未来十年核电先进堆型介绍

合集下载

第四代核能介绍

第四代核能介绍

第四代核能介绍面对能源危机、雾霾围城,核能以绿色、高效、低碳排放和可规模生产的突出优势,成为较为理想的替代能源。

作为一种可大规模替代化石燃料的清洁能源,核能在目前的世界能源结构中占有重要地位。

然而,由于现有大规模应用的热中子反应堆存在资源利用率低、放射性废物不断积累和潜在核安全问题,开发更加清洁、高效、安全的新型核能系统对核能可持续发展意义重大。

2014年1月,“第四代核能系统国际论坛组织(GIF)”官方发布的“第四代核能系统技术路线更新图”,选出了6种创新反应堆概念及其支持性的燃料循环供进一步的合作研究与开发。

一:气冷快堆(GFR)——快中子谱、氦冷反应堆和闭合燃料循环;二:超高温反应堆(VHTR)——采用一次通过式铀燃料循环的石墨慢化氦冷反应堆;三:超临界水冷反应堆(SCWR)——在水的热力学临界点以上运行的高温高压水冷反应堆;四:钠冷快堆(SFR)——快中子谱、钠冷堆和有效管理锕系元素和转化铀-238的闭式燃料循环;五:铅冷快堆(LFR)——快中子谱、铅或铅/铋低共熔液态金属冷却反应堆和有效转化铀-238和管理锕系元素的闭合燃料循环;六:熔盐反应堆(MSR)——在超热中子谱反应堆中用循环的熔盐燃料混合物生产裂变电力和使用全部锕系元素再循环的燃料循环。

以上反应堆预计在今后30年内可投入使用。

相对的优点包括基建费用减少,核安全性提高,核废物产生量最小,并且进一步减小了武器材料扩散的风险。

而其中,铅基反应堆备受关注。

铅基材料(铅、铅铋或铅锂合金等)作为反应堆冷却剂,能使反应堆的物理特性和安全运行具有显著优势,铅基反应堆主要特点如下。

第一,中子经济性优良,发展可持续性好。

铅基材料具有低的中子慢化能力及小的俘获截面,因此铅基反应堆可设计成较硬的中子能谱而获得优良的中子经济性,可利用更多富余中子实现核废料嬗变和核燃料增殖等多种功能,也可设计成长寿命堆芯,不仅能提高资源利用率和经济性,也有利于预防核扩散。

核反应堆及发展

核反应堆及发展

核反应堆的类型核电站中的反应堆设计具有多样性,也就是说,核反应堆具有不同类型,相应形成不同的核电站。

可以利用下列三个特点表征不同类型的反应堆。

第一,所用的核燃料可以是天然铀或浓缩铀、钮或钍;第二,使用不同类型的冷却剂,可以是水、二氧化碳、氮气或钠;第三,用于控制链式反应中释放的中子能量的慢化剂,可以是石墨、重水或轻水(即普通水)。

下面就是迄今国际上核电站常用的4种核反应堆型。

压水堆是以加压轻水作为慢化剂和冷却剂,且水在堆内不沸腾的核反应堆。

目前以压水堆为热源的核电站,在核电站机组数量和装机容量方面都处于领先地位。

沸水堆是以沸腾轻水为慢化剂和冷却剂并在反应堆压力容器内直接产生饱和蒸汽的核反应堆。

沸水堆与压水堆同属轻水堆,都具有结构紧凑、安全可靠、建造费用低和负荷跟随能力强等优点。

它们都需使用低富集铀作燃料。

以沸水堆为热源的核电站在未来市场中仍将占有显著的地位。

重水堆是以重水作为慢化剂,轻水或重水作为冷却剂的核反应堆,可以直接利用天然铀作为核燃料。

重水堆分压力容器式和压力管式两类。

重水堆核电站是发展较早的核电站,但已实现工业规模的只有加拿大发展起来的坎杜型压力管式重水堆核电站。

快堆是由快中子引起链式裂变反应的核反应堆。

快堆在运行中既消耗裂变材料,又生产新裂变材料,而且所产可多于所耗,能实现核裂变材料的增殖。

专家预计,快堆未来的发展将会加快起来。

前景看好的快堆现在世界上所运行的绝大多数反应堆是热中子堆,或者说是非增殖堆型,利用的只是铀-235,而天然铀将近99.3%是难裂变的铀-238,所以这些堆型对铀资源的利用率只有1 %~2%。

但在快堆中,铀-238 原则上都能通过核反应转变成易裂变的钮-239而得以使用。

即使考虑到各种损耗,快堆总体上可将铀资源的利用率提高到60%~70%,也可使核废料产生量得到最大程度的降低,实现放射性废物最小化。

具体点说,在堆芯燃料钮-239的外围再生区里放置铀-238,通过钮-239产生的裂变反应时放出来的快中子,使铀-238吸收一个中子后,发生连续两次8衰变后,铀-238很快被转变成钮-239,同时产生了能量,如此核反应下去,能够源源不断地将铀-238转变成可用的燃料钮-239。

新型核反应堆行波堆发展前景展望

新型核反应堆行波堆发展前景展望

新型核反应堆行波堆发展前景展望近年来,新型核反应堆行波堆在领域内受到越来越多的关注和研究,其发展前景备受期待。

本文将对于新型核反应堆行波堆的基本概念、特点、应用领域以及发展前景进行展望。

一、新型核反应堆行波堆的基本概念和特点行波堆是一种利用高速中子在核燃料中作用产生链式反应的核反应堆。

与传统核反应堆不同的是,行波堆中使用的燃料是金属铀,而不是热中子反应堆中的二氧化铀或氧化铀。

由于铀在中子撞击后会发生裂变,因此行波堆中的金属铀可以同时起到燃料和中子反射体的作用。

这种特殊的燃料形式使得行波堆能够以快速中子为燃料,使用的能量密度更高,反应速度也更快。

与传统核反应堆相比,行波堆的反应速度更快,这也是其独特的特点之一。

传统的核反应堆通常需要放置在重水或轻水反应堆结构下来减缓中子,但是新型核反应堆行波堆中使用的是高速中子,因此反应速度非常快。

同时,行波堆还具有较高的燃料利用率,因为铀在行波堆发生的核反应中,会被尽可能完全地消耗,所以相对于传统核反应堆而言,燃料利用率高很多。

此外,新型核反应堆行波堆还拥有更好的安全性和稳定性。

二、新型核反应堆行波堆的应用领域新型核反应堆行波堆在能源领域的应用潜力非常大,主要体现在以下三个方面:1.燃料作为能源:行波堆可以通过燃烧燃料提供可再生的能源,这种能源形式不会造成大气污染或气候变化。

2.制造医疗同位素:行波堆可以用于制造医疗同位素,这些同位素在放射治疗中有广泛的应用。

同时,行波堆还可以用于生产重要的工业同位素,如钴-60用于腐蚀检测。

3.用作核动力引擎:行波堆还可以用于制造核动力引擎,用于飞行微型卫星、长途移民航天器和深潜器等。

三、新型核反应堆行波堆的发展前景新型核反应堆行波堆在我国能源发展中有很大的潜力和前途,其具有高效、安全、环保、低碳、可再生等多重特点,因此被广泛研究和关注。

在国内,新型核反应堆也已经逐渐成为了核能领域重点研究项目之一,目前国内在行波堆技术方面也在积极推进,包括建立了行波堆试验平台,进行了多项实验研究与应用。

小型核电反应堆的现状及未来发展

小型核电反应堆的现状及未来发展

小型核电反应堆的现状及未来发展1 核电反应堆堆型现状核能发电始于20世纪50年代,出于追求核电运行规模经济性的需要,核电机组的设计趋向于大型化,在70年代,核电机组的平均容量达到大约1000 MWe,发电用核反应堆的容量从60 MWe发展到超过1300 MWe。

目前,美国拥有104台现役核电反应堆,总容量约99210 MWe,平均每台容量为953 MWe;法国共有59台运行反应堆机组,总容量63363 MWe,平均每台容量为1074 MWe;日本拥有54台核电机组,总容量约为45468 MWe,平均每台容量为842 MWe。

这些国家拥有庞大而相对完善的电网,能承受单次1000 MWe或1300 MWe负荷的变化。

第3代核电站采用的堆型除了AP600以外也是大型机组,如1300 MW级的System 80+和ABWR,1000 MW级的AP1000 和VVER-1000,1500 MW级的EPR等。

近年来,韩国、中国等国家的核电得到了很大发展,这些国家引进或自主开发、建设的核电站基本上也是大型机组。

21世纪80~90年代,工业化国家的发电容量日趋饱和,电网开始出现容量过剩的问题,电网对大容量机组的并入显得越来越不适应,电力公司也不允许一台大型机组长时间地做低功率调峰运行, 因为这样会给经济性带来严重影响。

因此,近年来人们对中、小型反应堆(SMR)又产生了兴趣,希望这些中小型反应堆能更好地适应工业国家的电力负荷需求,以及满足那些电网不能承受大容量机组并入的发展中国家的电力需求。

1.1 小型核电反应堆的状况国际原子能机构(IAEA)将“小型”机组定义为300MWe以下的机组,而电功率在300MWe以上、600MWe以下的为中型反应堆机组。

中、小型反应堆所涉及的技术是多样化的,反应堆类型有:轻水堆、高温气冷堆、液态金属反应堆和熔盐堆,而当前最主要的2种技术均利用高温氦气直接驱动涡(气)轮机。

目前开发程度较为先进的中、小型反应堆有如下一些:美国国会现在正在筹集资金研究小型模块式核电厂和先进气冷堆设计(也是模块化,10个或更多模块机组逐步建成一个大电厂)。

10 第四代反应堆简介

10 第四代反应堆简介

气冷快堆(GFR)的主要参数
反应堆主要参数
反应堆功率 净效率(直接氦气循环) 冷却剂入口温度 冷却剂出口温度 一回路压力 平均功率密度 燃料组成 体积百分比,燃料/气体/SiC 转换比 燃耗
参数值
600MWth 48% 490℃ 850℃ 90 bar 100 MWth/m3 UPuC/SiC(70%/30%)和约20%Pu 50%、40%、10% 自给自足 5% FIMA
钠冷快堆(SFR)的主要参数及特点
增殖堆,可使用可裂 变物质
能处理锕系元素和长 寿命放射性物质
高安全性
全裕量大 主系统压力接近大气压力
低废物产量
高燃料利用率
反应堆主要参数
出口温度 压力 热功率 燃料 包壳材料 平均功率密度 转换比 燃耗
参数值
530℃-550℃ ~1个大气压 1000-5000MWth 氧化物或金属合金 铁素体或ODS铁素体 100 MWth/m3 0.5-1.30 ~150-200 GWD/MTHM
气冷快堆(GFR) 铅冷快堆(LFR) 钠冷快堆(SFR) 非常高温气冷堆(VHTR) 超临界水堆(SCWR) 熔盐堆(MSR)
气冷快堆(GFR)
冷却剂:He或 CO2 出口温度:850℃ 热功率:600MW 电功率:288MW U-TRU陶瓷弥散燃料 安全系统:能动系统和 非能动系统相结合 热效率50%
整体试验的可测量性 源项 能量释放机理
SR3-2 事故缓解功能
长的系统响应时间 长和有效的支持功能
PR1 防扩散能力 和实体保护能力
PR1-1 对偏差或未知 产物的敏感性
PR1-2 电站薄弱环节
分离材料 乏燃料品质
非能动安全功能
第四代核电站的燃料循环

核反应堆——堆型简介

核反应堆——堆型简介

核反应堆——堆型简介核电站是利用一座或若干座动力反应堆所产生的热能来发电或发电兼供热的动力设施。

目前,商业运行中的核电站都是利用核裂变反应来发电。

世界上当前运行和在建的核电站反应堆主要有压水堆(Pressurized Water Reactor,PWR)、沸水堆(Boiling Water Reactor,BWR)、加压重水堆(Pressurized Heavy Water Reactor,PHWR)、高温气冷堆(High Temperature Gas Reactor,HTGR)和快中子堆(Liquid Metal-cooled Fast BreederReactor,LMFBR)等五种堆型,但应用最广泛的是压水堆。

下面将简要介绍这五种类型核反应堆的基本特征和主要特点。

1、压水堆压水堆是采用加压轻水(H2O)作冷却剂和慢化剂,利用热中子引起链式反应的热中子反应堆。

最初是美国为核潜艇设计的一种热中子反应堆堆型。

四十多年来,这种堆型得到了很大的发展,经过一系列的重大改进,已经成为技术上最成熟的一种堆型。

压水堆核电站采用以稍加浓铀作核燃料,燃料芯块中铀-235的富集度约3%。

核燃料是高温烧结的圆柱形二氧化铀陶瓷燃块,参见图1 (a)。

柱状燃料芯块被封装在细长的锆合金包壳管中构成燃料元件(参见图1(b)),这些燃料元件以矩形点阵排列为燃料组件,组件横断面边长约20cm,长约3m,参见图1 (c)。

几百个组件拼装成压水堆的堆芯。

堆芯宏观上为圆柱形,参见图2。

轻水不仅价格便宜,而且具有优良的热传输性能,所以在压水堆中,轻水不仅作为中子的慢化剂,同时也用作冷却剂,且水在反应堆内不沸腾。

要使水不沸腾——获得高的温度参数,就必须增加冷却剂的系统压力使其处于液相状态,所以压水堆是一种使冷却剂处于高压状态的轻水堆。

压水堆冷却剂入口水温一般在300℃左右,出口水温330℃左右,堆内压力15.5MPa。

我国大亚湾核电站、岭澳核电站、秦山第一核电站、秦山第二核电站、江苏田湾核电站均属于这种堆型。

四代快堆特性分析及前景展望

四代快堆特性分析及前景展望

四代快堆特性分析及前景展望作者:李伟哲覃国秀来源:《科技信息·下旬刊》2017年第06期摘要:四代核电技术共六种堆型,其中三种为热堆,三种为快堆。

快堆由于其独特的自身优势,受到广泛的关注。

本文分析了铅冷快堆、气冷快堆以及钠冷快堆的特性,并对其发展前景进行了探讨。

关键词:气冷快堆;铅冷快堆;钠冷快堆近几年,我国的核电技术发展迅速,不仅研发了具有自主知识产权的压水堆技术,并且已经将核电技术输出到了国外。

我国在大范围建设压水堆核电站的同时,也在积极研发四代堆技术。

四代反应堆包括六种堆型,包括气冷快堆、铅合金液态金属冷却快堆、液态钠冷却快堆、熔盐反应堆、超临界水冷堆、超高温气冷堆。

前三种为快堆,后三种为热堆。

快堆比热堆最大的优势是燃料的可增殖。

热堆的能量主要来源于热中子引起铀235裂变产生的热量,以及裂变产物产生的衰变热。

快堆由快中子引发裂变,主要用钚239作为核燃料。

在反应堆堆芯,钚239的外围区域放有铀238,堆内的快中子撞击钚239使其发生裂变,裂变产生的快中子被外区的铀238吸收,生成铀239,铀239属于不稳定核素,经过几次衰变后会转化为钚239。

也就是说随着反应的进行,堆芯的核燃料会反而会变多,这种现象就叫做燃料的增殖。

因此快堆技术优于热堆技术,快堆不仅可以节省燃料,还可以提高反应堆的能效。

1 气冷快堆气冷快堆,英文缩写为GFR。

是由快中子引发裂变,用氦气作为冷却剂的反应堆。

气冷快堆的燃料主要有复合陶瓷型、先进颗粒型和锕系元素混合物陶瓷包壳元件型三种,燃料循环的形式为闭式。

运行时的出口温度约为850℃。

堆芯布局可以是棱柱块状或者是针状或板状燃料组件。

GFR参考堆有一个一体化的场内乏燃料处理和再处理厂。

通过综合利用快中子谱与锕系元素的完全再循环,将长寿命放射性废物的产生量降到最低[1]。

由于冷却剂使用的是气体,因此其热导率较低,目前对气冷快堆的研究较少。

2 铅冷快堆铅合金液态金属冷却快堆,英文缩写为LFR。

超高温气冷堆介绍

超高温气冷堆介绍

超高温气冷堆(VHTR)调研报告目录0.引言 (3)1.发展历史 (3)1.1 高温气冷堆—实验堆 (3)1.2 高温气冷堆—原型堆 (3)1.3 高温气冷堆-模块式 (4)2.目前各个国家的发展状况 (4)3.VHTR反应堆结构 (5)4.VHTR堆型的优缺点 (8)5.VHTR发展趋势 (9)5.1 前景展望 (9)5.2 VHTR需要填补的技术缺口 (10)6.总结 (11)参考文献 (12)0.引言未来十几年,全世界都需要能源和优化能源基础建设来满足日益增长的电力和运输用燃料的需要。

第四代国际核能论坛(GIF)确定的6种核能系统概念具有满足良好的经济性、安全性、可持续性、防核扩散和防恐怖袭击等目标的绝对优势。

在第四代核能系统概念中,超高温气冷反应堆VHTR(Very High Temperature Reactor)作为高温气冷反应堆渐进式开发过程中下一阶段的重点对象,第四代国际核能论坛(GIF)已将VHTR列入研发计划。

VHTR将反应堆出口温度比HTGR提高100℃,达到1000℃或以上,对所用燃料和材料提出了更高要求,实现制氢的工艺设计也需要研发创新。

目前,多个国家和组织投入力量,正给予重点研发。

我国也将高温气玲堆电站列入中长期科学和技术发展重大专项规划,希望近期取得重大技术突破。

1.发展历史VHTR(Very High Temperature Reactor)是高温气冷反应堆渐进式开发过程中下一阶段的重点对象,而高温气冷堆的发展主要经历了以下阶段[1]。

1.1 高温气冷堆—实验堆英国1960年建造20MW实验堆“龙堆”(Dragon)。

美国1967年建成40MW的桃花谷(Peach Bottom)实验堆。

德国1967年建成15MW的球床高温气冷堆(A VR),并发展了具有自己特色的球形燃料元件和球床高温堆。

这三座实验堆的成功运行,证明了高温气冷堆在技术上是可行的。

1.2 高温气冷堆—原型堆美国1968年建造330MW圣·符伦堡(Fort Stvrain)电站,1976年并网发电。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

未来十年核电先进堆型介绍未来十年核电先进堆型介绍IntroductionofAdvancedNuclearReactorsintheDecade杨孟嘉1任俊生1周志伟2(1.中国广东核电集团公司技术中心,广东深圳,518124;2.清华大学核能技术设计研究院,北京,100084)摘要根据世界核电工业的发展现状,系统讨论了面向2010年核电市场的各种先进核电堆型、设计特点以及主要核电供应商为获得潜在用户进行的商业计划。

综述了这些先进核电堆型近期投放市场的技术和商务准备情况。

研究工作对近期中国核电工业选择先进核电堆型、确立商用核电技术的主导发展方向和健全完善核电站安全管理法规体系具有一定的参考价值。

关键词先进反应堆核电商业计划Abstract:Varioustypesofadvancednuclearreactoraimingatnuclearelectricpowermarketaroundtheyear2010,the irdesignfeaturesandthecorrespondingcommercialplansinitiatedbyworldmajorsuppliersofnuclearpo werplantsforobtainingpotentialcustomersaresystematicallydiscussedbytakingintoaccountthecurrent statusofthedevelopmentofnuclearelectricpowerindustryworldwide.Thetechnicalandcommercialpre parednessfordeployingtheseadvancednuclearreactorsinneartermhasbeensummarized.Asareference,t hepresentresearchisofconsiderableforChinesenuclearpowerindustrytoselectadvancedreactortypesan dtodeterminethemaintechnologicaldevelopmentroadmap,andtoestablisheffectivesafetyregulatorygu idelinesinnearfuture.Keywords:AdvancedreactorCommercialplanofnuclearpower在无温室气体排放的条件下,全球400多座核电站正安全可靠地为人类提供17的电力,这是源于20世纪中叶的核能技术在其沧桑的发展进程中所创造的成就。

随着上个世纪六、七十年代投入运行的核电站逐渐达到其40年的运行寿期,核能界一方面向核安全当局提出申请,要求延长运营期限;另一方面在对已有的核电机组实施渐进性设计和运行改进的基础上,面向2010年前后的核电市场,推出第三代(80年代开始发展、90年代末开始投入市场)先进轻水堆核电站和在第一代至第三代核电堆型的基础上经过渐进性设计改进的核电堆型。

本文简略介绍这两类核电堆型。

1ABWR先进沸水堆(ABWR)是在世界范围内沸水堆(BWR)设计和多年运行经验的基础上发展起来的第三代先进堆型,它基本符合国际上通行的核安全管理规定,基本满足美国用户要求文件(URD)对第三代先进轻水堆安全性、先进性、可靠性和经济性的要求。

ABWR 也是一个完成了全部工程设计、并且有实际建造和运行经验的反应堆。

早在1978年美国GE公司就开始了先进型BWR(ABWR)的研发,并与瑞典的Asea 原子能公司、意大利的Ansaldo公司以及日本的日立和东芝公司一起成立了"改进工程设计队(AET)",共同开发ABWR。

AET综合了美国、欧洲和日本在BWR方面的优点和成熟经验,考虑了最新的汽机、燃料、电子等方面的技术,完成了ABWR的概念设计。

在AET 工作的基础上,GE、日立和东芝公司通力合作,于1985年完成了ABWR的基本设计。

1987年,日本东京电力公司(TEPCO)选择GE、日立和东芝公司组成的国际联合体设计并建造柏崎·刈羽(Kashiwazaki-Kariwa)核电厂的两台ABWR机组(6号机组K6和7号机组K7)。

1987年GE公司向美国核管会(NRC)提出ABWR标准设计许可证申请;1991年,K6/K7获得日本核安全当局的建造许可;1994年ABWR得到NRC的最终设计批准(FDA);1997年,ABWR获得美国NRC标准设计证书,完成了全部设计鉴定并取得了许可证。

K6和K7分别于1996和1997年投入商业运行,预计寿期60年,建造费用约2000美元/kW,发电成本约为7美分/kWh。

还有更多的ABWR也正在申请建造。

将来的ABWR机组的建造费用预计为1700美元/kW。

ABWR采用成熟的常规核燃料,建造工期已在日本得到证明,但在经济竞争性方面存在着某些不确定性。

ABWR主要设计参数热功率MWt3926电功率MWe1350堆芯冷却剂压力MPa7.17堆芯冷却剂温度℃287堆芯冷却剂流量kg/hr52.2x106活性区长度m3.7压力壳内径m7.1燃料组件数872控制棒数205功率密度kW/l512AP-600AP-600是610MWe的压水堆。

它的堆芯、反应堆压力壳、堆内构件和燃料与现在正在运行的西屋压水堆基本相同。

降低堆芯功率密度以提供更大的热工裕度。

AP-600设计的创新方面是:反应堆和安全壳的紧急冷却依靠的是非能动的特性,例如:重力、自然循环、自然对流、蒸发和冷凝,而不是依靠交流电源和电机驱动的部件。

对AP-600非能动冷却系统的大量实验已经完成,而且得到NRC独立进行的验证。

NRC已经认证了AP-600的设计。

AP-600已完成90%的详细设计,也是采用常规核燃料。

AP-600在经济竞争性方面存在着某些不确定性。

AP-600主要设计参数热功率MWt1940电功率MWe610堆芯冷却剂压力MPa15.5堆芯冷却剂温度℃315.5热工设计流量m3/s6.32x2活性区长度m3.66压力壳内径m3.99燃料组件数145控制棒数453AP-1000AP-1000是1117MWe的压水堆,它的基本设计与AP-600相同,但是提高了输出功率以达到经济规模。

除了在一些部件的容量上的改动外,AP-1000的非能动安全系统在本质上与AP-600的相同。

因为输出功率的提高只增加了少量的投资成本,AP-1000发电成本估计可比AP-600降低30(0.036美元/kWh),因此可以预期AP-1000一旦投放市场,在经济性方面会有较大的诱惑。

AP-1000设计认证的申请计划在2002年3月提交给NRC,目前正与NRC一起开展深入的审评工作,预计2003年底能收到"最终设计批准书"。

AP1000已完成65~70%的详细设计。

AP-600和AP-1000两种堆型都有强大的国际工业基础,两者都能够具备在2010年前后投放市场的条件。

但西屋公司主要向市场推荐AP-1000。

AP-1000主要设计参数热功率MWt3400电功率MWe1117堆芯冷却剂压力MPa15.5堆芯冷却剂温度℃321热工设计流量m3/s18.92活性区长度m4.27压力壳内径m3.99燃料组件数157控制棒数534EPREPR(欧洲压水堆)是法国和德国的核工业界在N4和Konvoi基础上联合开发的新一代压水堆。

法国通过法马通公司(Framatome)与德国西门子公司(Siemens)于1989年签订了EPR开发合作协议,1991年法国电力公司和德国的一些电力公司决定参与EPR的开发工作。

Framatome和Siemens现在已经合资成立法马通先进核能公司。

EPR的设计工作从1991年开始,1994年完成概念设计,1998完成基本设计。

2000年3月,法国常设项目组在德国专家参与下完成了EPR基本设计的评审工作,并于2000年11月向法国核安全当局递交了EPR详细技术导则,目前正在做补充设计。

EPR的研发获得其他欧洲国家的协作,设计符合法国和德国的法律和法规。

EPR研发的初步计划是2006年开始建造第一座EPR,2011年投入商业运行。

EPR的研发迄今已耗资2亿多美元。

充分考虑N4和Konvoi机组的设计、运行经验反馈,EPR在安全系统的设计方面采取了一系列预防和缓解措施。

例如:重要的安全系统(如安全注入、应急给水、设备冷却和应急电源)采用四重冗余设计,这样可使机组在运行中作预防性维护,即:事故+单一故障准则+维修,而且各列之间实行严格的实体隔离,因而可缩短停堆时间(正常的停堆换料和检修时间为17天),提高机组的可用率;增加蒸汽发生器和稳压器的体积,以延长事故发生后的宽限期;采用双层安全壳,外层可抵抗外部事件,内层可将假想严重事故的后果限制在核电站内;厂房布置考虑了防飞机坠毁;即使发生了堆熔事故,熔融物也被滞留在堆芯熔渣释放区内,并可利用重力将堆内换料水贮存箱(IRWST)中的储水直接流入堆芯熔渣释放区对熔融物进行淬火和冷却。

由于单机容量大,可用率高(18个月换料时可达91%),EPR在经济上有一定的竞争力。

EPR主要设计参数热功率MWt4250电功率MWe1550堆芯冷却剂压力MPa15.5堆芯入口/出口温度℃292.5/330热工设计流量kg/s22135活性区长度m4.2压力壳内径m4.87燃料组件数241控制棒数89燃耗MWd/t650005System80System80是一个功率为1350MWe的压水堆,由ABB-CE公司(现在已与西屋公司合并)设计开发。

它符合先进轻水堆用户要求文件,并在1997年获得NRC的认证。

基于System80设计的核电站已经在韩国建造。

韩国在System80的基础上开发改进出另一种1400MWe的先进压水堆:APR-1400。

首批两台APR-1400将成为新古里核电站(Shin-Kori)的3号和4号机组,建设费用预计为1400美元/kW。

后续机组(48个月建设周期)造价有望降到1200美元/kW。

但西屋公司目前没有将其推向其它市场的计划。

6CANDU堆自1962年加拿大建成世界第一台CANDU堆型的示范核电站NPD(20MWe),经过大约40年的发展,2001年底全世界共建成CANDU堆型机组41座。

CANDU堆型核电站实际上是一种特殊的压水堆核电站,与PWR堆型核电站很相似。

两者的差异在反应堆本体,尤其是堆芯部分,而核蒸汽供应系统的主要设备和常规岛的汽轮机发电机组等设备基本上是类似的,相关技术基础也是基本相同的。

根据统计,按价格计算,CANDU和PWR核电站约有75以上的设备基本上是相同的。

相关文档
最新文档