0.∴∴另一根是2; (2)∵,∴方程①有两个不相等的实数根.考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根10.已知关于x 的方程(a ﹣1)x 2+2x +a ﹣1=0. (1)若该方程有一根为2,求a 的值及方程的另一根;(2)当a 为何值时,方程的根仅有唯一的值?求出此时a 的值及方程的根. 【答案】(1)a=15,方程的另一根为12;(2)答案见解析. 【解析】 【分析】(1)把x=2代入方程,求出a 的值,再把a 代入原方程,进一步解方程即可;(2)分两种情况探讨:①当a=1时,为一元一次方程;②当a≠1时,利用b 2-4ac =0求出a 的值,再代入解方程即可. 【详解】(1)将x =2代入方程2(a 1)x 2x a 10-++-=,得4(a 1)4a 10-++-=,解得:a =15.将a=15代入原方程得24x2054x5-+-=,解得:x1=12,x2=2.∴a=15,方程的另一根为12;(2)①当a=1时,方程为2x=0,解得:x=0.②当a≠1时,由b2-4ac=0得4-4(a-1)2=0,解得:a=2或0.当a=2时,原方程为:x2+2x+1=0,解得:x1=x2=-1;当a=0时,原方程为:-x2+2x-1=0,解得:x1=x2=1.综上所述,当a=1,0,2时,方程仅有一个根,分别为0,1,-1.考点:1.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C. ﹣ <m<2
D. <m<2 ,方程的另一根为 。 )
16.关于 x 的一元二次方程 x mx 2m 0 的一个根为 1,则 m=
2
17. 菱形 ABCD 的一条对角线长为 6, 边 AB 的长为方程 y ﹣7y+10=0 的一个根, 则菱形 ABCD 的周长为 ( A. 8 B. 20 C. 8 或 20 D. 10
n m = m n
.
(1)方程只有一个实数根; (2)方程有两个相等的实数根; (3)方程有两个不等的实数根.
26.(2010 湖北孝感)已知关于 x 的方程 x -2(k-1)x+k =0 有两个实数根 x1,x2 . (1)求 k 的取值范围; (2)若 x1 x2 x1 x2 1 ,求 k 的值. 27. 已知关于 x 的一元二次方程 x2 -2x-a=0. (1)如果此方程有两个不相等的实数根,求 a 的取值范围; (2)如果此方程的两个实数根为 x1 ,x2 ,且满足
2 18. 已知整 数 k < 5 , 若△ ABC 的边长 均满 足关于 x 的方 程 x 3 k x 8 0 ,则△ ABC 的周长
3
是
。
2
19.设 x1,x2 是方程 x ﹣x﹣2013=0 的两实数根,则
2
=
.
20.已知 m,n 是关于 x 的一元二次方程 x ﹣3x+a=0 的两个解,若(m﹣1) (n﹣1)=﹣6,则 a 的 值为( ) A. ﹣10 B. 4 C. ﹣4 D. 10 21.已知 , 是一元二次方程 x 2 5 x 2 0 的两个实数根,则 2 2 的值为( A.-1
2
)
)
A.5
B.-5
C.1
D.-1
11. (2014•湖北黄冈)若 α、β 是一元二次方程 x2 +2x﹣6=0 的两根,则 α2 +β2 =(
A. ﹣8
B. 32
C. 16
2
D. 40
12.(2013•鄂州)已知 m,n 是关于 x 的一元二次方程 x ﹣3x+a=0 的两个解,若(m﹣1) (n﹣1)=﹣6,则 a 的 值为( ) A. ﹣10 B. 4 C. ﹣4 D. 10 13.(2014•菏泽)已知关于 x 的一元二次方程 x2 +ax+b=0 有一个非零根﹣b,则 a﹣b 的值为( )
2
)如果方程 ax -bx-6=0 与方程 ax +2bx-15=0 有一个公共根是 3,求 a,b 的值,•并求方程的另一个根.
23.若 0 是关于 x 的方程(m-2)x2 +3x+m2 +2m-8=0 的解,求实数 m 的值,并讨论此方程解的情况.
24. (2015•四川凉山州第 25 题) 已知实数 m, n 满足 3m2+6m﹣5=0, 3n2 +6n﹣5=0, 且 m≠n, 则 25.已知关于 x 的方程 (m 2) x 2 2(m 1) x m 1 0 ,当 m 为何非负整数时: ( )
2
C.有一个实数根
D.没有实数根
5、已知 b<0,关于 x 的一元二次方程(x﹣1) =b 的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数 C.没有实数根 D.有两个实数根 2 6、若关于 x 的一元二次方程 x +2x+k=0 有两个不相等的实数根,则 k 的取值范围是( ) A.k<1 B.k>1 C.k=1 D.k≥0 2 7、若关于 x 的方程 x -4x+m=0 没有实数根,则实数 m 的取值范围是( ) A.m<-4 B.m>-4 C.m<4 D.m>4 2 8、已知关于 x 的一元二次方程 x +bx+b﹣1=0 有两个相等的实数根,则 b 的值是
2 9、 若关于 x 的一元二次方程 kx 2 x 1 0 有两个不相等的实数根, 则实数 k 的取值范围是 (
)
A. k 1
B. k 1 且 k 0
C. k 1 且 k 0
D. k 1 且 k 0
x2 x1 x1 , x2 x x2 的值为( x 3 x 3 0 1 10、设 是方程 的两个实数根,则
x 1 x 2 2
x 1 x 2 2 4x 1 x 2
2
2.以 x1 ,x2 为根的一元二次方程可写成 x -(x1 +x2 )x+x1 x2 =0. 3.使用一元二次方程 ax2 +bx+c=0(a≠0)的根的判别式△=b2 -4ac •解题的前提是二次项系 数 a≠0. 4.若 x1 ,x2 是关于 x 的方程 ax2 +bx+c=0 的两根,则 ax12 +bx1 +c=0,ax2 2+bx2 +c=0.反之,若 ax1 2 +bx1 +c=0,ax2 2 +bx2 +c=0,且 x1 ≠x2 ,则 x1 ,x2 是关于 x 的一元二次方程 ax2 +bx+c=0 的 两根. 【易错提示】(1)在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为 0 这个限 制条件.(2)利用根与系数的关系解题时,要注意根的判别式 b2 -4ac≥0. 考点 3 一元二次方程的应用(传播类,树枝类、握手、单双循环、面积、增长率) 列一元二次方程解应用问题的步骤和解法与前面讲过的列方程解应用题的方法步骤相同,但在解题中心须 注意所求出的方程的解一定要使实际问题有意义,凡不满足实际问题的解(虽然是原方程的解)一定要舍去. 【典型例题】 例 1: (2014 年广东汕尾)已知关于 x 的方程 x2 +ax+a﹣2=0 (1)若该方程的一个根为 1,求 a 的值及该方程的另一根; (2)求证:不论 a 取何实数,该方程都有两个不相等的实数根.
4
32.学校举行乒乓友谊赛,采用单循环赛形式(即每两个队要比赛一场),计算下来共要比赛 66 场,问共有多 少个队报名参赛? 33.参加一次足球赛的每两队之间都进行两次比赛,共赛 90 场,共有多少队参加?
34.(2008,南京)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为 2:1,在温室内沿前侧内墙保留 3m 宽的空地,其他三侧内墙各保留 1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积 是 288m ?
2
根与系数的关系
1.如果一元二次方程 ax +bx+c=0(a≠0)的两根分别是 x1 、x2 ,则 x1 +x2 =-
2
b c ,x1 ·x2= . a a
(注意在使用根系关系式求待定的系数时必须满足Δ≥0 这个条件,否则解题就会出错。 )注 意:
① x12 x 2 2 x1 x 2 2 2x1 x 2 ② x1 x 2 x1 x 2 x1 x 2 x1 x 2
一 元 二 次 方 程 专 题 复 习
【知识回顾】 考点 1 一元二次方程的概念及解法 一元二次方程的概念 只含有 一元二次方程的解法 个未知数, 且未知数的最高次数是 的整式方程, 叫做一元二次 法、
方程.它的一般形式是 ax2+bx+c=0(a≠0). 解一元二次方程的基本思想是 ,主要方法有:直接开平方法、 公式法、 法等.
2 2
2 2 ② ( x1 x2 ) ( x1 x2 ) 4 x1 x2
2 ④ x 1 a x 2 a x 1 x 2 a x 1 x 2 a
x x2 1 1 1 ⑤ x1 x 2 x1 x 2
⑦ x1 x 2
2 x x 2 2 x 1 x 2 x1 x2 1 1 2 1 ⑥ 2 2 2 2 x 1 x 2 2 x1 x2 x1 x 2 2
1
例 2: 关于 x 的方程 kx 2 (k 2) x (1)求 k 的取值范围。
k 0 有两个不相等的实数根. 4
(2)是否存在实数 k,使方程的两个实数根的倒数和等于 0?若存在,求出 k 的值;若不存在,说明理由
例 3: (2014·南充)已知关于 x 的一元二次方程 x -2 2 x+m=0,有两个不相等的实数根.
2
(1)求实数 m 的最大整数值; (2)在(1)的条件下,方程的实数根是 x1 ,x2 ,求代数式 x1 2 +x2 2 -x1 x2 的值.
例 4: (2013·淄博)关于 x 的一元二次方程(a-6)x -8x+9=0 有实根. (1)求 a 的最大整数值; (2)当 a 取最大整数值时,①求出该方程的根;②求 2x2 -
A. 1
B. ﹣ 1
C. 0
D. ﹣ 2
)
14.(2014·荆门)已知α是一元二次方程 x2 -x-1=0 较大的根,则下面对α的估计正确的是( A.0<α<1 B.1<α<1.5
C.1.5<α<2 D.2<α<3 15.(2015•四川攀枝花第 9 题 3 分)关于 x 的一元二次方程(m﹣2)x2 +(2m+1)x+m﹣2﹣0 有两个不相等的正 实数根,则 m 的取值范围是( ) A.m> B. m> 且 m≠2
2
35.(2014·宿迁)一块矩形菜地的面积是 120 m2 ,如果它的长减少 2 m,那么菜地就变成正方形,则原菜地的长 是 m. 36.(2014·丽水)如图,某小区规划在一个长 30 m、宽 20 m 的长方形 ABCD 上修建三条同样宽的通道,使其中 两条与 AB 平行,另一条与 AD 平行,其余部分种花草.要使每一块花草的面积都为 78 m2 ,那么通道的宽应设计 成多少 m?设通道的宽为 x m,由题意列得方程 .
2
2